147
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Novel vectors for in vivo gene delivery to vascular tissue

, &
Pages 809-821 | Published online: 07 Jun 2007

Bibliography

  • BAUMGARTNER I, PIECZEK A, MANOR O et al.: Constitutive expression of phVEGF(165) after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation (1998) 97(12):1114-1123.
  • VALE PR, LOSORDO DW, MILLIKEN CE et al.: Left ventricular electromechanical mapping to assess efficacy of phVEGF165 gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation (2000) 102(9):965-974.
  • VALE PR, LOSORDO DW, MILLIKEN CE et al.: Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation (2001) 103(17):2138-2143.
  • GROSSMAN H, RAPER SE, KOZARSKY K et al.: Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolemia. Nat. Gen. (1994) 6(4):335-344.
  • LEBHERZ C, GAO G, LOUBOUTIN J et al.: Gene therapy with novel adeno-associated virus vectors substantially diminishes atherosclerosis in a murine model of familial hypercholesterolemia. J. Gene Med. (2004) 6(6):663-672.
  • DALY G, CHERNAJIVSKI Y: Recent developments in retroviral-mediated gene transduction. Mol. Ther. (2000) 2(5):423-434.
  • MILLER DG, ADAM MA, MILLER AD: Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell Biol. (1990) 10(8):4239-4242.
  • LEWIS PF, EMERMAN M: Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. (1994) 68(1):510-516.
  • CRONIN J, ZHANG X-Y, REISER J: Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. (2005) 5(4):397-398.
  • DISHART K, DENBY L, GEORGE S et al.: Third-generation lentivirus vectors efficiently transduce and phenotypically modify vascular cells: implications for gene therapy. J. Mol. Cell. Cardiol. (2003) 35(7):739-748.
  • CEFAI D, SIMEONI E, MUJYNYA-LUDUNGE K et al.: Multiply attenuated, self-inactivating lentiviral vectors efficiently transduce human coronary artery cells in vitro and rat arteries in vivo. J. Mol. Cell. Cardiol. (2005) 38(2):333-344.
  • QIAN Z, HAESSLER M, LEMOS JA et al.: Targeting vascular injury using hantavirus-pseudotyped lentiviral vectors. Mol. Ther. (2006) 13(4):694-704.
  • HACEIN-BEY-ABINA S, LE DEIST F, CARLIER F et al.: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. New Engl. J. Med. (2002) 346(16):1185-1193.
  • CAVAZZANA-CALVO M, LAGRESLE D, HACEIN-BEY-ABINA S, FISCHER A: Gene therapy for severe combined immunodeficiency. Ann. Rev. Med. (2005) 56:585-602.
  • MARSHALL E: Clinical research: gene therapy a suspect in leukemia like disease. Science (2002) 298(5591):34-35.
  • HACEIN-BEY-ABINA S, KALLE C, SCHMIDT M et al.: LM02-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science (2003) 302(5645):415-419.
  • HACEIN-BEY-ABINA S, VON KALLE C, SCHMIDT M et al.: A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. New Engl. J. Med. (2003) 348(3):255-256.
  • SANEZ DT, LOEWEN N, PERETZ M et al.: Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J. Virol. (2004) 78(6):2906-2920.
  • LU R, NAKAJIMA N, HOFMANN W et al.: Simian virus 40-based replication of catalytically inactive human immunodeficiency virus Type 1 integrase mutants in nonpermissive T cells and monocyte-derived macrophages. J. Virol. (2004) 78(2):658-668.
  • VARGAS J JR, GUSELLA GL, NAJIFELD V, KLOTMAN ME, CARA A: Novel integrase-defective lentiviral episomal vectors for gene-transfer. Hum. Gene Ther. (2004) 15(4):361-372.
  • PHILIPPE S, SARKIS C, BARKATS M et al.: Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc. Natl. Acad. Sci. USA (2006) 103(47):17648-17689.
  • YANEZ-MUNOZ RJ, BALAGGAN KS, MACNEIL A et al.: Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med. (2006) 12(3):348-353.
