185
Views
39
CrossRef citations to date
0
Altmetric
Review

Immunotherapy of melanoma: a critical review of current concepts and future strategies

, , , &
Pages 345-358 | Published online: 19 Feb 2007

Bibliography

  • BALCH CM, BUZAID AC, SOONG MB et al.: New TNM melanoma staging system: linking biology and natural history to clinical outcomes. Semin. Surg. Oncol. (2003) 21:43-52.
  • BALCH CM, BUZAID AC, SOONG SJ et al.: Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. Cancer (2001) 88:3635-3648.
  • BALCH CM, SOONG SJ, GERSHENWALD JE et al.: Prognostic factors analysis of 17,600 melanoma patients. Validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol. (2001) 19:3622-3634.
  • ATALLAH E, FLAHERTY L: Treatment of metastatic malignant melanoma. Curr. Treat. Options Oncol. (2005) 6:185-193.
  • ROSENBERG SA, YANG JC, RESTIFO NP: Cancer immunotherapy: moving beyond current vaccines. Nat. Med. (2004) 10:909-915.
  • KIRKWOOD JM: Cancer immunotherapy: the interferon-α experience. Semin. Oncol. (2002) 29:18-26.
  • KIRKWOOD JM, STRAWDERMAN MH, ERNSTOFF MS, SMITH TJ, BORDEN EC, BLUM RH: Interferon α-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol. (1996) 14:7-17.
  • KIRKWOOD JM, IBRAHIM JG, SONDAK VK et al.: High- and low-dose interferon α-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J. Clin. Oncol. (2000) 18:2444-2458.
  • KIRKWOOD JM, IBRAHIM JG, SOSMAN JA et al.: High-dose interferon α-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial, E1694. J. Clin. Oncol. (2001) 19:2370-2380.
  • WHEATLEY K, IVES N, HANCOCK B, GORE M, EGGERMONT A, SUCIU S: Does adjuvant interferon-α for high-risk melanoma provide a worthwhile benefit? A meta-analysis of the randomised trials. Cancer Treat. Rev. (2003) 29:241-252.
  • ROSENBERG SA, YANG JC, TOPALIAN SL et al.: Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin-2. JAMA (2004) 271:907-913.
  • ATKINS MB, LOTZE MT, DUTCHER JP et al.: High-dose recombinant interleukin-2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. (1999) 17:2105-2116.
  • ATKINS MB, KUNKEL L, SZNOL M, ROSENBERG SA: High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J. Sci. Am. (2000) 6:S11-S14.
  • SPANKNEBEL K, CHEUNG KY, STOUTENBURG MD et al.: Initial clinical response predicts outcome and is associated with dose schedule in metastatic melanoma and renal cell carcinoma patients treated with high-dose interleukin-2. Ann. Surg. Oncol. (2005) 12:1-10.
  • QUAN W JR, BRICK W, VINOGRADOV M, TAYLOR WC, KHAN N, BURGESS R: Repeated cycles with 72-hour continuous infusion interleukin-2 in kidney cancer and melanoma. Cancer Biother. Radiopharm. (2004) 19:350-354.
  • PIN J, WANG E, PROVENZANO M et al.: Molecular signatures induced by interleukin-2 on peripheral blood mononuclear cells and T-cell subsets. J. Trans. Med. (2006) 4:1-23.
  • PANELLI MC, WAND E, PHAN G et al.: Genetic profiling of peripheral mononuclear cells and melanoma metastases in response to systemic interleukin-2 administration. Genome Biol. (2002) 3:1-17.
  • ATKINS MB, BUZAID AC, HOUGHTON AN: Chemotherapy and biochemotherapy. In: Cutaneous Melanoma. 4th edn. Balch C, Houghton A Jr, Sober A, Soong S (Eds), Quality Medical Publishing, Inc., St Louis, MO, USA (2003):589-604.
  • MCDERMOTT DF, MIER JW, LAWRENCE DP et al.: A Phase II pilot trial of concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin 2, and interferon-2B in patients with metastatic melanoma. Clin. Cancer Res. (2000) 6:2201-2208.
  • FLAHERTY LE, ATKINS M, SOSMAN J et al.: Outpatient biochemotherapy with interleukin-2 and interferon α-2b in patients with metastatic malignant melanoma: results of two Phase II Cytokine Working Group trials. J. Clin. Oncol. (2001) 19:3194-3202.
