338
Views
36
CrossRef citations to date
0
Altmetric
Review

Cell-penetrating TIR BB loop decoy peptides

a novel class of TLR signaling inhibitors and a tool to study topology of TIR–TIR interactions

&
Pages 1035-1050 | Published online: 31 Jul 2007

Bibliography

  • AKIRA S: TLR signaling. Curr. Top Microbiol. Immunol. (2006) 311:1-16.
  • MEDVEDEV AE, SABROE I, HASDAY JD, VOGEL SN: Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease. J. Endotoxin Res. (2006) 12(3):133-150.
  • MARSHAK-ROTHSTEIN A: Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. (2006) 6(11):823-835.
  • MULLICK AE, TOBIAS PS, CURTISS LK: Toll-like receptors and atherosclerosis: key contributions in disease and health? Immunol. Res. (2006) 34(3):193-209.
  • FOLDES G, VON HAEHLING S, ANKER SD: Toll-like receptor modulation in cardiovascular disease: a target for intervention? Expert Opin. Investig. Drugs (2006) 15(8):857-871.
  • VANAGS D, WILLIAMS B, JOHNSON B et al.: Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet (2006) 368(9538):855-863.
  • O'NEILL LA: Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Curr. Opin. Pharmacol. (2003) 3(4):396-403.
  • D'ACQUISTO F, MAY MJ, GHOSH S: Inhibition of NF-κB (NF-κB): an emerging theme in anti-inflammatory therapies. Mol. Interv. (2002) 2(1):22-35.
  • WEGSTAFF KM, JANS DA: Protein transduction: cell penetrating peptides and their therapeutic applications. Curr. Med. Chem. (2006) 13(12):1371-1387.
  • GUPTA B, LEVCHENKO TS, TORCHILIN VP: Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev. (2005) 57(4):637-651.
  • GREEN M, LOEWENSTEIN PM: Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell (1988) 55(6):1179-1189.
  • FRANKEL AD, PABO CO: Cellular uptake of the tat protein from human immunodeficiency virus. Cell (1988) 55(6):1189-1193.
  • JOLIOT A, PERNELLE C, DEAGOSTINI-BAZIN H, PROCHIANTZ A: Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. USA (1991) 88(5):1864-1868.
  • DEROSSI D, JOLIOT AH, CHASSAING G, PROCHIANTZ A: The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. (1994) 269(14):10444-10450.
  • ELLIOTT G, O'HARE P: Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell (1997) 88(2):223-233.
  • DESHAYES S, MORRIS MC, DIVITA G, HEITZ F: Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci. (2005) 62:1839-1849.
  • JOLIOT A, PROCHIANTZ A: Transduction peptides: from technology to physiology. Nat. Cell Biol. (2004) 6(3):189-196.
  • FUTAKI S: Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv. Drug Deliv. Rev. (2005) 57:547-558.
  • HALLBRINK M, KILK K, ELMQUIST A et al.: Prediction of cell-penetrating peptides. Int. J. Pep. Res. Ther. (2005) 11(4):249-259.
  • LOOSE C, JENSEN K, RIGOUTSOS I, STEPHANOPOULOS G: A linguistic model for the rational design of antimicrobial peptides. Nature (2006) 443(7113):867-869.
  • KAMADA H, OKAMOTO T, KAWAMURA M et al.: Creation of novel cell-penetrating peptides for intracellular drug delivery using systematic phage display technology originated from Tat transduction domain. Biol. Pharm. Bull. (2007) 30(2):218-223.
  • LOW W, MORTLOCK A, PETROVSKA L, DOTTORINI T, DOUGAN G, CRISTIANTI A: Functional cell permeable motifs within medically relevant proteins. J. Biotechnol. (2007) 129(3):555-564.
  • POOGA M, ELMQUIST A, LANGEL U: Toxicity and side effects of cell-penetrating peptides. In: Cell-Penetrating Peptides: Processes and Applications, Volume 424. Langel U (Ed.), CRC Press, Boca Raton, FL, USA (2002):245-262.