  • SHENK T: Adenoviridae: the viruses and their replication. In: Virology. Fields BN et al. (Eds), Raven Publishers, Philadelphia (1996):2111-2148.
  • WU E, PACHE L, SEGGERN D et al.: Flexibility of the adenovirus fiber is required for efficient receptor interaction. Virology (2003) 77(13):7225-7235.
  • NICKLIN SA, WU E, NEMEROW GR, BAKER AH: The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol. Ther. (2005) 12(3):384-393.
  • BERGELSON JM, CUNNINGHAM JA, DROGUETT G et al.: Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science (1997) 275(5304):1320-1323.
  • TOMKO RP, XU R, PHILIPSON L: HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. USA (1997) 94(7):3352-3356.
  • WICKHAM TJ, MATHIAS P, CHERESH DA, NEMEROW GR: Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell (1993) 73(2):309-319.
  • WICKHAM TJ, MATHIAS P, CHERESH DA, NEMEROW GR: Integrin α5β5 selectively promotes adenovirus mediated cell membrane permeabilization. J. Cell Biol. (1994) 127(1):257-264.
  • HUANG S, ENDO RI, NEMEROW GR: Upregulation of integrins αvβ3 and αvβ5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. Virology (1995) 69(4):2257-2263.
  • LI E, BROWN SL, STUPACK DG et al.: Integrin alpha(v)beta1 is an adenovirus coreceptor. J. Virol. (2001) 75(11):5405-5409.
  • HUANG S, KAMATA T, TAKADA Y, RUGGERI ZM, NEMEROW GR: Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoetic cells. J. Virol. (1996) 70(7):4502-4508.
  • SALONE B, MARTINA Y, PIERSANTI Set al.: Integrin α3β1 is an alternative cellular receptor for adenovirus serotype 5. J. Virol. (2003) 77(24):13448-13454.
  • DECHECCHI MC, TAMANINI A, BONIZZATO A, CABRINI G: Heparan sulphate glycosaminoglycans are involved in adenovirus Type 5 and 2-host cell interactions. Virology (2000) 268(2):382-390.
  • DECHECCHI MC, MELOTTI P, BONIZZATO A et al.: Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J. Virol. (2001) 75(18):8772-8780.
  • SMITH T, IDAMAKANTI N, MARSHALL-NEFF J et al.: Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum. Gene Ther. (2003) 14(17):1595-1604.
  • NICOL C, GRAHAM D, MILLER W et al.: Effect of adenovirus serotype 5 fiber and penton modifications on in vivo tropism in rats. Mol. Ther. (2004) 10(2):344-354.
  • SMITH T, IDAMAKANTI N, ROLLENCE M et al.: Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum. Gene Ther. (2003) 14(8):777-787.
  • BAYO-PUXAN N, CASCALLO M, GROS A et al.: Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus Type 5 fiber shaft on liver detargeting and knob-mediated retargeting. J. Gen. Virol. (2006) 87(9):2487-2495.
  • KRITZ AB, NICOL CG, DISHART KL et al.: Adenovirus 5 fibers mutated at the putative HSPG-binding site show restricted retargeting with targeting peptides in the HI loop. Mol. Ther. (2007) 15(4):741-749.
  • HUARD J, LOCHMULLER H, ACSADI G et al.: The route of administration is a major determinant of the transduction efficiency of rat-tissues by adenoviral recombinants. Gene Ther. (1995) 2(2):107-115.
  • SULLIVAN DE, DASH S, DU H et al.: Liver directed gene transfer into non-human primates. Hum. Gene Ther. (1997) 8(10):1195-1206.
  • ALEMANY R, CURIEL DT: CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther. (2001) 8(17):1347-1353.
  • LEISSNER P, LEGRAND V, SCHLESINGER Y et al.: Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism. Gene Ther. (2001) 8(1):49-57.
