66
Views
14
CrossRef citations to date
0
Altmetric
Review

Translational considerations for CNS gene therapy

&
Pages 305-318 | Published online: 19 Feb 2007

Bibliography

  • HACEIN-BEY-ABINA S, LE DEIST F, CARLIER F et al.: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. (2002) 346(16):1185-1193.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al.: A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. (2003) 348(3):255-256.
  • WOODS NB, BOTTERO V, SCHMIDT M, VON KALLE C, VERMA IM: Gene therapy: therapeutic gene causing lymphoma. Nature (2006) 440(7088):1123.
  • GLOVER CP, BIENEMANN AS, HEYWOOD DJ, COSGRAVE AS, UNEY JB: Adenoviral-mediated, high-level, cell-specific transgene expression: a SYN1-WPRE cassette mediates increased transgene expression with no loss of neuron specificity. Mol. Ther. (2002) 5(5):509-516.
  • MIN N, JOH TH, CORP ES et al.: A transgenic mouse model to study transsynaptic regulation of tyrosine hydroxylase gene expression. J. Neurochem. (1996) 67(1):11-18.
  • KLEIN RL, MEYER EM, PEEL AL et al.: Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp. Neurol. (1998) 150(2):183-194.
  • KLEIN RL, HAMBY ME, GONG Y et al.: Dose and promoter effects of adeno-associated viral vector for green fluorescent protein expression in the rat brain. Exp. Neurol. (2002) 176(1):66-74.
  • KUGLER S, LINGOR P, SCHOLL U, ZOLOTUKHIN S, BAHR M: Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units. Virology (2003) 311(1):89-95.
  • GOSSEN M, BUJARD H: Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA (1992) 89:5547-5551.
  • GOSSEN M, FREUNDLIEB S, BENDER G et al.: Transcriptional activation by tetracyclines in mammalian cells. Science (1995) 268(5218):1766-1769.
  • YIM CW, FLYNN NM, FITZGERALD FT: Penetration of oral doxycycline into the cerebrospinal fluid of patients with latent or neurosyphilis. Antimicrob. Agents Chemother. (1985) 28(2):347-348.
  • SMITH-ARICA JR, MORELLI AE, LARREGINA AT et al.: Cell-type-specific and regulatable transgenesis in the adult brain: adenovirus-encoded combined transcriptional targeting and inducible transgene expression. Mol. Ther. (2000) 2(6):579-587.
  • MOHAMMADI SA, HAWKINS RE: Efficient transgene regulation from a single tetracycline-controlled positive feedback regulatory system. Gene Ther. (1998) 5(1):76-84.
  • CHTARTO A, BENDER HU, HANEMANN CO et al.: Tetracycline-inducible transgene expression mediated by a single AAV vector. Gene Ther. (2003) 10(1):84-94.
  • FAVRE D, BLOUIN V, PROVOST N et al.: Lack of an immune response against the tetracycline-dependent transactivator correlates with long-term doxycycline-regulated transgene expression in nonhuman primates after intramuscular injection of recombinant adeno-associated virus. J. Virol. (2002) 76(22):11605-11611.
  • LATTA-MAHIEU M, ROLLAND M, CAILLET C et al.: Gene transfer of a chimeric trans-activator is immunogenic and results in short-lived transgene expression. Hum. Gene Ther. (2002) 13(13):1611-1620.
  • LENA AM, GIANNETTI P, SPORENO E, CILIBERTO G, SAVINO R: Immune responses against tetracycline-dependent transactivators affect long-term expression of mouse erythropoietin delivered by a helper-dependent adenoviral vector. J. Gene Med. (2005) 7(8):1086-1096.
  • RIVERA VM, CLACKSON T, NATESAN S et al.: A humanized system for pharmacologic control of gene expression. Nat. Med. (1996) 2(9):1028-1032.
  • AURICCHIO A, RIVERA VM, CLACKSON T et al.: Pharmacological regulation of protein expression from adeno-associated viral vectors in the eye. Mol. Ther. (2002) 6(2):238-242.