  • HENRIQUES ST, MELO MN, CASTANHO MARB: Cell-penetrating and antimicrobial peptides: how different are they? Biochem. J. (2006) 399:1-7.
  • JONES SW, CHRISTISON R, BUNDELL K et al.: Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. (2005) 145(8):1093-1102.
  • VOGEL SN, FENTON M: Toll-like receptor 4 signalling: new perspective on a complex signal-transduction problem. Biochem. Soc. Trans. (2003) 31(3):664-668.
  • HIROMURA M, OKADA F, OBATA T et al.: Inhibition of Akt kinase activity by a peptide spanning the βA strand of the proto-oncogene TCL1. J. Biol. Chem. (2004) 279(51):53407-53418.
  • LUO Y, SMITH RA, GUAN R et al.: Pseudosubstrate peptides inhibit Akt and induce cell growth inhibition. Biochemistry (2003) 43(5):1254-1263.
  • MAY MJ, D'ACQUISTO F, MADGE LA, GLOCKNER J, POBER JS, GHOSH S: Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science (2000) 289:1550-1554.
  • AGOU F, COURTOIS G, CHARAVALLI J et al.: Inhibition of NF-κB activation by peptides targeting NF-κB essential modulator (NEMO) oligomerization. J. Biol. Chem. (2004) 279(52):54248-54257.
  • KELEMEN BR, HSIAO K, GOUELI SA: Selective in vivo inhibition of mitogen-activated protein kinase activation using cell-permeable peptides. J. Biol. Chem. (2002) 277(10):8741-8748.
  • D'URSI AM, GIUSTI L, ALBRIZIO S et al.: A membrane-permeable peptide containing the last 21 residues of the G α(s) carboxyl terminus inhibits G(s)-coupled receptor signaling in intact cells: correlations between peptide structure and biological activity. Mol. Pharmacol. (2006) 69(3):727-736.
  • MCCOY SL, KURTZ SE, MACARTHUR CJ, TRUNE DR, HEFENEIDER SH: Identification of a peptide derived from Vaccinia virus A52R protein that inhibits cytokine secretion in response to TLR-dependent signaling and reduces in vivo bacterial-induced inflammation. J. Immunol. (2005) 174(5):3006-3014.
  • HARTE MT, HAGA IR, MALONEY G et al.: The pox virus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med. (2003) 197(3):343-351.
  • TSUNG A, MCCOY SL, KLUNE JR, GELLER DA, BILLIAR TR, HEFENEIDER SH: A novel inhibitory peptide of Toll-like receptor signaling limits lipopolysaccaride-induced production of inflammatory mediators and enhances survival in mice. Shock (2007) 27(4):364-369.
  • FLETCHER S, HAMILTON AD: Targeting protein–protein interactions by rational design: mimicry of protein surfaces. J. R. Soc. Interface (2006) 3(7):215-233.
  • CHE Y, BROOKS BR, MARSHALL GR: Development of small molecules designed to modulate protein–protein interaction. J. Comput. Aided Mol. Des. (2006) 20(2):109-130.
  • BARTFAI T, BEHRENS MM, GAIDAROVA S, PAMBERTON J, SHIVANYUK A, REBEK J Jr: A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responces. Proc. Natl. Acad. Sci. USA (2003) 100(13):7971-7976.
  • CHIN JW, SCHEPARTZ A: Concerted evolution of structure and function in a miniature protein. J. Am. Chem. Soc. (2001) 123(12):2929-2930.
  • AGOU F, COURTOIS G, CHARAVALLI J et al.: Inhibition of NF-κB activation by peptides targeting NF-κB essential modulator (NEMO) oligomerization. J. Biol. Chem. (2004) 279(52):54248-54257.
  • JONES S, THORNTON JM: Principles of protein–protein interactions. Proc. Natl. Acad. Sci. USA (1996) 93:13-20.
  • LO CONTE L, CHOTHIA C, JANIN J: The atomic structure of protein–protein recognition sites. J. Mol. Biol. (1999) 285:2177-2198.
  • JONES S, MARTIN A, THORNTON JM: Protein domain interfaces: characterization and comparison with oligomeric protein interfaces. Protein Eng. (2000) 13(2):77-82.