  • MIZUGUCHI H, KOIZUMI N, HOSONO T et al.: CAR – or αV integrin-binding ablated adenovirus vectors, but not fiber-modified vectors containing RGD peptide, do not change the systemic gene transfer properties in mice. Gene Ther. (2002) 9(12):769-776.
  • SMITH T, IDAMAKANTI N, KYLEFJORD H et al.: In vivo hepatic adenoviral gene delivery occurs independently of the coxsackie-adenovirus receptor. Mol. Ther. (2002) 5(6):770-779.
  • LEMARCHAND P, JONES M, YAMADA I, CRYSTAL RG: In vivo gene transfer and expression in normal uninjured blood vessels using replication-deficient recombinant adenovirus vectors. Circ. Res. (1993) 72(5):1132-1138.
  • LEE SW, TRAPNELL BC, RADE JJ, VIRMANI R, DICHEK DA: In vivo adenoviral vector mediated gene transfer into balloon-injured rat carotid arteries. Circ. Res. (1993) 73(5):797-807.
  • MERRICK AF, SHEWRING LD, SAWYER GJ, GUSTAFSSON KT, FABRE JW: Comparison of adenovirus gene transfer to vascular endothelial cells in cell culture, organ culture and in vivo. Transplantation (1996) 62(8):1085-1089.
  • REKHTER MD, SIMARI RD, WORK CW et al.: Gene transfer into normal and atherosclerotic human blood vessels. Circ. Res. (1998) 82(12):1243-1252.
  • GRUCHALA M, BHARDWAJ S, PAJUSOLA K et al.: Gene transfer into rabbit arteries with adeno-associated virus and adeno virus vectors. J. Gene Med. (2004) 6(5):545-554.
  • O'RIORDAN C, LACHAPELLE A, DELGADO C et al.: PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum. Gene Ther. (1999) 10(8):1349-1358.
  • CROYLE MA, CHIRMULE N, ZHANG Y, WILSON JM: ‘Stealth’ adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J. Virol. (2001) 75(10):4792-4801.
  • CROYLE MA, LE HT, LINSE KD et al.: PEGylated helper-dependent adenoviral vectors: highly efficient vectors with an enhanced safety profile. Gene Ther. (2005) 12(7):579-587.
  • FISHER KD, STALLWOOD Y, GREEN NK et al.: Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. (2001) 8(5):341-348.
  • GREEN NK, HERBERT CW, HALE SJ et al.: Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther. (2004) 11(16):1256-1263.
  • ETO Y, GAO J-Q, SEIKIGUCHI F et al.: PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability. J. Gene Med. (2005) 4(5):604-612.
  • ROMANCZUK H, GALER CE, ZABNER J et al.: Modification of an adenoviral vector with biologically selected peptides: a novel strategy for gene delivery to cells of choice. Hum. Gene Ther. (1999) 10(16):2615-2626.
  • OGAWARA K, ROTS MG, KOK RJ et al.: A novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo. Hum. Gene Ther. (2004) 15(5):433-443.
  • REYNOLDS PN, ZINN KR, GAVRILYUK VD et al.: A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol. Ther. (2000) 2(6):562-578.
  • REYNOLDS P, NICKLIN S, KALIBEROVA L et al.: Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat. Biotech. (2001) 19(9):833-842.
  • MILLER WH, BROSNAN MJ, GRAHAM D et al.: Targeting endothelial cells with adenovirus expressing nitric oxide synthase prevents elevation of blood pressure in stroke-prone spontaneously hypertensive rats. Mol. Ther. (2005) 12(2):321-326.
  • ROELVINK PW, LEE GM, EINFELD DA, KOVESID I, WICKHAM TJ: Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science (1999) 286(5444):1568-1571.
  • KIRBY I, DAVISON E, BEAVIL AJ et al.: Mutations in the DG loop of adenovirus Type 5 fiber knob protein abolish high-affinity binding to its cellular receptor CAR. J. Virol. (1999) 73(11):9508-9514.
  • KIRBY I, DAVIDSON E, BEAVIL AJ et al.: Identification of contact residues and definition of the CAR-binding site of adenovirus Type 5 binding protein. J. Virol. (2000) 74(6):2804-2813.
