124
Views
14
CrossRef citations to date
0
Altmetric
Review

Immunoregulatory dendritic cells to prevent and reverse new-onset Type 1 diabetes mellitus

, MD & , PhD
Pages 951-963 | Published online: 31 Jul 2007

Bibliography

  • BANCHEREAU J, STEINMAN RM: Dendritic cells and the control of immunity. Nature (1998) 392(6673):245-252.
  • LUTZ MB, SCHULER G: Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. (2002) 23(9):445-449.
  • STEINMAN RM, HAWIGER D, NUSSENZWEIG MC: Tolerogenic dendritic cells. Ann. Rev. Immunol. (2003) 21:685-711.
  • STEINMAN RM, TURLEY S, MELLMAN I, INABA K: The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. (2000) 191(3):411-416.
  • VLAD G, CORTESINI R, SUCIU-FOCA N: License to heal: bidirectional interaction of antigen-specific regulatory T cells and tolerogenic APC. J. Immunol. (2005) 174(10):5907-5914.
  • SMITS HH, DE JONG EC, WIERENGA EA, KAPSENBERG ML: Different faces of regulatory DCs in homeostasis and immunity. Trends Immunol. (2005) 26(3):123-129.
  • SMITS HH, ENGERING A, VAN DER KLEIJ D et al.: Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. (2005) 115(6):1260-1267.
  • YAMAZAKI S, IYODA T, TARBELL K et al.: Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. (2003) 198(2):235-247.
  • INABA K, METLAY JP, CROWLEY MT, STEINMAN RM: Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J. Exp. Med. (1990) 172(2):631-640.
  • KUBACH J, BECKER C, SCHMITT E et al.: Dendritic cells: sentinels of immunity and tolerance. Int. J. Hematol. (2005) 81(3):197-203.
  • STEINMAN RM: Some interfaces of dendritic cell biology. Apmis (2003) 111(7-8):675-697.
  • STEINMAN RM, BONIFAZ L, FUJII S et al.: The innate functions of dendritic cells in peripheral lymphoid tissues. Adv. Exp. Med. Biol. (2005) 560:83-97.
  • STEINMAN RM, NUSSENZWEIG MC: Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. USA (2002) 99(1):351-358.
  • LIU YJ: Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell (2001) 106(3):259-262.
  • LIU YJ, KANZLER H, SOUMELIS V, GILLIET M: Dendritic cell lineage, plasticity and cross-regulation. Nat. Immunol. (2001) 2(7):585-589.
  • BLUESTONE JA: Costimulation and its role in organ transplantation. Clin. Transplant. (1996) 10(1 Part 2):104-109.
  • CLARKSON MR, SAYEGH MH: T-cell costimulatory pathways in allograft rejection and tolerance. Transplantation (2005) 80(5):555-563.
  • KISHIMOTO K, DONG VM, SAYEGH MH: The role of costimulatory molecules as targets for new immunosuppressives in transplantation. Curr. Opin. Urol. (2000) 10(2):57-62.
  • LENSCHOW DJ, WALUNAS TL, BLUESTONE JA: CD28/B7 system of T cell costimulation. Ann. Rev. Immunol. (1996) 14:233-258.
  • ROTHSTEIN DM, SAYEGH MH: T-cell costimulatory pathways in allograft rejection and tolerance. Immunol. Rev. (2003) 196:85-108.
  • SAYEGH MH, TURKA LA: T cell costimulatory pathways: promising novel targets for immunosuppression and tolerance induction. J. Am. Soc. Nephrol. (1995) 6(4):1143-1150.
  • MANZ MG, TRAVER D, AKASHI K et al.: Dendritic cell development from common myeloid progenitors. Ann. NY Acad. Sci. (2001) 938:167-173; discussion 173-164.
  • MANZ MG, TRAVER D, MIYAMOTO T, WEISSMAN IL, AKASHI K: Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood (2001) 97(11):3333-3341.
  • MANFREDI AA, SABBADINI MG, ROVERE-QUERINI P: Dendritic cells and the shadow line between autoimmunity and disease. Arthritis Rheum. (2005) 52(1):11-15.
  • SUCIU-FOCA N, MANAVALAN JS, SCOTTO L et al.: Molecular characterization of allospecific T suppressor and tolerogenic dendritic cells: review. Int. Immunopharmacol. (2005) 5(1):7-11.
