314
Views
56
CrossRef citations to date
0
Altmetric
Research Article

Early events in innate immunity in the recognition of microbial pathogens

& , DSc
Pages 907-918 | Published online: 07 Jun 2007

Bibliography

  • BROWN H: Ilya Mechnikov and his studies on comparative inflammation. Proc. Soc. Exp. Biol. Med. (1995) 209:99-101.
  • AMBROSE CT: The Osler slide, a demonstration of phagocytosis from 1876 Reports of phagocytosis before Metchnikoff's 1880 paper. Cell Immunol. (2006) 240(1):1-4.
  • LEMAITRE B, NICOLAS E, MICHAUT L, REICHHART JM, HOFFMANN JA: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell (1996) 86(6):973-983.
  • MATZINGER P: Tolerance, danger, and the extended family. Ann. Rev. Immunol. (1994) 12:991-1045.
  • OPPENHEIM JJ, YANG D: Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol. (2005) 17(4):359-365.
  • VON BEHRING E, KITASATO S: On the acquisition of immunity against diphtheria and tetanus in animals. Dtsch Med. Wochenschr. (1890) 16:1145-1148.
  • WINAU F, WESTPHAL O, WINAU R: Paul Ehrlich-in search of the magic bullet. Microbes Infect. (2004) 6(8):786-789.
  • COUTINHO A, KAZATCHKINE MD, AVRAMEAS S: Natural autoantibodies. Curr. Opin. Immunol. (1995) 7(6):812-818.
  • MARCHALONIS JJ, ADELMAN MK, ROBEY IF, SCHLUTER SF, EDMUNDSON AB: Exquisite specificity and peptide epitope recognition promiscuity, properties shared by antibodies from sharks to humans. J. Mol. Recognit. (2001) 14(2):110-121.
  • VOLLMERS HP, BRANDLEIN S: Natural IgM antibodies: the orphaned molecules in immune surveillance. Adv. Drug Deliv. Rev. (2006) 58(5-6):755-765.
  • BRILES DE, NAHM M, SCHROER K et al.: Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with Type 3 Streptococcus pneumoniae. J. Exp. Med. (1981) 153(3):694-705.
  • O'BRIEN AD, SCHER I, CAMPBELL GH, MACDERMOTT RP, FORMAL SB: Susceptibility of CBA/N mice to infection with Salmonella typhimurium: influence of the X-linked gene controlling B lymphocyte function. J. Immunol. (1979) 123(2):720-724.
  • HUNTER KW JR, FINKELMAN FD, STRICKLAND GT, SAYLES PC, SCHER I: Defective resistance to Plasmodium yoelii in CBA/N mice. J. Immunol. (1979) 123(1):133-137.
  • OCHSENBEIN AF, FEHR T, LUTZ C et al.: Control of early viral and bacterial distribution and disease by natural antibodies. Science (1999) 286(5447):2156-2159.
  • BAUMGARTH N, HERMAN OC, JAGER GC et al.: B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. (2000) 192(2):271-280.
  • BOES M, PRODEUS AP, SCHMIDT T,CARROLL MC, CHEN J: A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med. (1998) 188(12):2381-2386.
  • PRODEUS AP, ZHOU X, MAURER M,GALLI SJ, CARROLL MC: Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature (1997) 390(6656):172-175.
  • NONAKA M, KIMURA A: Genomic view of the evolution of the complement system. Immunogenetics (2006) 58(9):701-713.
  • GUO RF, WARD PA: Role of C5a in inflammatory responses. Ann. Rev. Immunol. (2005) 23:821-852.
  • YUSTE J, ALI S, SRISKANDAN S et al.: Roles of the alternative complement pathway and C1q during innate immunity to Streptococcus pyogenes. J. Immunol. (2006) 176(10):6112-6120.
  • WARREN J, MASTROENI P, DOUGAN G et al.: Increased susceptibility of C1q-deficient mice to Salmonella enterica serovar Typhimurium infection. Infect. Immun. (2002) 70(2):551-557.
  • WESSELS MR, BUTKO P, MA M et al.: Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity. Proc. Natl. Acad. Sci. USA (1995) 92(25):11490-11494.
  • IP WK, LAU YL: Role of mannose-binding lectin in the innate defense against Candida albicans: enhancement of complement activation, but lack of opsonic function, in phagocytosis by human dendritic cells. J. Infect. Dis. (2004) 190(3):632-640.
  • SHI L, TAKAHASHI K, DUNDEE J et al.: Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus. J. Exp. Med. (2004) 199(10):1379-1390.
  • MEHLHOP E, DIAMOND MS: Protective immune responses against West Nile virus are primed by distinct complement activation pathways. J. Exp. Med. (2006) 203(5):1371-1381.