  • KEILHOLZ U, GOEY SH, PUNT CJ et al.: Interferon-2a and interleukin-2 with or without cisplatin in metastatic melanoma: a randomized trial of the European Organization for Research and Treatment of Cancer Melanoma Cooperative Group. J. Clin. Oncol. (1997) 15:2579-2588.
  • ROSENBERG SA, YANG JC, SCHWARTZENTRUBER DJ et al.: Prospective randomized trial of the treatment of patients with metastatic melanoma using chemotherapy with cisplatin, dacarbazine, and tamoxifen alone or in combination with interleukin-2 and interferon α-2b. J. Clin. Oncol. (1999) 17:968-975.
  • ETON O, LEGHA SS, BEDIKIAN AY et al.: Sequential biochemotherapy versus chemotherapy for metastatic melanoma: results from a Phase III randomized trial. J. Clin. Oncol. (2002) 20:2045-2052.
  • ATKINS MB, LEE S, FLAHERTY LE, SOSMAN JA, SONDAK VK, KIRKWOOD JM: A prospective randomized Phase III trial of concurrent biochemotherapy (BCT) with cisplatin, vinblastine, dacarbazine (CVD), IL-2 and interferon-2b (IFN) versus CVD alone in patients with metastatic melanoma (E3695): an ECOG-coordinated intergroup trial. In: Program and Abstracts of the American Society of Clinical Oncology Annual Meeting. Chicago (IL) USA (31 May – 3 June 2003):708a.
  • PUNT CJ, SUCIU S, GORE MA et al.: Chemoimmunotherapy with dacarbazine, cisplatin, interferon-α2b and interleukin-2 versus two cycles of dacarbazine followed by chemoimmunotherapy in patients with metastatic melanoma: a randomized Phase II study of the EORTC. Eur. J. Cancer (2006) 42(17):2991-2995.
  • BERD D, MAGUIRE HC, MASTRANGELO MJ: Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res. (1986) 46:2572-2577.
  • LIVINGSTON PO, CUNNINGHAM-RUNDLES S, MARFLEET G et al.: Inhibition of suppressor-cell activity by cyclophosphamide in patients with malignant melanoma. J. Biol. Response Modif. (1987) 6:392-403.
  • BERD D, MAGUIRE HC JR, MCCUE P, MASTRANGELO MJ: Treatment of metastatic melanoma with an autologous tumor-cell vaccine: clinical and immunologic results in 64 patients. J. Clin. Oncol. (1990) 8:1858-1867.
  • LIVINGSTON PO, WONG GY, ADLURI S et al.: Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J. Clin. Oncol. (1994) 12:1036-1044.
  • BYSTRYN JC, ORATZ R, HARRIS MN, ROSES DF, GOLOMB FM, SPEYER JL: Immunogenicity of a polyvalent melanoma antigen vaccine in humans. Cancer (1988) 61:1065-1070.
  • BERD D, SATO T, MAGUIRE HC, KAIRYS J, MASTRANGELO MJ: Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J. Clin. Oncol. (2004) 22:403-415.
  • GHIRINGHELLI F, LARMONIER N, SCHMITT E et al.: CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur. J. Immunol. (2004) 34:336-344.
  • ERCOLINI AM, LADLE BH, MANNING EA et al.: Recruitment of latent pools of high-avidity CD8-positive T cells to the anti-tumor immune response. J. Exp. Med. (2005) 201:1591-1602.
  • RADFAR S, WANG Y, KHONG HT. ‘Chemocentric’ chemoimmunotherapy: presensitization of tumor cells with activated CD4+ T cells synergistically enhances the cytotoxic effect of chemotherapy. J. Immunother. (2006) 29(6):632.
  • MORTON DL: Surgery prolongs survival in stage IV melanoma. Symposium of the Society of Surgical Oncology. San Diego, California, USA (23 – 26 March 2006).
  • MORTON DL, OLLILA DW, HSUEH EC, ESSNER R, GUPTA RK: Cytoreductive surgery and adjuvant immunotherapy: a new management paradigm for metastatic melanoma. CA Cancer J. Clin. (1999) 49:101-116.
  • YOUNG SE, MARTINEZ SR, FARIES MB, ESSNER R, WANEK LA, MORTON DL: Can surgical therapy alone achieve long-term cure of melanoma metastatic to the regional nodes. Cancer J. (2006) 12:207-211.