  • BEWLEY MC, SPRINGER K, ZHANG Y-B, FREIMUTH P, FLANAGAN JM: Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science (1999) 286(5444):1579-1583.
  • JAKUBCZAK JL, ROLLENCE ML, STEWART DA et al.: Adenovirus Type 5 viral particles pseudotyped with mutagenized fiber proteins show diminished infectivity of coxsackie B-adenovirus receptor-bearing cells. J. Virol. (2001) 75(6):2972-2981.
  • NICKLIN SA, VON SEGGERN DJ, WORK LM et al.: Ablating adenovirus Type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol. Ther. (2001) 4(6):534-542.
  • NICKLIN SA, WHITE S, NICOL C, VON SEGGERN DJ, BAKER AH: In vitro and in vivo characterisation of endothelial cell selective adenoviral vectors. J. Gene Med. (2004) 6(3):300-308.
  • EINFELD DA, SCHROEDER R, ROELVINK PW et al.: Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J. Virol. (2001) 75(23):11284-11291.
  • YUN C-O, YOON A-R, YOO JIY et al.: Coxsackie and adenovirus receptor binding ablation reduces adenovirus liver tropism and toxicity. Hum. Gene Ther. (2005) 16(2):248-261.
  • FECHNER H, HAACK A, WANG H et al.: Expression of coxsackie adenovirus receptor and alphav integrins does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther. (1999) 6(9):1520-1535.
  • SHAYAKHMETOV DM, GAGGAR A, NI S, LI ZY, LIEBER A: Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J. Virol. (2005) 79(12):7478-7491.
  • PARKER AL, WADDINGTON SN, NICOL CG et al.: Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Gene Ther. (2006) 108(8):2554-2561.
  • LEMCKERT AAC, GRIMBERGEN J, SMITS S et al.: Generation of a novel replication-incompetent adenoviral vector derived from human adenovirus Type 49: manufacture on PER.C6 cells, tropism and immunogenicity. J. Gen. Virol. (2006) 87(10):2891-2899.
  • HAVENGA MJE, LEMCKERT AAC, GRIMBERGEN JM et al.: Improved adenovirus vectors for infection of cardiovascular tissues. J. Virol. (2001) 75(7):3335-3342.
  • GAGGAR A, SHAYAKHMETOV D, LIEBER A: CD46 is a cellular receptor for group B adenoviruses. Nat. Med. (2003) 9(11):1408-1412.
  • SUROWIAK P, MATERNA V, MACIEJCZYK A et al.: CD46 expression is indicative of shorter revival-free survival for ovarian cancer patients. Anti-Cancer Res. (2006) 26(6C):4943-4948.
  • RAVINDRANATH NM, SHULER C: Expression of complement restriction factors (CD46, CD55 & CD59) in head and neck squamous cell carcinomas. J. Oral Pathol. Med. (2006) 35(9):560-567.
  • ULASOV IV, TYLER MA, ZHENG S, HAN Y, LESNIAK MS: CD46 represents a target for adenoviral gene therapy of malignant glioma. Hum. Gene Ther. (2006) 17(5):556-564.
  • YU L, TAKENOBU H, SHIMOZATO O et al.: Increased infectivity of adenovirus Type 5 bearing Type 11 or Type 35 fibers to human esophageal and oral carcinoma cells. Oncol. Rep. (2005) 14(4):831-835.
  • NI S, BERNT K, GAGGAR A, LI Z-Y, KIEM H-P, LIEBER A: Evaluation of biodistribution and safety of adenovirus vectors containing group B fibers after intravenous injection into baboons. Hum. Gene Ther. (2005) 16(6):664-677.
  • DENBY L, WORK LM, GRAHAM D et al.: Adenoviral serotype 5 pseudotyped with fibers from subgroup D show modified tropism in vitro and in vivo. Hum. Gene Ther. (2004) 15(11):1054-1064.