  • LEBHERZ C, AURICCHIO A, MAGUIRE AM et al.: Long-term inducible gene expression in the eye via adeno-associated virus gene transfer in nonhuman primates. Hum. Gene Ther. (2005) 16(2):178-186.
  • POLLOCK R, ISSNER R, ZOLLER K et al.: Delivery of a stringent dimerizer-regulated gene expression system in a single retroviral vector. Proc. Natl. Acad. Sci. USA (2000) 97(24):13221-13226.
  • OLIGINO T, POLIANI PL, WANG Y et al.: Drug inducible transgene expression in brain using a herpes simplex virus vector. Gene Ther. (1998) 5(4):491-496.
  • LI XG, OKADA T, KODERA M et al.: Viral-mediated temporally controlled dopamine production in a rat model of Parkinson’s disease. Mol. Ther. (2006) 13(1):160-166.
  • WEBER W, FUSSENEGGER M: Pharmacologic transgene control systems for gene therapy. J. Gene Med. (2006) 8(5):535-556.
  • LEE YB, GLOVER CP, COSGRAVE AS, BIENEMANN A, UNEY JB: Optimizing regulatable gene expression using adenoviral vectors. Exp. Physiol. (2005) 90(1):33-37.
  • KOTIN RM, LINDEN RM, BERNS KI: Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J. (1992) 11(13):5071-5078.
  • SAMULSKI RJ, ZHU X, XIAO X et al.: Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. (1991) 10(12):3941-3950.
  • MUZYCZKA N: Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr. Top. Microbiol. Immunol. (1992) 158:97-129.
  • CHEN ZY, YANT SR, HE CY et al.: Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol. Ther. (2001) 3(3):403-410.
  • BARTLETT JS, SAMULSKI RJ, MCCOWN TJ: Selective and rapid uptake of adeno-associated virus Type 2 in brain. Hum. Gene Ther. (1998) 9:1181-1186.
  • SHEVTSOVA Z, MALIK JM, MICHEL U, BAHR M, KUGLER S: Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp. Physiol. (2005) 90(1):53-59.
  • DAVIDSON BL, STEIN CS, HETH JA et al.: Recombinant adeno-associated virus Type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA (2000) 97(7):3428-3432.
  • REICH SJ, AURICCHIO A, HILDINGER M et al.: Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum. Gene Ther. (2003) 14(1):37-44.
  • MANDEL RJ, RENDAHL KG, SPRATT SK et al.: Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase I in a rat model of Parkinson’s disease. J. Neurosci. (1998) 18(11):4271-4284.
  • PEEL AL, KLEIN RL: Adeno-associated virus vectors: activity and applications in the CNS. J. Neurosci. Methods (2000) 98:95-104.
  • SPEAR P: Entry of alphaherpesviruses into cells. Semin. Virol. (1993) 4(3):167-180.
  • NORGREN RB JR, LEHMAN MN: Herpes simplex virus as a transneuronal tracer. Neurosci. Biobehav. Rev. (1998) 22(6):695-708.
  • WARD PL, ROIZMAN B: Herpes simplex genes: the blueprint of a successful human pathogen. Trends Genet. (1994) 10(8):267-274.
  • FINK DJ, DELUCA NA, GOINS WF, GLORIOSO JC: Gene transfer to neurons using herpes simplex virus-based vectors. Annu. Rev. Neurosci. (1996) 19:265-287.
  • COFFIN RS, THOMAS SK, THOMAS DP, LATCHMAN DS: The herpes simplex virus 2 kb latency associated transcript (LAT) leader sequence allows efficient expression of downstream proteins which is enhanced in neuronal cells: possible function of LAT ORFs. J. Gen. Virol. (1998) 79(Pt 12):3019-3026.
  • CHEN X, SCHMIDT MC, GOINS WF, GLORIOSO JC: Two herpes simplex virus Type 1 latency-active promoters differ in their contributions to latency-associated transcript expression during lytic and latent infections. J. Virol. (1995) 69(12):7899-7908.
  • SENA-ESTEVES M, SAEKI Y, FRAEFEL C, BREAKEFIELD XO: HSV-1 amplicon vectors – simplicity and versatility. Mol. Ther. (2000) 2(1):9-15.
