137
Views
18
CrossRef citations to date
0
Altmetric
Review

Monoclonal antibody-based therapeutics for leukemia

&
Pages 319-330 | Published online: 19 Feb 2007

Bibliography

  • WINTON EF, LANGSTON AA: Update in acute leukemia 2003: a risk adapted approach to acute myeloblastic leukemia in adults. Semin. Oncol. (2004) 31:80-86.
  • EHRLICH P: On immunity with specific reference to cell life. Proc. R. Soc. London (1900) 66:429.
  • KOHLER G, MILSTEIN C: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (1975) 256:495-497.
  • MORRISON SL, JOHNSON MJ, HERZENBERG LA, OI VT: Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA (1984) 81:6851-6855.
  • JONES PT, DEAR PH, FOOTE J, NEWBERGER MS, WINTER G: Replacing the complementarity determining regions in a human antibody with those from a mouse. Nature (1986) 321:522-525.
  • JAKOBOVITS A: Production and selection of antigen-specific fully human monoclonal antibodies from mice engineered with human Ig loci. Adv. Drug Deliv. Rev. (1998) 31:33-42.
  • DE HAARD HJ, VAN NEER N, REURS A et al.: A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. (1999) 274:18218-18230.
  • FERRARA N, HILLAN KJ, GERBER HP, NOVOTNY W: Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. (2004) 3:391-400.
  • LI S, SCHMITZ KR, JEFFREY PD, WILTZIUS JJ, KUSSIE P, FERGUSON KM: Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell (2005) 7:301-311.
  • SLAMON DJ, LEYLAND-JONES B, SHAK S: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. (2001) 344:783-792.
  • LEWIS GD, FIGARI I, FENDLY B et al.: Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol. Immunother. (1993) 37:255-263.
  • REFF ME, CARNER K, CHAMBERS KS et al.: Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood (1994) 83:435-445.
  • CLYNES RA, TOWERS TL, PRESTA LG et al.: Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat. Med. (2000) 6:443-446.
  • ZHANG W, GORDON M, SCHULTHEIS AM et al.: Two immunoglobulin G fragment C receptor polymorphisms associated with clinical outcome of EGFR-expressing metastatic colorectal cancer patients treated with single agent cetuximab. Proceedings of the 42nd Annual Meeting of the American Society for Clinical Oncology. Atlanta, GA, USA (2006) Abstract 3028.
  • KRASNER C, JOYCE RM: Zevalin: 90yttrium labeled anti-CD20 (ibritumomab tiuxetan), a new treatment for non-Hodgkin’s lymphoma. Curr. Pharm. Biotechnol. (2001) 2:341-349.
  • CHESON B: Bexxar (Corixa/GlaxoSmithKline). Curr. Opin. Invest. Drugs (2002) 3:165-170.
  • DEFREITAS E, SUZUKI H, HERLYN D et al.: Human antibody induction to the idiotypic and anti-idiotypic determinants of a monoclonal antibody against a gastrointestinal carcinoma antigen. Curr. Top. Microbiol. Immunol. (1985) 119:75-89.
  • WENTWORTH AD, JONES LH, WENTWORTH P JR et al.: Antibodies have the intrinsic capacity to destroy antigens. Proc. Natl. Acad. Sci. USA (2000) 97:10930-10935.
  • FRENCH RR, CHAN HT, TUTT AL, GLENNIE MJ: CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat. Med. (1999) 5:548-553.
  • HURWITZ AA, FOSTER BA, KWON ED et al.: Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res. (2000) 60:2444-2448.
  • BYRD JC, LIN TS, GREVER MR: Treatment of relapsed chronic lymphocytic leukemia: old and new therapies. Semin. Oncol. (2006) 33:210-219.
  • PATEL AK, BOYD PN: An improved assay for antibody dependent cellular cytotoxicity based on time resolved fluorometry. J. Immunol. Methods (1995) 184:29-38.
  • XIA MQ, HALE G, WALDMANN H: Efficient completement-mediated lysis of cells containing the Campath-1 (CDw52) antigen. Mol. Immunol. (1993) 30:1089-1096.
  • STANGLMAIER M, REIS S, HALLEK M: Rituximab and alemtuzumab induce a nonclassic, caspase-independent apoptotic pathway in B-lymphoid cell lines and in chronic lymphocytic leukemia cells. Ann. Hematol. (2004) 83:634-645.
  • CHESON BD, BENNETT JM, GREVER M et al.: National Cancer Institute-Sponsored Working Group Guidelines for Chronic Lymphocytic Leukemia: Revised Guidelines for Diagnosis and Treatment. Blood (1996) 87:4990-4997.
  • KEATING MJ, FLINN I, JAIN V et al.: Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood (2002) 99:3554-3561.