  • GADJEVA M, PALUDAN SR, THIEL S et al.: Mannan-binding lectin modulates the response to HSV-2 infection. Clin. Exp. Immunol. (2004) 138(2):304-311.
  • FURUTA T, KIKUCHI T, IWAKURA Y, WATANABE N: Protective roles of mast cells and mast cell-derived TNF in murine malaria. J. Immunol. (2006) 177(5):3294-3302.
  • MEDZHITOV R, PRESTON-HURLBURT P, JANEWAY CA JR: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature (1997) 388(6640):394-397.
  • POLTORAK A, HE X, SMIRNOVA I et al.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science (1998) 282(5396):2085-2088.
  • HOSHINO K, TAKEUCHI O, KAWAI T et al.: Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. (1999) 162(7):3749-3752.
  • KURT-JONES EA, POPOVA L, KWINN L et al.: Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. (2000) 1(5):398-401.
  • RASSA JC, MEYERS JL, ZHANG Y, KUDARAVALLI R, ROSS SR: Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc. Natl. Acad. Sci. USA (2002) 99(4):2281-2286.
  • SHOHAM S, HUANG C, CHEN JM, GOLENBOCK DT, LEVITZ SM: Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J. Immunol. (2001) 166(7):4620-4626.
  • TADA H, NEMOTO E, SHIMAUCHI H et al.: Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol. Immunol. (2002) 46(7):503-512.
  • OLIVEIRA AC, PEIXOTO JR, DE ARRUDA LB et al.: Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J. Immunol. (2004) 173(9):5688-5696.
  • TRAVASSOS LH, GIRARDIN SE, PHILPOTT DJ et al.: Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep. (2004) 5(10):1000-1006.
  • TAKEUCHI O, KAWAI T, MUHLRADT PF et al.: Discrimination of bacterial lipoproteins by Toll-like receptor 6.Int. Immunol. (2001) 13(7):933-940.
  • JANG S, UEMATSU S, AKIRA S, SALGAME P: IL-6 and IL-10 induction from dendritic cells in response to Mycobacterium tuberculosis is predominantly dependent on TLR2-mediated recognition. J. Immunol. (2004) 173(5):3392-3397.
  • CABRAL ES, GELDERBLOM H, HORNUNG RL et al.: Borrelia burgdorferi lipoprotein-mediated TLR2 stimulation causes the down-regulation of TLR5 in human monocytes. J. Infect. Dis. (2006) 193(6):849-859.
  • INGALLS RR, LIEN E, GOLENBOCK DT: Differential roles of TLR2 and TLR4 in the host response to Gram-negative bacteria: lessons from a lipopolysaccharide-deficient mutant of Neisseria meningitidis. J. Endotoxin Res. (2000) 6(5):411-415.
  • ALIPRANTIS AO, WEISS DS, RADOLF JD, ZYCHLINSKY A: Release of Toll-like receptor-2-activating bacterial lipoproteins in Shigella flexneri culture supernatants. Infect. Immun. (2001) 69(10):6248-6255.
  • BRAEDEL-RUOFF S, FAIGLE M, HILF N, NEUMEISTER B, SCHILD H: Legionella pneumophila mediated activation of dendritic cells involves CD14 and TLR2. J. Endotoxin Res. (2005) 11(2):89-96.
  • WERTS C, TAPPING RI, MATHISON JC et al.: Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat. Immunol. (2001) 2(4):346-352.
  • HIRSCHFELD M, WEIS JJ, TOSHCHAKOV V et al.: Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. (2001) 69(3):1477-1482.
  • ASAI Y, HASHIMOTO M, FLETCHER HM et al.: Lipopolysaccharide preparation extracted from Porphyromonas gingivalis lipoprotein-deficient mutant shows a marked decrease in toll-like receptor 2-mediated signaling. Infect. Immun. (2005) 73(4):2157-2163.
  • BIEBACK K, LIEN E, KLAGGE IM et al.: Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J. Virol. (2002) 76(17):8729-8736.
  • KURT-JONES EA, CHAN M, ZHOU S et al.: Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc. Natl. Acad. Sci. USA (2004) 101(5):1315-1320.
  • JOUAULT T, IBATA-OMBETTA S, TAKEUCHI O et al.: Candida albicans phospholipomannan is sensed through Toll-like receptors. J. Infect. Dis. (2003) 188(1):165-172.
  • OUAISSI A, GUILVARD E, DELNESTE Y et al.: The Trypanosoma cruzi Tc52-released protein induces human dendritic cell maturation, signals via Toll-like receptor 2, and confers protection against lethal infection. J. Immunol. (2002) 168(12):6366-6374.