  • SPAETE RR, FRENKEL N: The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell (1982) 30:305-310.
  • MANN R, MULLIGAN RC, BALTIMORE D: Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell (1983) 33(1):153-159.
  • JIN BK, BELLONI M, CONTI B et al.: Prolonged in vivo gene expression driven by a tyrosine hydroxylase promoter in a defective herpes simplex virus amplicon vector. Hum. Gene Ther. (1996) 7:2015-2024.
  • SCHEUNER D, ECKMAN C, JENSEN M et al.: Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. (1996) 2(8):864-870.
  • LACOR PN, BUNIEL MC, CHANG L et al.: Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J. Neurosci. (2004) 24(45):10191-10200.
  • LESNE S, KOH MT, KOTILINEK L et al.: A specific amyloid-beta protein assembly in the brain impairs memory. Nature (2006) 440(7082):352-357.
  • CUMMINGS JL: Alzheimer’s disease. N. Engl. J. Med. (2004) 351(1):56-67.
  • GERMAN DC, YAZDANI U, SPECIALE SG et al.: Cholinergic neuropathology in a mouse model of Alzheimer’s disease. J. Comp. Neurol. (2003) 462(4):371-381.
  • HIGGINS GA, KOH S, CHEN KS, GAGE FH: NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron (1989) 3:247-256.
  • LUCIDI-PHILLIPI C, GAGE FH: Functions and applications of neurotrophic molecules in the adult central nervous system. Semin. Neurosci. (1993) 5:269-277.
  • VAN DER ZEE EE, LOURENSSEN S, STANISZ J, DIAMOND J: NGF deprivation of adult rat brain results in cholinergic hypofunction and selective impairments in spatial learning. Eur. J. Neurosci. (1995) 7:160-168.
  • WILLIAMS LR, VARON S, PETERSON GM et al.: Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci. USA (1986) 83:9231-9235.
  • BLOCHL A: SNAP-25 and syntaxin, but not synaptobrevin 2, cooperate in the regulated release of nerve growth factor. Neuroreport (1998) 9(8):1701-1705.
  • BLOCHL A, THOENEN H: Characterization of nerve growth factor (NGF) release from hippocampal neurons: evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur. J. Neurosci. (1995) 7(6):1220-1228.
  • DISTEFANO PS, FRIEDMAN B, RADZIEJEWSKI C et al.: The neurotrophins BDNF, NT-3 and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron (1992) 8:983-993.
  • HOWE CL, VALLETTA JS, RUSNAK AS, MOBLEY WC: NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron (2001) 32:801-814.
  • HOF PR, MORRISON JH: The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci. (2004) 27(10):607-613.
  • GRANHOLM AC, SANDERS LA, CRNIC LS: Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down’s syndrome. Exp. Neurol. (2000) 161(2):647-663.
  • MANDEL RJ, GAGE FH, CLEVENGER DG et al.: Nerve growth factor expressed in the medial septum following in vivo gene delivery using a recombinant adeno-associated viral vector protects cholinergic neurons from fimbria-fornix lesion-induced degeneration. Exp. Neurol. (1999) 155(1):59-64.
  • KLEIN RL, HIRKO AC, MEYERS CA et al.: NGF gene transfer to intrinsic basal forebrain neurons increases cholinergic cell size and protects from age-related, spatial memory deficits in middle-aged rats. Brain Res. (2000) 875(1-2):144-151.
  • TUSZYNSKI MH, THAL L, PAY M et al.: A Phase I clinical trial of nerve growth factor gene therapy for Alzheimer’s disease. Nat. Med. (2005) 11(5):551-555.
  • MANDEL RJ, BURGER C: Clinical trials in neurological disorders using AAV vectors: promises and challenges. Curr. Opin. Mol. Ther. (2004) 6(5):482-490.
  • SINGER O, MARR RA, ROCKENSTEIN E et al.: Targeting BACE1 with siRNAs ameliorates Alzheimer’s disease neuropathology in a transgenic model. Nat. Neurosci. (2005) 8(10):1343-1349.