  • HSUEH EC, MORTON DL: Antigen-based immunotherapy of melanoma: Canvaxin therapeutic polyvalent cancer vaccine. Semin. Cancer Biol. (2003) 13:401-407.
  • ELLIOT GT, MCLEOD RA, PEREZ J, VON ESCHEN KB: Interim results of a Phase II multicenter clinical trial evaluating the activity of a therapeutic allogeneic melanoma vaccine in the treatment of disseminated malignant melanoma. Semin. Surg. Oncol. (1993) 2:41-53.
  • MITCHELL MS, VON ESCHEN KB: Phase III trial of Melacine melanoma theraccine versus combination chemotherapy in the treatment of stage IV melanoma. Proc. Am. Soc. Clin. Oncol. (1997) 16:494-499.
  • SONDAK VK, LIU PY, TUTHILL RJ et al.: Adjuvant immunotherapy of resected, intermediate-thickness node-negative melanoma with an allogeneic tumor vaccine. I. Overall results of a randomized trial of SWOG. J. Clin. Oncol. (2002) 20:2058-2066.
  • SONDAK VK, SOSMAN JA: Results of clinical trials with an allogeneic melanoma tumor cell lysate vaccine: (Melacine). Semin. Cancer Biol. (2003) 13:409-415.
  • DILLMAN RO, DELEON C, BEUTEL LD et al.: Short-term autologous tumor cell lines for the active specific immunotherapy of patients with metastatic melanoma. Crit. Rev. Oncol. Hematol. (2001) 39:115-123.
  • DILLMAN RO, BEUTEL LD, BARTH NM et al.: Irradiated cells from autologous tumor cell lines as patient-specific vaccine therapy in 125 patients with metastatic cancer: induction of delayed-type hypersensitivity to autologous tumor is associated with improved survival. Cancer Biother. Radiopharm. (2002) 17:51-66.
  • HOOVER HC, SURDYKE M, DANGEL RB, PETERS LC, HANNA MG: Delayed cutaneous hypersensitivity to autologous tumor cells in colorectal cancer patients immunized with an autologous tumor cell-BCG vaccine. Cancer Res. (1984) 44:1671-1676.
  • BYSTRYN JC, ORATZ R, ROSES D, HARRIS M, HENN M, LEW R: Relationship between immune response to melanoma vaccine immunization and clinical outcome in stage II malignant melanoma. Cancer (1992) 69:1157-1164.
  • BARTH A, HOON DS, FOSHAG LJ et al.: Polyvalent melanoma cell vaccine induces a delayed-type hypersensitivity and in vitro cellular immune response. Cancer Res. (1994) 54:3342-3345.
  • MILLER K, ABELES G, ORATZ R et al.: Improved survival of patients with melanoma with an antibody response to immunization to a polyvalent melanoma vaccine. Cancer (1995) 75:495-502.
  • BERD D, MAGUIRE HC, SCHUCHTER LM et al.: Autologous hapten modified melanoma vaccine as a post surgical adjuvant treatment after resection of nodal metastases. J. Clin. Oncol. (1997) 15:2359-2370.
  • BERD D, SATO T, COHN H, MAGUIRE HC, MASTRANGELO MJ: Treatment of metastatic melanoma with autologous hapten-modified melanoma vaccine: Regression of pulmonary metastases. Int. J. Cancer (2001) 94:531-539.
  • LOTEM M, PERETZ T, DRIZE O et al.: Autologous cell vaccine as a post operative adjuvant treatment for high-risk melanoma patients (AJCC III and IV). Br. J. Cancer (2002) 86:1534-1539.
  • DRANOFF G, JAFFEE E, LAZENBY A et al.: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA (1993) 90:3539-3543.
  • MACH N, GILLESSEN S, WILSON SB et al.: Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res. (2000) 60:3239-3246.
  • CHANG AE, LI Q, BISHOP DK et al.: Immunogenetic therapy of human melanoma utilizing autologous tumor cells transduced to secrete granulocyte-macrophage colony-stimulating factor. Hum. Gene Ther. (2000) 11:839-850.
  • SOIFFER R, HODI FS, HALUSKA F et al.: Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J. Clin. Oncol. (2003) 21:3343-3350.
  • LUITEN RM, KUETER EW, MOOI W et al.: Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J. Clin. Oncol. (2005) 23:8978-8991
  • ROSENBERG SA, YANG JC, SCHWARTZENTRUBER DJ et al.: Immunologic and therapeutic evaluation of a synthetic tumor associated peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med. (1998) 4:321-327.