  • VAN DER KLEIJ D, LATZ E, BROUWERS JF et al.: A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J. Biol. Chem. (2002) 277(50):48122-48129.
  • COBAN C, ISHII KJ, UEMATSU S et al.: Pathological role of Toll-like receptor signaling in cerebral malaria. Int. Immunol. (2007) 19(1):67-79.
  • GEWIRTZ AT, NAVAS TA, LYONS S, GODOWSKI PJ, MADARA JL: Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. (2001) 167(4):1882-1885.
  • HEIL F, HEMMI H, HOCHREIN H et al.: Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science (2004) 303(5663):1526-1529.
  • PARROCHE P, LAUW FN, GOUTAGNY N et al.: Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc. Natl. Acad. Sci. USA (2007).
  • BAUER S, KIRSCHNING CJ, HACKER H et al.: Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA (2001) 98(16):9237-9242.
  • LUND J, SATO A, AKIRA S, MEDZHITOV R, IWASAKI A: Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. (2003) 198(3):513-520.
  • ZHANG D, ZHANG G, HAYDEN MS et al.: A toll-like receptor that prevents infection by uropathogenic bacteria. Science (2004) 303(5663):1522-1526.
  • YAROVINSKY F, ZHANG D, ANDERSEN JF et al.: TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science (2005) 308(5728):1626-1629.
  • UETA M, NOCHI T, JANG MH et al.: Intracellularly expressed TLR2s and TLR4s contribution to an immunosilent environment at the ocular mucosal epithelium. J. Immunol. (2004) 173(5):3337-3347.
  • GUILLOT L, MEDJANE S, LE-BARILLEC K et al.: Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4. J. Biol. Chem. (2004) 279(4):2712-2718.
  • GIRARDIN SE, BONECA IG, CARNEIRO LA et al.: Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science (2003) 300(5625):1584-1587.
  • GIRARDIN SE, BONECA IG, VIALA J et al.: Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. (2003) 278(11):8869-8872.
  • OPITZ B, PUSCHEL A, BEERMANN W et al.: Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J. Immunol. (2006) 176(1):484-490.
  • TRAVASSOS LH, CARNEIRO LA, GIRARDIN SE et al.: Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J. Biol. Chem. (2005) 280(44):36714-36718.
  • GIRARDIN SE, TOURNEBIZE R, MAVRIS M et al.: CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep. (2001) 2(8):736-742.
  • OPITZ B, FORSTER S, HOCKE AC et al.: Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ. Res. (2005) 96(3):319-326.
  • VIALA J, CHAPUT C, BONECA IG et al.: Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. (2004) 5(11):1166-1174.
  • FERWERDA G, GIRARDIN SE, KULLBERG BJ et al.: NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog. (2005) 1(3):279-285.
  • KAPETANOVIC R, NAHORI MA, BALLOY V et al.: Contribution of phagocytosis and intracellular sensing for cytokine production by Staphylococcus aureus-activated macrophages. Infect. Immun. (2007) 75(2):830-837.
  • OPITZ B, PUSCHEL A, SCHMECK B et al.: Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J. Biol. Chem. (2004) 279(35):36426-36432.
  • HISAMATSU T, SUZUKI M, REINECKER HC et al.: CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology (2003) 124(4):993-1000.
  • MIAO EA, ALPUCHE-ARANDA CM, DORS M et al.: Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat. Immunol. (2006) 7(6):569-575.
  • FRANCHI L, AMER A, BODY-MALAPEL M et al.: Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat. Immunol. (2006) 7(6):576-582.
  • HORNUNG V, ELLEGAST J, KIM S et al.: 5′-Triphosphate RNA is the ligand for RIG-I. Science (2006) 314(5801):994-997.
  • OPITZ B, REJAIBI A, DAUBER B et al.: IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol. (2006).
  • LIU P, JAMALUDDIN M, LI K et al.: Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J. Virol. (2007) 81(3):1401-1411.
  • GITLIN L, BARCHET W, GILFILLAN S et al.: Essential role of mda-5 in Type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA (2006) 103(22):8459-8464.
  • BERGHALL H, SIREN J, SARKAR D et al.: The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviral cytokines. Microbes. Infect. (2006) 8(8):2138-2144.
  • SIREN J, IMAIZUMI T, SARKAR D et al.: Retinoic acid inducible gene-I and mda-5 are involved in influenza A virus-induced expression of antiviral cytokines. Microbes Infect. (2006) 8(8):2013-2020.
  • ISHIGURO T, NAITO M, YAMAMOTO T et al.: Role of macrophage scavenger receptors in response to Listeria monocytogenes infection in mice. Am. J. Pathol. (2001) 158(1):179-188.
  • MUKHOPADHYAY S, CHEN Y, SANKALA M et al.: MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur. J. Immunol. (2006) 36(4):940-949.