  • ARNBERG N, MEI Y-F, WADELL G: Fiber genes of adenoviruses with tropism for the eye and genital tract. Virology (1997) 227(1):239-244.
  • VIGNE E, DEDIEU JF, BRIE A et al.: Genetic manipulations of adenovirus Type 5 fiber resulting in liver tropism attenuation. Gene Ther. (2003) 10(2):153-162.
  • JIANG H, PIERCE GF, OZELO MC et al.: Evidence of multiyear Factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol. Ther. (2006) 14(3):452-455.
  • JIANG H, LILLICRAP D, PATARROYO-WHITE S et al.: Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering Factor VIII to hemophilia A mice and dogs. Blood (2006) 108(1):107-115.
  • RIVERA VM, GAO G-P, GRANT RL et al.: Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood (2005) 105(4):1424-1430.
  • GAO G, ALVIRA MR, SOMANATHAN S et al.: Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc. Natl. Acad. Sci. USA (2003) 100(10):6081-6086.
  • GAO G, VANDENBERGHE LH, ALVIRA MR et al.: Clades of adeno-associated viruses are widely disseminated in human tissues. J. Virol. (2004) 78(12):6381-6388.
  • SUMMERFORD C, SAMULSKI RJ: Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus Type 2 virions. J. Virol. (1998) 72(2):1438-1445.
  • SUMMERFORD C, BARTLETT JS, SAMULSKI RJ: Alpha V beta 5 integrin: a co-receptor for adeno-associated virus Type 2 infection. Nat. Med. (1999) 5(1):78-82.
  • QING K, MAH C, HANSEN J et al.: Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat. Med. (1999) 5(1):71-77.
  • KASHIWAKURA Y, TAMAYOSE K, IWABUCHI K et al.: Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus Type 2 infection. J. Virol. (2005) 79(1):609-614.
  • AKACHE B, GRIMM D, PANDEY K et al.: The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3 and 9. J. Virol. (2006) 80(19):9831-9836.
  • ACLAND GM, AGUIRRE GD, RAY J et al.: Gene therapy restores vision in a canine model of childhood blindness. Nat. Gen. (2001) 28(1):92-95.
  • NATHWANI AC, DAVIDOFF A, HANAWA H et al.: Factors influencing in vivo transduction by recombinant adeno-associated viral vectors expressing the human Factor IX cDNA. Blood (2001) 97(5):1258-1265.
  • MIAO CH, NAKAI H, THOMPSON AR et al.: Non-random transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction. J. Virol. (2000) 74(8):3793-3803.
  • GNATENKO D, ARNOLD TE, ZOLOTUKHIN S et al.: Characterization of recombinant adeno-associated virus-2 as a vehicle for gene delivery and expression into vascular cells. J. Investig. Med. (1997) 45(2):87-98.
  • MAEDA Y, IKEDA U, OGASAWARA Y et al.: Gene transfer into vascular cells using adeno-associated virus (AAV) vectors. Cardiovasc. Res. (1997) 35(3):514-521.
  • RICHTER M, IWATA A, NYHUIS J et al.: Adeno-associated virus vector transduction of vascular smooth muscle cells in vivo. Physiol. Genomics (2000) 2(3):117-127.
  • NICKLIN SA, BUENING H, DISHART KL et al.: Efficient and selective AAV-2 mediated gene transfer directed to human vascular endothelial cells. Mol. Ther. (2001) 4(3):174-181.
  • PAJUSOLA K, GRUCHALA M, JOCH H et al.: Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus Type 2 and restrain infection of endothelial cells. J. Virol. (2002) 76(22):11530-11540.
  • VASSALLI G, BUELER H, DUDLER J, VON SEGESSER LK, KAPPENBERGER L: Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int. J. Cardiol. (2003) 90(2-3):229-238.
  • DUAN D, YUE Y, YAN Z, YANG J,ENGELHARDT JF: Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J. Clin. Invest. (2000) 105(11):1573-1587.
  • DENBY L, NICKLIN SA, BAKER AH: Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation. Gene Ther. (2005) 12(20):1534-1538.