  • DAVIES DR, COHEN GH: Interactions of protein antigens with antibodies. Proc. Natl. Acad. Sci. USA (1996) 93(1):7-12.
  • LARA-OCHOA F, ALMAGRO JC, VARGAS-MADRAZO E, CONRAD M: Antibody-antigen recognition: a canonical structure paradigm. J. Mol. Evol. (1996) 43(6):678-684.
  • RINI JM, SCHULZE-GAHMEN U, WILSON IA: Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science (1992) 255(5047):959-965.
  • BOURGEOIS C, BOUR JB, AHO LS, POTHIER P: Prophylactic administration of a complementarity-determining region derived from a neutralizing monoclonal antibody against respiratory syncytial virus infection in BALB/c mice. J. Virol. (1998) 72(1):807-810.
  • HORNG T, BARTON GM, MEDZHITOV R: TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. (2001) 2(9):835-841.
  • TOSHCHAKOV V, JONES BY , PERERA P-Y et al.: TLR4, but not TLR2, mediates IFN-β-induced STAT1α/β-dependent gene expression in macrophages. Nat. Immunol. (2002) 3(4):392-398.
  • TOSHCHAKOV V, BASU S, FENTON MJ, VOGEL SN: Differential involvement of BB loops of Toll-IL-1 resistance (TIR) domain-containing adapter proteins in TLR4- versus TLR2-mediated signal transduction. J. Immunol. (2005) 175(1):494-500.
  • TOSHCHAKOV VY, FENTON MJ, VOGEL SN: Cutting edge: differential inhibition of TLR signaling pathways by cell-permeable peptides representing BB loops of TLRs. J. Immunol. (2007) 178(5):2655-2660.
  • SCHILLING D, THOMAS K, NIXDORFF K, VOGEL SN, FENTON MJ: Toll-like receptor 4 and Toll-IL-1 receptor domain-containing adapter protein (TIRAP)/Myeloid differentiation protein 88 adapter-like (Mal) contribute to maximal IL-6 expression in macrophages. J. Immunol. (2002) 169(10):5874-5880.
  • PAPOIAN GA, ULANDER J, WOLYNES PG: Role of water mediated interactions in protein–protein recognition landscapes. J. Am. Chem. Soc. (2003) 125(30):9170-9178.
  • CUNNINGHAM BC, WELLS JA: Comparison of a structural and a functional epitope. J. Mol. Biol. (1993) 234:554-563.
  • BOGAN AA, THORN KS: Anatomy of hot spots in protein interfaces. J. Mol. Biol. (1998) 280:1-9.
  • KESKIN O, MA B, NUSSINOV R: Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J. Mol. Biol. (2005) 345:1281-1294.
  • MEDZHITOV R, PRESTON-HURLBURT P, JANEWAY CA Jr: A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature (1997) 388(6640):394-397.
  • ROCK FL, HARDIMAN G, TIMANS JC, KASTELAIN RA, BAZAN JF: A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA (1998) 95:588-593.
  • JANEWAY CAJ, MEDZHITOV R: Innate immune recognition. Ann. Rev. Immunol. (2002) 20:197-216.
  • PAWSON T, NASH P: Assembly of cell regulatory systems through protein interaction domains. Science (2003) 300:445-452.
  • VOGEL SN, FITZGERALD KA, FENTON MJ: Differential adapter utilization by Toll-like receptors mediates TLR-specific patterns of gene expression. Mol. Interv. (2003) 3(8):466-477.
  • MURZIN AG, BRENNER SE, HUBBARD T, CHOTHIA C: SCOP: a structural classification of protein database for the investigation of sequences and structures. J. Mol. Biol. (1995) 247:536-540.
  • XU Y, TAO X, SHEN B et al.: Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature (2000) 408(6808):111-115.
  • CHOE J, KELKER MS, WILSON IA: Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science (2005) 309(5734):581-585.
  • BELL JK, BOTOS I, HALL PR et al.: The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl. Acad. Sci. USA (2005) 102(31):10976-10980.