  • TAYLOR PR, TSONI SV, WILLMENT JA et al.: Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat. Immunol. (2007) 8(1):31-38.
  • SATO K, YANG XL, YUDATE T et al.: Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J. Biol. Chem. (2006) 281(50):38854-38866.
  • HOEBE K, GEORGEL P, RUTSCHMANN S et al.: CD36 is a sensor of diacylglycerides. Nature (2005) 433(7025):523-527.
  • STUART LM, DENG J, SILVER JM et al.: Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J. Cell. Biol. (2005) 170(3):477-485.
  • WU D, ZAJONC DM, FUJIO M et al.: Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc. Natl. Acad. Sci. USA (2006) 103(11):3972-3977.
  • KINJO Y, TUPIN E, WU D et al.: Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. (2006) 7(9):978-986.
  • MATTNER J, DEBORD KL, ISMAIL N et al.: Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature (2005) 434(7032):525-529.
  • GANTNER BN, SIMMONS RM, CANAVERA SJ, AKIRA S, UNDERHILL DM: Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. (2003) 197(9):1107-1117.
  • FRITZ JH, GIRARDIN SE, FITTING C et al.: Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4and NOD1- and NOD2-activating agonists. Eur. J. Immunol. (2005) 35(8):2459-2470.
  • COLLINS HL, BANCROFT GJ: Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Eur. J. Immunol. (1992) 22(6):1447-1454.
  • BLANDER JM, MEDZHITOV R: Regulation of phagosome maturation by signals from toll-like receptors. Science (2004) 304(5673):1014-1018.
  • YATES RM, RUSSELL DG: Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4. Immunity (2005) 23(4):409-417.
  • LIU C, XU Z, GUPTA D, DZIARSKI R: Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. (2001) 276(37):34686-34694.
  • LU X, WANG M, QI J et al.: Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J. Biol. Chem. (2006) 281(9):5895-5907.
  • DORSCHNER RA, PESTONJAMASP VK, TAMAKUWALA S et al.: Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J. Invest. Dermatol. (2001) 117(1):91-97.
  • NAGAOKA I, HIROTA S, NIYONSABA F et al.: Cathelicidin family of antibacterial peptides CAP18 and CAP11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J. Immunol. (2001) 167(6):3329-3338.
  • LARRICK JW, HIRATA M, ZHENG H et al.: A novel granulocyte-derived peptide with lipopolysaccharide-neutralizing activity. J. Immunol. (1994) 152(1):231-240.
  • ZHANG L, YU W, HE T et al.: Contribution of human alpha-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science (2002) 298(5595):995-1000.
  • BENSCH KW, RAIDA M, MAGERT HJ, SCHULZ-KNAPPE P, FORSSMANN WG: hBD-1: a novel beta-defensin from human plasma. FEBS Lett. (1995) 368(2):331-335.
  • MOSER C, WEINER DJ, LYSENKO E et al.: Beta-defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. (2002) 70(6):3068-3072.
  • SORENSEN OE, THAPA DR, ROSENTHAL A et al.: Differential regulation of beta-defensin expression in human skin by microbial stimuli. J. Immunol. (2005) 174(8):4870-4879.
  • VORA P, YOUDIM A, THOMAS LS et al.: Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J. Immunol. (2004) 173(9):5398-5405.
  • SCHRODER JM, HARDER J: Human beta-defensin-2. Int. J. Biochem. Cell Biol. (1999) 31(6):645-651.
  • HARDER J, BARTELS J, CHRISTOPHERS E, SCHRODER JM: Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. (2001) 276(8):5707-5713.
  • KRIJGSVELD J, ZAAT SA, MEELDIJK J et al.: Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J. Biol. Chem. (2000) 275(27):20374-20381.
  • PARDI R, INVERARDI L, BENDER JR: Regulatory mechanisms in leukocyte adhesion: flexible receptors for sophisticated travelers. Immunol. Today (1992) 13(6):224-230.
  • KLIR JJ, ROTH J, SZELENYI Z, MCCLELLAN JL, KLUGER MJ: Role of hypothalamic interleukin-6 and tumor necrosis factor-alpha in LPS fever in rat. Am. J. Physiol. (1993) 265(3 Pt 2):R512-R517.
  • LEGRAND EK: Endotoxin as an alarm signal of bacterial invasion: current evidence and implications. J. Am. Vet. Med. Assoc. (1990) 197(4):454-456.
  • AUDIBERT F, CHEDID L, LEFRANCIER P, CHOAY J, LEDERER E: Relationship between chemical structure and adjuvant activity of some synthetic analogues of N-acetyl-muramyl-L-alanyl-D-isoglutamine (MDP). Ann. Immunol. (Paris) (1977) 128C(3):653-661.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.