  • STRITTMATTER WJ, SAUNDERS AM, SCHMECHEL D et al.: Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of Type 4 allele in late-onset familial Alzheimer’s disease. Proc. Natl. Acad. Sci. USA (1993) 90(5):1977-1981.
  • CORDER EH, SAUNDERS AM, RISCH NJ et al.: Protective effect of apolipoprotein E Type 2 allele for late onset Alzheimer’s disease. Nat. Genet. (1994) 7(2):180-184.
  • BALES KR, VERINA T, DODEL RC et al.: Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat. Genet. (1997) 17(3):263-264.
  • HOLTZMAN DM, BALES KR, TENKOVA T et al.: Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA (2000) 97(6):2892-2897.
  • KOISTINAHO M, LIN S, WU X et al.: Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat. Med. (2004) 10(7):719-726.
  • LADU MJ, LUKENS JR, REARDON CA, GETZ GS: Association of human, rat, and rabbit apolipoprotein E with beta-amyloid. J. Neurosci. Res. (1997) 49(1):9-18.
  • DODART JC, MARR RA, KOISTINAHO M et al.: Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA (2005) 102(4):1211-1216.
  • HOCK C, KONIETZKO U, STREFFER JR et al.: Antibodies against β-amyloid slow cognitive decline in Alzheimer’s disease. Neuron (2003) 38:1-20.
  • ORGOGOZO JM, GILMAN S, DARTIGUES JF et al.: Subacute meningoencephalitis in a subset of patients with AD after Aβ42 immunization. Neurology (2003) 61:46-54.
  • NICOLL JA, WILKINSON D, HOLMES C et al.: Neuropathology of human Alzheimer’s disease after immunization with amyloid-β peptide: a case report. Nat. Med. (2003) 9(4):448-452.
  • HARA H, MONSONEGO A, YUASA K et al.: Development of a safe oral Abeta vaccine using recombinant adeno-associated virus vector for Alzheimer’s disease. J. Alzheimers Dis. (2004) 6(5):483-488.
  • BOWERS WJ, MASTRANGELO MA, STANLEY HA et al.: HSV amplicon-mediated Abeta vaccination in Tg2576 mice: differential antigen-specific immune responses. Neurobiol. Aging (2005) 26(4):393-407.
  • LANGSTON JW, BALLARD P, TETRUD JW, IRWIN I: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science (1983) 219(4587):979-980.
  • POLYMEROPOULOS MH, LAVEDAN C, LEROY E et al.: Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science (1997) 276:2045-2047.
  • KRUGER R, KUHN W, MULLER T et al.: Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet. (1998) 18:106-108.
  • ZARRANZ JJ, ALEGRE J, GOMEZ-ESTEBAN JC et al.: The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. (2004) 55(2):164-173.
  • SINGLETON AB, FARRER M, JOHNSON J et al.: alpha-Synuclein locus triplication causes Parkinson’s disease. Science (2003) 302(5646):841.
  • ZIMPRICH A, BISKUP S, LEITNER P et al.: Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron (2004) 44(4):601-607.
  • LEROY E, BOYER R, AUBURGER G et al.: The ubiquitin pathway in Parkinson’s disease. Nature (1998) 395:451-452.
  • SHIMURA H, HATTORI N, KUBO S et al.: Familial Parkinson’s disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. (2000) 25(3):302-305.
  • KITADA T, ASAKAWA S, HATTORI N et al.: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature (1998) 392:605-608.
  • KIRIK D, GEORGIEVSKA B, BJORKLUND A: Localized striatal delivery of GDNF as a treatment for Parkinson’s disease. Nat. Neurosci. (2004) 7(2):105-110.
  • MANDEL RJ, SPRATT SK, SNYDER RO, LEFF SE: Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson’s disease in rats. Proc. Natl. Acad. Sci. USA (1997) 94:14083-14088.
  • CHOI-LUNDBERG DL, LIN Q, CHANG Y-N et al.: Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science (1997) 275:838-841.
  • PALFI S, LEVENTHAL L, CHU Y et al.: Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J. Neurosci. (2002) 22(12):4942-4954.
  • KORDOWER JH, EMBORG ME, BLOCH J et al.: Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science (2000) 290:767-773.