  • KOBE B, KAJAVA AV: The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. (2001) 11(6):725-732.
  • KIRK P, BAZAN JF: Pathogen recognition: TLRs throw us a curve. Immunity (2005) 23(4):347-350.
  • BELL J, BOTOS I, HALL PR et al.: The molecular structure of the TLR3 extracellular domain. J. Endotoxin Res. (2006) 12(6):375-378.
  • DE BOUTEILLER O, MERCK E, HASAN UA et al.: Recognition of double-stranded RNA by human Toll-like receptor 3 and downstream receptor signling requires multimerization and an acidic pH. J. Biol. Chem. (2005) 280(46):38133-38145.
  • BELL JK AJ, HALL PR, SHIALOACH J, DAVIES DR, SEGAL DM: The dsRNA binding site of human Toll-like receptor 3. Proc. Natl. Acad. Sci. USA (2006) 103(23):8792-8797.
  • RANJITH-KUMAR CT, MILLER W, XIONG J et al.: Biochemical and functional analyses of the human Toll-like receptor 3 ectodomain. J. Biol. Chem. (2007) 282(10):7668-7678.
  • TAPPING RI, TOBIAS PS: Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J. Endotoxin Res. (2003) 9(4):264-268.
  • SANDOR F, LATZ E, RE F et al.: Importance of extra- and intracellular domains of TLR1 and TLR2 in NFκB signaling. J. Cell Biol. (2003) 162(6):1099-1110.
  • LATZ E, VERMA A, VISINTIN A et al.: Ligand induced conformational changes in TLR9 results in allosteric receptor activation. Nat. Immunol. (2007) (in Press).
  • GAY NJ, GANDLOFF M, WEBER ANR: Toll-like receptors as molecular switches. Nat. Rev. Immunol. (2006) 6:693-698.
  • FITZGERALD KA, PALSSON-MCDERMOTT EM, BOWIE AG et al.: Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature (2001) 413(6851):78-83.
  • SARKAR SN, ELCO CP, PETERS KL, CHATTOPADHYAY S, SEN GC: Two tyrosine residues of Toll-like receptor 3 trigger different steps of NF-κB activation. J. Biol. Chem. (2007) 282(6):3423-3427.
  • LEE H-K, DUNZENDORFER S, TOBIAS PS: Cytoplasmic domain-mediated dimerization of Toll-like receptor 4 observed by β-lactamase enzyme fragment complementation. J. Biol. Chem. (2004) 279(11):10564-10574.
  • BROWN V, BROWN RA, OZINSKY A, HESSELBERTH JR, FIELDS S: Binding specificity of Toll-like receptor cytoplasmic domains. Eur. J. Immunol. (2006) 36(3):742-753.
  • BURNS K, MARTINON F, ESSLINGER C et al.: MyD88, an adapter protein involved in Interleukin-1 signaling. J. Biol. Chem. (1998) 273(20):12203-12209.
  • RHEE SH, HWANG D: Murine Toll-like receptor 4 confers lipopolysaccaride responsiveness as determined by activation of NF-κB and expression of inducible cycloxygenase. J. Biol. Chem. (2000) 275(44):34035-34040.
  • OZINSKY A, UNDERHILL DM, FONTENOT JD et al.: The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA (2000) 97(25):13766-13771.
  • TAKEUCHI O, KAWAI T, MUHLRADT PF et al.: Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. (2001) 13(7):933-940.
  • DUNNE A, EJDEBACK M, LUDIDI PL, O'NEILL LAJ, GAY NJ: Structural complementarity of Toll/Interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J. Biol. Chem. (2003) 278(42):41443-41451.
  • BETTS M, STERNBERG MJE: An analysis of conformational changes on protein-protein association: implication for predictive docking. Protein Eng. (1999) 12(4):271-283.
  • GRUNBERG R, LECKNER J, NILGES M: Complementarity of structure ensembles in protein-protein binding. Structure (2004) 12:2125-2136.