  • RAI KR, FRETER CE, MERCIER RJ et al.: Alemtuzumab in previously treated chronic lymphocytic leukemia patients who also had received fludarabine. J. Clin. Oncol. (2002) 20:3891-3897.
  • OSTERBORG A, DYER MJ, BUNJES D et al.: Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia: European study group of CAMPATH-1H treatment in chronic lymphocytic leukemia. J. Clin. Oncol. (1997) 15:1567-1574.
  • MORETON P, KENNEDY B, LUCAS G et al.: Eradication of minimal residual disease in B-Cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J. Clin. Oncol. (2005) 23:2971-2979.
  • MONTILLO M, TEDESCHI A, MIQUELEIZ S et al.: Alemtuzumab as consolidation after a response to fludarabine is effective in purging residual disease in patients with chronic lymphocytic leukemia. J. Clin. Oncol. (2006) 24:2337-2342
  • ELTER T, BORCHMANN P, SCHULZ H et al.: Fludarabine in combination with alemtuzumab is effective and feasible in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: results of a Phase II trial. J. Clin. Oncol. (2005) 23:7024-7031.
  • KEATING MJ, CAZIN B, COUTRE S et al.: Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J. Clin. Oncol. (2002) 20:205-213.
  • STILGENBAUER S, DOHNER H: Campath-1H-induced complete remission of chronic lymphocytic leukemia despite p53 gene mutation and resistance to chemotherapy. N. Engl. J. Med. (2002) 347:452-453.
  • LOZANSKI G, HEEREMA NA, FLINN IW et al.: Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood (2004) 103:3278-3281.
  • WENDTNER CM, RITGEN M, SCHWEIGHOFER CD et al.: Consolidation with alemtuzumab in patients with chronic lymphocytic leukemia (CLL) in first remission-experience on safety and efficacy within a randomized multicenter Phase III trial of the German CLL Study Group (GCLLSG). Leukemia (2004) 18:1093-1101.
  • LAURENTI L, PICCIONI P, CATTANI P et al.: Cytomegalovirus reactivation during alemtuzumab therapy for chronic lymphocytic leukemia: incidence and treatment with oral ganciclovir. Haematologica (2004) 89:1248-1252.
  • BYRD JC, KITADA S, FLINN IW et al.: The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood (2002) 99:1038-1043.
  • BYRD JC, MURPHY T, HOWARD RS et al.: Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J. Clin. Oncol. (2001) 19:2153-2164.
  • HAINSWORTH JD, LITCHY S, BARTON JH et al.: Single-agent rituximab as first-line and maintenance treatment for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a Phase II trial of the Minnie Pearl Cancer Research Network. J. Clin. Oncol. (2003) 21:1746-1751.
  • BYRD JC, RAI K, PETERSON BL et al.: Addition of rituximab to fludarabine may prolong progression-free survival and overall survival in patients with previously untreated chronic lymphocytic leukemia: an updated retrospective comparative analysis of CALGB 9712 and CALGB 9011. Blood (2005) 105:49-53.
  • KEATING MJ, O’BRIEN S, ALBITAR M et al.: Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J. Clin. Oncol. (2005) 23:4079-4088.
  • WIERDA W, O’BRIEN S, WEN S et al.: Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J. Clin. Oncol. (2005) 23:4070-4078.
  • TEELING JL, FRENCH RR, CRAGG MS et al.: Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood (2004) 104:1793-1800.
  • COIFFIER B, TILLY H, PEDERSEN L et al.: HuMaxCD20 fully human monoclonal antibody in chronic lymphocytic leukemia: early results from an ongoing Phase I/II clinical trial. Proceedings of the 47th Annual Meeting of the American Society of Hematology. Atlanta, GA, USA (2005) Abstract 448.
  • VAN DER VELDEN VH, TE MARVELDE JG, HOOGEVEEN PG et al.: Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood (2001) 97:3197-3204.
  • SIEVERS EL, LARSON RA, STADTMAUER EA et al.: Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J. Clin. Oncol. (2001) 19:3244-3254.
  • LARSON RA, BOOGAERTS M, ESTEY E et al.: Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia (2002) 16:1627-1636.
  • LARSON RA, SIEVERS EL, STADTMAUER EA et al.: Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer (2005) 104:1442-1452.
  • CHEVALLIER P, ROLAND V, MAHE B et al.: Administration of mylotarg 4 days after beginning of a chemotherapy including intermediate-dose aracytin and mitoxantrone (MIDAM regimen) produces a high rate of complete hematologic remission in patients with CD33+ primary resistant or relapsed acute myeloid leukemia. Leuk. Res. (2005) 29:1003-1007.