  • RIKER AI, PANELLI M, KAMMULA US et al.: Threshold levels of gene expression of the melanoma antigen, gp100, correlates with tumor cell recognition by cytotoxic T-lymphocytes. Int. J. Cancer (2000) 86:818-826.
  • RIKER AI, PANELLI M, KAMMULA US et al.: Development and characterization of melanoma cell lines established by fine needle aspiration biopsy: advances in the monitoring of patients with metastatic melanoma. Cancer Detect. Prev. (1999) 23:387-396.
  • SLINGLUFF CL, PETRONI GR, YAMSHCHIKOV GV et al.: Clinical and immunologic results of a randomized Phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J. Clin. Oncol. (2003) 21:4016-4026.
  • SLINGLUFF CL, CHIANESE-BULLOCK KA, BULLOCK TN et al.: Immunity to melanoma antigens: from self-tolerance to immunotherapy. Adv. Immunol. (2006) 90:243-295.
  • RIDGEWAY D: The first 1,000 dendritic cell vaccines. Cancer Invest. (2003) 21:876-886.
  • SCHADENDORF D, UGUREL S, SCHULER-TURNER B et al.: Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized Phase III trial of the DC study group of the DeCOG. Ann. Oncol. (2006) 17:563-570.
  • PALUCKA AK, UENO H, CONNOLLY J et al.: Dendritic cells loaded with allogeneic melanoma cells induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother. (2006) 29:545-557.
  • NESTLE FO, ALIJAGIC S, GILLIET M et al.: Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat. Med. (1998) 4:328-332.
  • CHANG AE, REDMAN BG, WHITFIELD J et al.: A Phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin. Cancer Res. (2002) 8:1021-1032.
  • NAGAYAMA H, SATO K, MORISHITA M et al.: Results of a Phase I clinical study using autologous tumor lysate-pulsed monocyte-derived mature dendritic cell vaccinations for stage IV malignant melanoma patients combined with low dose interleukin-2. Melanoma Res. (2003) 13:521-530.
  • KRIEG AM: Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. (2006) 5:471-484.
  • KRIEG AM: CpG motifs in bacterial DNA: the active ingredients in BCG and CFA? Nat. Med. (2003) 9:831-835.
  • HECKELSMILLER K, BECK S, RALL K et al.: Combined dendritic cell- and CpG oligodeoxynucleotide- based immune therapy cures large murine tumors that resist chemotherapy. Eur. J. Immunol. (2002) 32:3235-3245.
  • SPEISER DE, LIENARD D, RUFER N et al.: Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest. (2005) 115:739-746.
  • SANDLER AD, CHIHARA H, KOBAYASHI G et al.: CpG oligodeoxynucleotides enhance the tumor antigen-specific immune response of a granulocyte-macrophage colony-stimulating factor-based vaccine strategy in neuroblastoma. Cancer Res. (2003) 63:394-399.
  • DAVILA HL, CELIS E: Repeated administration of cytosine-phosphorothiolated guanine- containing oligonucleotides together with peptide/protein immunization results in enhanced CTL responses with anti-tumor activity. J. Immunol. (2000) 165:539-547.
  • KAWARADA Y, GANSS R, GARBI N, SACHER T, ARNOLD B, HAMMERLING GJ: NK- and CD8+ T-cell mediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynucleotides. J. Immunol. (2001) 167:5247-5253.
  • VAN OJIK HH, BEVAART L, DAHLE CE et al.: CpG-A and -B oligodeoxynucleotides enhance the efficacy of antibody therapy by activating different effector cell populations. Cancer Res. (2003) 63:5595-5600.
  • TORMO D, FERRER A, BOSCH P et al.: Therapeutic efficacy of antigen-specific vaccination and Toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice. Cancer Res. (2006) 66:5427-5435.
  • MOSEMAN EA, LIANG X, DAWSON AJ et al.: Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J. Immunol. (2004) 173:4433-4442.
  • RAJPAR SF, MARSDEN JR: Imiquimod in the treatment of lentigo maligna. Br J. Dermatol. (2006) 155:653-656.
  • WOLF IH, SMOLLE J, BINDER B et al.: Topical imiquimod in the treatment of metastatic melanoma to skin. Arch. Dermatol. (2003) 139:273-276.