  • GIROD A, REID M, WOBUS C et al.: Genetic capsid modifications allow efficient re-targeting of adeno-associated virus Type 2. Nat. Med. (1999) 9:1052-1056.
  • WORK LM, NICKLIN SA, BRAIN NJR et al.: Development of efficient viral vectors selective for vascular smooth muscle cells. Mol. Ther. (2004) 9(2):198-208.
  • PERABO L, GOLDNAU D, WHITE K et al.: Heparan sulfate proteoglycan properties of adeno-associated virus retargeting mutants and consequences for their in vivo tropism. J. Virol. (2006) 80(14):7625-7269.
  • WU P, XIAO W, CONLON T et al.: Mutational analysis of the adeno-associated virus Type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J. Virol. (2000) 74(18):8635-8647.
  • MULLER O, KAUL F, WEITZMAN M et al.: Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat. Med. (2003) 21(9):1040-1046.
  • PERABO L, BUNING H, KOFLER DM et al.: In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol. Ther. (2003) 8(1):151-157.
  • WATERKAMP DA, MULLER OJ, YING Y, TREPEL M, KLEINSCHMIDT JA: Isolation of targeted AAV2 vectors from novel virus display libraries. J. Gene Med. (2006) 8(11):1307-1319.
  • MÜLLER OJ, LEUCHS B, PLEGER ST et al.: Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc. Res. (2006) 70(1):70-78.
  • GRIMM D, ZHOU S, NAKAI H et al.: Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Gene Ther. (2003) 102(7):2412-2419.
  • BLANKINSHIP MJ, GREGOREVIC P, ALLEN JM et al.: Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol. Ther. (2004) 10(4):671-678.
  • WANG Z, ZHU T, QIAO C et al.: Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat. Biotech. (2005) 23(3):321-328.
  • GREGOREVIC P, BLANKINSHIP MJ, ALLEN JM et al.: Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat. Med. (2004) 10(8):828-834.
  • INAGAKI K, FUESS S, STORM TA et al.: Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol. Ther. (2006) 14(1):45-53.
  • PACAK CA, MAH CS, THATTALIYATH BD et al.: Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ. Res. (2006) 99(4):e3-e9.
  • GREGOREVIC P, ALLEN JM, MINAMI E et al.: rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat. Med. (2006) 12(7):787-789.
  • DU L, KIDO M, LEE DV et al.: Differential myocardial gene delivery by recombinant serotype-specific adeno-associated viral vectors. Mol. Ther. (2004) 10(3):604-608.
  • SU H, HUANG Y, TAKAGAWA J et al.: AAV serotype-1 mediates early onset of gene expression in mouse hearts and results in better therapeutic effect. Gene Ther. (2006) 13(21):1495-1502.
  • KAWAMOTO S, SHI Q, NITTA Y, MIYAZAKI J-I, ALLEN MD: Widespread and early myocardial gene expression by adeno-associated virus vector Type 6 with a β-actin hybrid promoter. Mol. Ther. (2005) 11(6):980-985.
  • VANDENDRIESSCHE T, THORREZ L, ACOSTA-SANCHEZ A et al.: Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 versus lentiviral vectors for hemophilia B gene therapy. J. Thromb. Haemos. (2006) 5(1):16-24.
  • CHEN S, KAPTURCCZAK M, LOILER SA et al.: Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors. Hum. Gene Ther. (2005) 16(2):235-247.
  • STACHLER MD, BARTLETT JS: Mosaic vectors comprised of modified AAV1 capsid proteins for efficient vector purification and targeting to vascular endothelial cells. Gene Ther. (2006) 13(11):926-931.
  • KITAJIMA K, MARCHADIER DHL, MILLER GC et al.: Complete prevention of atherosclerosis in ApoE-deficient mice by hepatic human ApoE gene transfer with adeno-associated virus serotypes 7 and 8. Arterioscler. Thromb.Vasc. Biol. (2006) 26(8):1852-1857.