  • ALVARADO Y, TSIMBERIDOU A, KANTARJIAN H et al. Pilot study of Mylotarg, idarubicin and cytarabine combination regimen in patients with primary resistant or relapsed acute myeloid leukemia. Cancer Chemother. Pharmacol. (2003) 51:87-90.
  • GILES FJ, KANTARJIAN HM, KORNBLAU SM et al.: Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer (2001) 92:406-413.
  • CO MS, AVDALOVIC NM, CARON PC et al.: Chimeric and humanized antibodies with specificity for the CD33 antigen. J. Immunol. (1992) 148:1149-1154.
  • JURCIC JG, LARSON SM, SGOUROS G et al.: Targeted alpha particle immunotherapy for myeloid leucemia. Blood (2002) 100:1233-1239.
  • BURKE JM, JURCIC JG, DIVGI DR et al.: Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-labeled anti-CD33 monoclonal antibody HuM195 in acute myeloid leukemia (AML). Proceedings of the 44th Annual Meeting of the American Society of Hematology. Philadelphia, PA, USA (2002) Abstract 3314.
  • DENNY WA: Tumor-activated prodrugs – a new approach to cancer therapy. Cancer Invest. (2004) 22:604-619.
  • STIREWALT DL, RADICH JP: The role of FLT3 in haematopoietic malignancies. Nat. Rev. Cancer (2003) 3:650-665.
  • LEVIS M, SMALL D: FLT3 tyrosine kinase inhibitors. Int. J. Hematol. (2005) 82:100-107.
  • LI Y, LI H, WANG MN et al.: Suppression of leukemia expressing wild-type or ITD-mutant FLT3 receptor by a fully human anti-FLT3 neutralizing antibody. Blood (2004) 104:1137-1144.
  • PILOTO O, LEVIS M, HUSO D et al.: Inhibitory anti-FLT3 antibodies are capable of mediating antibody-dependent cell-mediated cytotoxicity and reducing engraftment of acute myelogenous leukemia blasts in nonobese diabetic/severe combined immunodeficient mice. Cancer Res. (2005) 65:1514-1522.
  • PILOTO O, NGUYEN B, HUSO D et al.: IMC-EB10, an anti-FLT3 monoclonal antibody, prolongs survival and reduces nonobese diabetic/severe combined immunodeficient engraftment of some acute lympho7blastic leukemia cell lines and primary leukemic samples. Cancer Res. (2006) 66:4843-4851
  • LI Y, LI H, WANG MN et al.: Suppression of leukemia growth by a novel anti-FLT3 antibody-auristatin conjugate. Proceedings of the 46th Annual Meeting of the American Society of Hematology. San Diego, CA, USA (2004) Abstract 1788.
  • DORONINA SO, MENDELSOHN BA, BOVEE TD et al.: Enhanced activity of monomethylauristatin F through monoclonal antibody. Bioconjug. Chem. (2006) 17:114-124.
  • LAW CL, GORDON KA, COLLIERET J et al.: Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody. Cancer Res. (2005) 65:8331-8338.
  • ADVANI RH, FURMAN RR, ROSENBLATT JD et al.: A Phase I study of humanized anti-CD40 immunotherapy with SGN-40 in non-Hodgkin’s lymphoma. Proceedings of the 41st Annual Meeting of the American Society for Clinical Oncology. Orlando, FL, USA (2005) Abstract 1054.
  • TONG X, GEORGAKIS GV, LONG L et al.: In vitro activity of a novel fully human anti-CD40 antibody CHIR-12.12 in chronic lymphocytic leukemia: blockade of CD40 activation and induction of ADCC. Proceedings of the 46th Annual Meeting of the American Society of Hematology. San Diego, CA, USA (2004) Abstract 2504.
  • O’BRIEN CL, BYRD JC, KIPPS TJ et al.: Lumiliximab with fludarabine, cyclophosphamide, and rituximab (FCR) for patients with relapsed chronic lymphocytic leukemia (CLL). Proceedings of the 42nd Annual Meeting of the American Society for Clinical Oncology. Atlanta, GA, USA (2006) Abstract 6597.
  • NAGY ZA, HUBNER B, LOHNING C et al.: Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells. Nat. Med. (2002) 8:781-783.
  • MANSFIELD E, AMLOT P, PASTAN I et al.: Recombinant RFB4 immunotoxins exhibit potent cytotoxic activity for CD22-bearing cells and tumors. Blood (1997) 90:2020-2026.
  • KREITMAN RJ, MARGULIES I, STETLER-STEVENSON M et al.: Cytotoxic activity of disulfide-stabilized recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) towards fresh malignant cells from patients with B-cell leukemias. Clin. Cancer Res. (2000) 6:1476-1487.
  • KREITMAN RJ, WANG QC, FITZGERALD DJ et al.: Complete regression of human B-cell lymphoma xenografts in mice treated with recombinant anti-CD22 immunotoxin RFB4(dsFv)-PE38 at doses tolerated by cynomolgus monkeys. Int. J. Cancer (1999) 81:148-155.