  • UTIKAL J, ZIMPFER A, THOELKE A et al.: Complete remission of multiple satellite and in-transit melanoma metastases after sequential treatment with isolated limb perfusion and topical imiquimod. Br. J. Dermatol. (2006) 155:488-491.
  • ZEITOUNI NC, DAWSON K, CHENEY RT: Treatment of cutaneous metastatic melanoma with imiquimod 5% cream and the pulsed-dye laser. Br. J. Dermatol. (2005) 152:376-377.
  • CRAFT N, BRUHN KW, NGUYEN BD et al.: The TLR7 agonist imiquimod enhances the anti-melanoma effects of a recombinant Listeria monocytogenes vaccine. J. Immunol. (2005) 75:1983-1990.
  • PORGADOR A, IRVINE KR, IWASAKI A et al.: Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J. Exp. Med. (1998) 188:1075-1082.
  • CHATTERGOON MA, ROBINSON TM, BOYER JD, WEINER DB: Specific immune induction following DNA-based immunization through in vivo transfection and activation of macrophages/antigen-presenting cells. J. Immunol. (1998) 160:5707-5718.
  • ULMER JB, DECK RR, DEWITT CM, DONNHLY JI, LIU MA: Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: antigen presentation by non-muscle cells. Immunology (1996) 89:59-67.
  • FU TM, ULMER JB, CAULFIELD MJ et al.: Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol. Med. (1997) 3:362-371.
  • WOLFF JA, MALONE RW, WILLIAMS P et al.: Direct gene transfer into mouse muscle in vivo. Science (1990) 247:1465-1468.
  • WOLFF JA, LUDTKE JJ, ACSADI G, WILLIAMS P, JANI A: Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum. Mol. Genet. (1992) 1:363-369.
  • SATO Y, ROMAN M, TIGHE H et al.: Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science (1996) 273:352-354.
  • KLINMAN DM, YI AK, BEAUCAGE SL, CONOVER J, KRIEG AM: CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon γ. Proc. Natl. Acad. Sci. USA (1996) 93:2879-2883.
  • ROSENBERG SA, YANG JC, SHERRY RM et al.: Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum. Gene Ther. (2003) 14:709-714.
  • TRIOZZI PL, ALDRICH W, ALLEN KO, CARLISLE RR, LOBUGLIO AF, CONRY RM: Phase I study of a plasmid DNA vaccine encoding MART-1 in patients with resected melanoma at risk for relapse. J. Immunother. (2005) 28:382-388.
  • PERKUS ME, TARTAGLIA J, PAOLETTI E: Poxvirus-based vaccine candidates for cancer, AIDS, and other infectious diseases. J. Leukoc. Biol. (1995) 58:1-13.
  • VAN BAREN N, BONNET MC, DRENO B et al.: Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. J. Clin. Oncol. (2005) 23:9008-9021.
  • LINDSEY KR, GRITZ L, SHERRY R et al.: Evaluation of prime/boost regimens using recombinant poxvirus/tyrosinase vaccines for the treatment of patients with metastatic melanoma. Clin. Cancer Res. (2006) 12:2526-2537.
  • JAGER E, KARBACH J, GNJATIC S et al.: Recombinant vaccinia/fowlpox NY-ESO-1 vaccines induce both humoral and cellular NY-ESO-1-specific immune responses in cancer patients. Proc. Natl. Acad. Sci. USA (2006) 103:14453-14458.
  • KAUFMAN HL, CONKRIGHT W, DIVITO J, HORIG H, KALEYA R, LEE D: A Phase I trial of intra-lesional rV-B7.1 vaccine in the treatment of malignant melanoma. Hum. Gene Ther. (2000) 11:1065-1082.
  • KAUFMAN HL, DERAFFELE G, DIVITO J, HORIG H, LEE D, PANICALI D: A Phase I trial of intra-lesional rV-TRICOM vaccine in the treatment of malignant melanoma. Hum. Gene Ther. (2001) 12:1459-1480.
  • KAUFMAN HL, CHEUNG K, HASKALL Z, HORIG H, HESDORFFER C, PANICALI D: Intra-lesional rF-B7.1 versus rF-TRICOM vaccine in the treatment of metastatic cancer. Hum. Gene Ther. (2003) 14:803-827.
  • DUDLEY ME, ROSENBERG SA: Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat. Rev. Cancer (2003) 3:666-675.