  • GEORGIEVSKA B, KIRIK D, BJORKLUND A: Aberrant sprouting and downregulation of tyrosine hydroxylase in lesioned nigrostriatal dopamine neurons induced by long-lasting overexpression of glial cell line derived neurotrophic factor in the striatum by lentiviral gene transfer. Exp. Neurol. (2002) 177(2):461-474.
  • ESLAMBOLI A, GEORGIEVSKA B, RIDLEY RM et al.: Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J. Neurosci. (2005) 25(4):769-777.
  • HERZOG CD, ZELLER JR, BISHOP KM et al.: Bioactivity and safety of CERE-120, an AAV2-based vector expressing neurturin for the potential treatment of Parkinson’s disease, 1 year after striatal delivery in rhesus monkeys. Society for Neuroscience 2006. Atlanta, GA, USA (18 October 2006).
  • MOYER P: Intraputaminal transfer therapy shows promise in refractory Parkinson’s disease. Neurology Today (2006) 6(22):13.
  • KAPLITT MG, LEONE P, SAMULSKI RJ et al.: Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat. Genet. (1994) 8:148-154.
  • KIRIK D, GEORGIEVSKA B, BURGER C et al.: Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of L-dopa using rAAV-mediated gene transfer. Proc. Natl. Acad. Sci. USA (2002) 99(7):4708-4713.
  • CARLSSON T, WINKLER C, BURGER C et al.: Reversal of dyskinesias in an animal model of Parkinson’s disease by continuous L-DOPA delivery using rAAV vectors. Brain (2005) 128(Pt 3):559-569.
  • LLOYD KG, DAVIDSON L, HORNYKIEWICZ O: The neurochemistry of Parkinson’s disease: effect of L-dopa therapy. J. Pharmacol. Exp. Ther. (1975) 195(3):453-464.
  • BANKIEWICZ KS, EBERLING JL, KOHUTNICKA M et al.: Convection-enhanced delivery of AAV vector in Parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp. Neurol. (2000) 164:2-14.
  • BANKIEWICZ KS, FORSAYETH J, EBERLING JL et al.: Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol. Ther. (2006) 14(4):564-570.
  • HADACZEK P, KOHUTNICKA M, KRAUZE MT et al.: Convection-enhanced delivery of adeno-associated virus Type 2(AAV2) into the striatum and transport of AAV2 within monkey brain. Hum. Gene Ther. (2006) 17(3):291-302.
  • BERGMAN H, WICHMANN T, KARMON B, DELONG MR: The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J. Neurophysiol. (1994) 72(2):507-520.
  • BENAZZOUZ A, HALLETT M: Mechanism of action of deep brain stimulation. Neurology (2000) 55(12 Suppl. 6):S13-S16.
  • LUO J, KAPLITT MG, FITZSIMONS HL et al.: Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science (2002) 298:425-429.
  • DURING MJ, KAPLITT MG, STERN MB, EIDELBERG D: Subthalamic GAD gene transfer in Parkinson’s disease patients who are candidates for deep brain stimulation. Hum. Gene Ther. (2001) 12(12):1589-1591.
  • EMBORG ME, CARBON M, HOLDEN JE et al.: Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J. Cereb. Blood Flow Metab. (2006) (In Press).
  • DURING MJ, FEIGIN A, EIDELBERG D et al.: Subthalamic GAD gene transfer improves brain metabolism associated with clinical recovery in Parkinson’s disease. Society for Neuroscience 2006. Atlanta, GA, USA (17 October 2006).
  • LO BIANCO C, SCHNEIDER BL, BAUER M et al.: Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA (2004) 101(50):17510-17515.
  • YAMADA M, MIZUNO Y, MOCHIZUKI H: Parkin gene therapy for alpha-synucleinopathy: a rat model of Parkinson’s disease. Hum. Gene Ther. (2005) 16(2):262-270.

Websites

  • http://videocast.nih.gov/ram/rac092006.ram NIH Recombinant DNA Advisory Committee Webcast on AAV2-neurturin.
  • http://www.gemcris.od.nih.gov/ Information and protocols on clinical trials including AAV-AADC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.