  • KREITMAN RJ, WILSON WH, BERGERON K et al.: Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N. Engl. J. Med. (2001) 345:241-247.
  • KREITMAN RJ, SQUIRES DR, STETLER-STEVENSON M et al.: Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J. Clin. Oncol. (2005) 23:6719-6729.
  • DIAS S, HATTORI K, ZHU Z et al.: Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J. Clin. Invest. (2000) 106:511-521.
  • ZHU Z, HATTORI K, ZHANG H et al.: Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia (2003) 17:604-611.
  • ZHANG H, LI Y, LI H et al.: Inhibition of both the autocrine and the paracrine growth of human leukemia with a fully human antibody directed against vascular endothelial growth factor receptor 2. Leuk. Lymph. (2004) 45:1887-1897.
  • DIAS S, HATTORI K, HEISSIG B et al.: Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc. Natl. Acad. Sci. USA (2001) 98:10857-10862.
  • KARP JE, GOJO I, PILI R et al.: Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin. Cancer Res. (2004) 10:3577-3585.
  • LU D, SHEN J, VIL MD et al.: Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J. Biol. Chem. (2003) 278:43496-43507.
  • CAMIDGE DR, ECKHARDT SG, DIAB S et al.: A Phase I dose-escalation study of weekly IMC-1121B, a fully human anti-vascular endothelial growth factor receptor 2 (VEGFR2) IgG1 monoclonal antibody (Mab), in patients (pts) with advanced cancer. Proceedings of the 42nd Annual Meeting of the American Society for Clinical Oncology. Atlanta, GA, USA (2006) Abstract 3032.
  • SHIELDS RL, NAMENUK AK, HONG K et al.: High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J. Biol. Chem. (2001) 276:6591-6604.
  • LAZAR GA, DANG W, KARKI S et al.: Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. USA (2006) 103:4005-4010.
  • UMANA P, JEAN-MAIRET J, MOUDRY R et al.: Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. (1999) 17:176-180.
  • SHINKAWA T, NAKAMURA K, YAMANE N et al.: The absence of fucose but not the presence of galactose or bisecting N-acetylglusosamine of human IgG1 complex-type oligosaccarides shows the critical role enhancing antibody-dependent cellular toxicity. J. Biol. Chem. (2003) 278:3466-3473.
  • CARTRON G, WATIER H, GOLAY J et al.: From the bench to the bedside: ways to improve rituximab efficacy. Blood (2004) 104:2635-2642.
  • KIPRIYANOV SM, LE GALL F. Recent advances in the generation of bispecific antibodies for tumor immunotherapy. Curr. Opin. Drug Discov. Devel. (2004) 7:233-242.
  • WITHOFF S, HELFRICH W, DE LEIJ LF et al.: Bi-specific antibody therapy for the treatment of cancer. Curr. Opin. Mol. Ther. (2001) 3:53-62.
  • VAN OJIK HH, VALERIUS T: Preclinical and clinical data with bispecific antibodies recruiting myeloid effector cells for tumor therapy. Crit. Rev. Oncol. Hematol. (2001) 38:47-61.
  • FADERL S, FERRAJOLI A, WIERDA W et al.: Continuous infusion/subcutaneous alemtuzumab (Campath-1H) plus rituximab is active for patients with relapsed/refractory chronic lymphocytic leukemia (CLL). Proceedings of the 47th Annual Meeting of the American Society of Hematology. Atlanta, GA, USA (2005) Abstract 2963.
  • WIERDA W, FADERL S, O’BRIEN S et al.: Combined cyclophosphamide, fludarabine, alemtuzumab, and rituximab (CFAR) is active for relapsed and refractory patients with CLL. Proceedings of the 46thAnnual Meeting of the American Society of Hematology. San Diego, CA, USA (2004) Abstract 340.
  • MARVIN J, ZHU Z: Bispecific antibodies for dual-modality cancer therapy: killing two signaling cascades with one stone. Curr. Opin. Drug Discov. Devel. (2006) 9:184-193.
  • LU D, JIMENEZ X, ZHANG H et al.: Complete inhibition of vascular endothelial growth factor (VEGF) activities with a bifunctional diabody directed against both VEGF kinase receptors, fms-like tyrosine kinase receptor and kinase insert domain-containing receptor. Cancer Res. (2001) 61:7002-7008.
  • LU D, ZHANG H, LUDWIG DL et al.: Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J. Biol. Chem. (2004) 279:2856-2865.
  • LU D, ZHANG H, KOO H et al.: A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J. Biol. Chem. (2005) 280:19665-19672.
  • WU AM, SENTER PD: Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol. (2005) 23:1137-1146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.