  • YOSHIOKA T, OKADA T, MAEDA Y et al.: Adeno-associated virus vector-mediated interleukin-10 gene transfer inhibits atherosclerosis in apolipoprotein E-deficient mice. Gene Ther. (2004) 11(24):1772-1779.
  • SHARIFI BG, WU K, WANG L et al.: AAV serotype-dependent apolipoprotein A-I Milano gene expression. Atherosclerosis (2005) 181(2):261-269.
  • WU JC, CHEN IY, WANG Y et al.: Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation (2004) 110(6):685-691.
  • YANG X, ATALAR E: MRI-guided gene therapy. FEBS Lett. (2006) 580(12):2958-2961.
  • CHEN HC, ZHEN J, KUMAR A et al.: Detection of dual expression in arteries using an optical imaging method. J. Biomed. Optics (2004) 9(6):1223-1229.
  • KAR S, KUMAR A, GAO F et al.: A percutaneous optical imaging system to track reporter gene expression from vasculatures in vivo. J. Biomed. Opt. (2006) 11(3):34008-34008.
  • NICKLIN SA, BUENING H, DISHART KL et al.: Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol. Ther. (2001) 4(3):174-181.
  • GRIFMAN M, TREPEL M, SPEECE P et al.: Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol. Ther. (2001) 3(6):964-975.
  • WHITE S, NICKLIN S, BUNING H et al.: Targeted gene delivery to vascular tissue in vivo by tropism modified adeno-associated virus vectors. Circulation (2004) 109(4):513-519.
  • WORK LM, BUNING H, HUNT E et al.: Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol. Ther. (2006) 13(4):683-693.
  • ZHANG Y, BERGELSON JM: Adenovirus receptors. J. Virol. (2005) 79(19):12125-12131.
  • FREIMUTH PK, SPRINGER K, BERARD C, HAINFELD J, BEWLEY M, FLANAGAN J: Coxsackie and adenovirus receptor amino-terminal immunoglobulin V-related domain binds adenovirus Type 2 and fiber knob from adenovirus Type 12. J. Virol. (1999) 73(2):1392-1398.
  • TUVE S, WANG H, WARE C et al.: A new group B adenovirus receptor is expressed at high levels on human stem and tumor cells. J. Virol. (2006) 80(24):12109-12120.
  • ARNBERG N, EDLUND K, KIDD A, WADELL G: Adenovirus Type 37 uses a sialic acid as a cellular receptor. J. Virol. (2000) 74(1):42-48.
  • ARNBERG N, PRING-AKERBLOM P, WADELL G: Adenovirus Type 37 uses sialic acid as a cellular receptor on Chang C cells. J. Virol. (2002) 76(17):8834-8841.
  • BURMEISTER WP, GULLIGAY D, CUSACK S, WADELL G, ARNBERG N: Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J. Virol. (2004) 78(14):7727-7736.
  • WU E, TRAUGER S, PACHE L et al.: Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoconjunctivitis. J. Virol. (2004) 78(8):3897-3905.
  • TRAUGER SA, WU E, BARK SJ, NEMEROW GR, SIUZDAK G: The identification of an adenovirus receptor by using affinity capture and mass spectrometry. Chemobiochemistry (2004) 5(8):1095-1099.
  • ROELVINK PW, LIZONOVA A, LEE JGM et al.: The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J. Virol. (1998) 72(10):7909-7915.
  • NAKAMURA T, SATO K, HAMADA H: Reduction of natural adenovirus tropism to the liver by both ablation of fiber-coxsackievirus and adenovirus receptor interaction and use of replaceable short fiber. J. Virol. (2003) 77(4):2512-2521.
  • SHI W, ARNOLD GS, BARTLETT JS: Insertional mutagenesis of the adeno-associated virus Type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors. Hum. Gene Ther. (2001) 12(14):1697-1711.
  • SHI W, BARTLETT JS: RGD inclusion in VP3 provides adeno-associated virus Type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism. Mol. Ther. (2003) 7(4):515-525.

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.