  • JIANG Z, GEORGEL P, LI C et al.: Details of Toll-like receptor:adapter interaction revealed by germ-line mutagenesis. Proc. Natl. Acad. Sci. USA (2006) 103(29):10961-10966.
  • LI C ZJ, HAWIGER J: Interactive sites in the MyD88 Toll/Interleukin (IL) 1 receptor domain responsible for coupling to the IL1β signaling pathway. J. Biol. Chem. (2005) 280(28):26152-26159.
  • LOIARRO M, SETTE C, GALLO G et al.: Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits Interleukin-1-dependent activation of NF-κB. J. Biol. Chem. (2005) 280(16):15809-15814.
  • SLACK JL, SCHOOLEY K, BONNERT TP et al.: Identification of two major sites in the Type I Interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways. J. Biol. Chem. (2000) 275(7):4670-4678.
  • GAUTAM ASHISH JK, COMEAU LD, KRUEGER JK, SMITH MF Jr: Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling. J. Biol. Chem. (2006) 281(40):30132-30142.
  • TAO X, XU Y, ZHENG Y, BEG AA, TONG L: An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem. Biophys. Res. Comm. (2002) 299(2):216-221.
  • ROWE DC, MCGETTRICK AF, LATZ E et al.: The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc. Natl. Acad. Sci. USA (2006) 103(16):6299-6304.
  • KAGAN JC, MEDZHITOV R: Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell (2006) 125(5):943-955.
  • REKHA N, MACHADO SM, NARAYANAN C, KRUPA A, SRINIVASAN N: Interaction interfaces of protein domains are not topologically equivalent across families within superfamilies: implications for metabolic and signaling pathway. Proteins (2005) 58(2):339-353.
  • POLTORAK A, HE X, SMIRNOVA I et al.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science (1998) 282(5396):2085-2088.
  • QURESHI ST, LARIVIERE L, LEVEQUE G et al.: Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. (1999) 189(4):615-625.
  • RONNI T, AGARWAL V, HAYKINSON M, HABERLAND ME, CHENG G, SMALE ST: Common interaction surfaces of the Toll-like receptor 4 cytoplasmic domain stimulate multiple nuclear targets. Mol. Cell Biol. (2003) 23(7):2543-2555.
  • DU X, POLTORAK A, SILVA M, BEUTLER B: Analysis of Tlr4-mediated LPS signal transduction in macrophages by mutational modification of the receptor. Blood Cells Mol. Dis. (1999) 25(21):328-338.
  • UNDERHILL DM, OZINSKY A, SMITH KD, ADEREM A: Toll-like receptor 2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl. Acad. Sci. USA (1999) 96(25):14459-14463.
  • FITZGERALD KA, ROWE DC , BARNES BJ et al.: LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J. Exp. Med. (2003) 198(7):1043-1055.
  • HORNG T, BARTON GM, FLAVELL RA, MEDZHITOV R: The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature (2002) 2002(6913):329-333.
  • YAMAMOTO M, SATO S, HEMMI H et al.: Essential role of TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature (2002) 420(6913):324-329.
  • LETOHA T, KUSZ E, PAPAI G et al.: In vitro and in vivo NF-κB inhibitory effects of the cell-penetrating penetratin peptide. Mol. Pharmacol. (2006) 69(6):2027-2036.
  • TREHIN R, NIELSEN HM, JAHNKE H-G, KRAUSS U, BECK-SICKINGER AG, MERKLE HP: Metabolic cleavage of cell-penetrating peptides in contact with epithelial models: human calcitonin (hCT)-derived peptides, Tat(47-57) and penetratin(43-58). Biochem. J. (2004) 382(Part 3):945-956.
  • RENNERT R, WESPE C, BECK-SICKINGER AG, NEUDORF I: Developing novel hCT derived cell-penetrating peptides with improved metabolic stability. Biochim. Biophys. Acta (2006) 1758(3):347-354.
  • FUJIHARA SM, CLEAVELAND JS, GROSMAIRE LS et al.: A D-amino acid peptide inhibitor of NF-κB nuclear localization is efficacious in models of inflammatory disease. J. Immunol. (2000) 165(2):1004-1012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.