  • DUDLEY ME, WUNDERLICH J, NISHIMURA MI et al.: Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J. Immunother. (2001) 24:363-373.
  • DUDLEY ME,WUNDERLICH JR, YANG JC et al.: A Phase I study of non-myeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J. Immunother. (2002) 25:243-251.
  • ROSENBERG SA, YANNELLI JR, YANG JC et al.: Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst. (1994) 86:1159-1166.
  • ROSENBERG SA, AEBERSOLD P, CORNETTA K et al.: Gene transfer into humans: immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. (1990) 323:570-578.
  • DUDLEY ME, WUNDERLICH JR, ROBBINS PF et al.: Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science (2002) 298:850-854.
  • ROSENBERG SA, DUDLEY ME: Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc. Natl. Acad. Sci. USA (2004) 101:14639-14645.
  • MORGAN RA, DUDLEY ME, WUNDERLICH JR et al.: Cancer regression in patients after transfer of genetically engineered lymphocytes. Science (2006) 314:126-129.
  • KLEBANOFF CA, KHONG HT, ANTONY PA, PALMER DC, RESTIFO NP: Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. (2005) 26:111-117.
  • CURIEL TJ, COUKOS G, ZOU L et al.: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. (2004) 10:942-949.
  • SHEVACH EM: Regulatory T cells in autoimmunity. Annu. Rev. Immunol. (2000) 18:423-449.
  • JAVIA LR, ROSENBERG SA: CD4+CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J. Immunother. (2003) 26:85-93.
  • WOO EY, CHU CS, GOLETZ TJ: Regulatory CD4+CD25+ T-cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. (2002) 61:4766-4772.
  • WOO EY, YEH H, CHU CS: Cutting edge: regulatory T-cells from lung cancer patients directly inhibit autologous T-cell proliferation. J. Immunol. (2002) 168:4272-4276.
  • VIGUIER M, LEMAITRE F, VEROLA O et al.: Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J. Immunol. (2004) 173:1444-1453.
  • SHIMIZU J, YAMAZAKI S, SAKAGUCHI S: Induction of tumor immunity by removing CD25+CD4+ T-cells: A common basis between tumor immunity and autoimuunity. J. Immunol. (1999) 163:5211-5218.
  • GHIRINGHELLI F, LARMONIER N, SCHMITT E et al.: CD4+CD25+ regulatory T-cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur. J. Immunol. (2004) 34:336-344.
  • AZUMA T, TAKAHASHI T, KUNISATO A, KITAMURA T, HIRAI H: Human CD4+CD25+ regulatory T cells suppress NKT cell functions. Cancer Res. (2003) 63:4516-4520.
  • OLSEN E, DUVIC M, FRANKEL A et al.: Pivotal Phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J. Clin. Oncol. (2001) 19:376-388.
  • DANNULL J, SU Z, RIZZIERI D et al.: Enhancement of vaccine-mediated anti-yumor immunity in cancer patients after depletion of regulatory T-cells. J. Clin. Invest. (2005) 115:3623-3633.
  • ATTIA P, MAKER AV, HAWORTH LR, ROGERS-FREEZER L, ROSENBERG SA: Inability of a fusion protein of IL-2 and diphtheria toxin (denileukin diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T-lymphocytes in patients with melanoma. J. Immunother. (2005) 28:582-592.
  • EISEN T, AHMAD T, FLAHERTY KT et al.: Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer (2006) 95:581-586.
  • FLAHERTY KT, BROSE M, SCHUCHTER L et al.: Phase I/II trial of BAY 43-9006, carboplatin (C) and paclitaxel (P) demonstrates preliminary antitumor activity in the expansion cohort of patients with metastatic melanoma. J. Clin. Oncol. (2004) 22:7507-7514.
  • EISEN T, AHMAD T, MARAIS R et al.: Phase I trial of sorafenib (BAY 43-9006) combined with dacarbazine (DTIC) in patients with metastatic melanoma. Eur. J. Cancer Suppl. (2005) 3:349-357.
  • KLASA RJ, GILLUM AM, KLEM RE et al.: Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev. (2002) 12:193-213.
  • BEDIKIAN AY, MILLWARD MJ, PEHAMBERGER H et al.: Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J. Clin. Oncol. (2006) 24:4738-4745.
  • RIBAS A, CAMACHO LH, LOPEZ-BERESTEIN G et al.: Antitumor activity in melanoma and anti-self responses in a Phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J. Clin. Oncol. (2005) 23:8968-8977.
  • HERSH EM, WEBER J, POWDERLY J et al.: A Phase II, randomized multi-center study of MDX-010 alone or in combination with dacarbazine (DTIC) in stage IV metastatic malignant melanoma. J. Clin. Oncol. (Post-Meeting Edition) (2004) 22:14S.
  • MAKER AV, PHAN GQ, ATTIA P et al.: Tumor regression and autoimmunity in patients treated with cytotoxic T-lymphocyte-associated antigen 4 blockade and interleukin-2: a Phase I/II study. Ann. Surg. Oncol. (2005) 12:1005-1016.
  • MAKER AV, ATTIA P, ROSENBERG SA: Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J. Immunol. (2005) 175:7746-7754.
  • ATTIA P, PHAN GQ, MAKER AV et al.: Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol.(2005) 23:6043-6053.
  • PHAN GQ, YANG JC, SHERRY RM et al.: Cancer regression and autoimmunity induced by cytotoxic T-lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA (2003) 100:8372-8377.
  • GOTHELF A, MIR LM, GEHL J: Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. (2003) 29:371-387.
  • SERSA G, CEMAZAR M, MIKLAVCIC D: Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum (II) in mice. Cancer Res. (1995) 55:3450-3455.
  • ROLS MP, DELTEIL C, GOLZIO M, DUMOND P, CROS S, TEISSIE J: In vivo electrically mediated protein and gene transfer in murine melanoma. Nat. Biotechnol. (1998) 16:168-171.
  • GEHL J, SORENSEN TH, NIELSEN K et al.: In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim. Biophys. Acta (1999) 1428:233-240.
  • ENGSTROM PE, PERSSON BR, SALFORD LG: Studies of in vivo electropermeabilization by γ camera measurements of (99m)Tc-DTPA. Biochim. Biophys. Acta (1999) 1473:321-328.
  • ROLS MP, BACHAUD JM, GIRAUD P, CHEVREAU C, ROCHE H, TEISSIE J: Electrochemotherapy of cutaneous metastases in malignant melanoma. Melanoma Res. (2000) 10:468-474.
  • SERSA G, STABUC B, CEMAZAR M, MIKLAVCIC D, RUDOLF Z: Electrochemotherapy with cisplatin: clinical experience in malignant melanoma patients. Clin. Cancer Res. (2000) 6:863-867.
  • MIR LM, GLASS LF, SERSA G et al.: Effective treatment of cutaneous and subcutaneous malignant tumors by electrochemotherapy. Br. J. Cancer (1998) 77(12):2336-2342.
  • HELLER R, JAROSZESKI MJ, GLASS LF et al.: Phase I/II trial for the treatment of cutaneous and subcutaneous tumors using electrochemotherapy. Cancer (1996) 77(5):964-971.
  • RODRIGUEZ-CUEVAS S, BARROSO-BRAVO S, ALMANZA-ESTRADA J, CRISTOBAL-MARTINEZ L, GONZALEZ-RODRIGUEZ E: Electrochemotherapy in primary and metastatic skin tumors: Phase II trial using intralesional bleomycin. Arch. Med. Res. (2001) 32(4):273-276.
  • HELLER L, MERKLER K, WESTOVER J et al.: Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in B-16 mouse melanoma model. Clin. Cancer Res. (2006) 12(10):3177-3183.
  • LI S, ZHANG X, XIA X: Regression of tumor growth and induction of long-term antitumor memory by interleukin-12 electrogene therapy. J. Natl. Cancer Inst. (2002) 94(10):762-768.
  • BYRNE CM, THOMPSON JF: Role of electrochemotherapy in the treatment of metastatic melanoma and other metastatic and primary skin tumors. Expert Rev. Anticancer Ther. (2006) 6:671-678.
  • MORTON DL, THOMPSON JF, COCHRAN AJ et al.: Sentinel-node biopsy or nodal observation in melanoma. N. Engl. J. Med. (2006) 355(13):1307-1317.
  • TAGAWA ST, CHEUNG E, BANTA W, GEE C, WEBER JS: Survival analysis after resection of metastatic disease followed by peptide vaccines in patients with Stage IV melanoma. Cancer (2006) 106(6):1353-1357.
  • YANG JC, ABAD J, SHERRY R: Treatment of oligometastases after successful immunotherapy. Semin. Radiat. Oncol. (2006) 16(2):131-135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.