  • KOMULAINEN J, KNIP M, LOUNAMAA R et al.: Poor β-cell function after the clinical manifestation of Type 1 diabetes in children initially positive for islet cell specific autoantibodies. The Childhood Diabetes in Finland Study Group. Diabet. Med. (1997) 14(7):532-537.
  • LAMPETER EF, KLINGHAMMER A, SCHERBAUM WA et al.: The Deutsche Nicotinamide Intervention Study: an attempt to prevent Type 1 diabetes. DENIS Group. Diabetes (1998) 47(6):980-984.
  • LARSEN MO, ROLIN B, GOTFREDSEN CF, CARR RD, HOLST JJ: Reduction of β cell mass: partial insulin secretory compensation from the residual β cell population in the nicotinamide–streptozotocin Gottingen minipig after oral glucose in vivo and in the perfused pancreas. Diabetologia (2004) 47(11):1873-1878.
  • LOHMANN T, KELLNER K, VERLOHREN HJ et al.: Titre and combination of ICA and autoantibodies to glutamic acid decarboxylase discriminate two clinically distinct types of latent autoimmune diabetes in adults (LADA). Diabetologia (2001) 44(8):1005-1010.
  • MAYER A, RHARBAOUI F, THIVOLET C, ORGIAZZI J, MADEC AM: The relationship between peripheral T cell reactivity to insulin, clinical remissions and cytokine production in Type 1 (insulin-dependent) diabetes mellitus. J. Clin. Endocrinol. Metab. (1999) 84(7):2419-2424.
  • PAPOZ L, LENEGRE F, HORS J et al.: Probability of remission in individual in early adult insulin dependent diabetic patients. Results from the Cyclosporine Diabetes French Study Group. Diabete. Metab. (1990) 16(4):303-310.
  • PETRONE A, GALGANI A, SPOLETINI M et al.: Residual insulin secretion at diagnosis of Type 1 diabetes is independently associated with both, age of onset and HLA genotype. Diabetes Metab. Res. Rev. (2005) 21(3):271-275.
  • RASMUSSEN SB, SORENSEN TS, HANSEN JB et al.: Functional rest through intensive treatment with insulin and potassium channel openers preserves residual β-cell function and mass in acutely diabetic BB rats. Horm. Metab. Res. (2000) 32(7):294-300.
  • SHIMADA A, IMAZU Y, MORINAGA S et al.: T-cell insulitis found in anti-GAD65+ diabetes with residual β-cell function. A case report. Diabetes Care (1999) 22(4):615-617.
  • SREENAN S, PICK AJ, LEVISETTI M et al.: Increased β-cell proliferation and reduced mass before diabetes onset in the nonobese diabetic mouse. Diabetes (1999) 48(5):989-996.
  • WEETS I, TRUYEN I, VERSCHRAEGEN I et al.: Sex- and season-dependent differences in C-peptide levels at diagnosis of immune-mediated Type 1 diabetes. Diabetologia (2006) 49(6):1158-1162.
  • ARNUSH M, SCARIM AL, HEITMEIER MR, KELLY CB, CORBETT JA: Potential role of resident islet macrophage activation in the initiation of autoimmune diabetes. J. Immunol. (1998) 160(6):2684-2691.
  • CORBETT JA, MCDANIEL ML: Reversibility of interleukin-1 β-induced islet destruction and dysfunction by the inhibition of nitric oxide synthase. Biochem. J. (1994) 229(Part 3):719-724.
  • CORBETT JA, WANG JL, HUGHES JH et al.: Nitric oxide and cyclic GMP formation induced by interleukin 1β in islets of Langerhans. Evidence for an effector role of nitric oxide in islet dysfunction. Biochem. J. (1992) 287(Part 1):229-235.
  • CORBETT JA, WANG JL, MISKO TP et al.: Nitric oxide mediates IL-1 β-induced islet dysfunction and destruction: prevention by dexamethasone. Autoimmunity (1993) 15(2):145-153.
  • MA Z, RAMANADHAM S, CORBETT JA et al.: Interleukin-1 enhances pancreatic islet arachidonic acid 12-lipoxygenase product generation by increasing substrate availability through a nitric oxide-dependent mechanism. J. Biol. Chem. (1996) 271(2):1029-1042.
  • MCDANIEL ML, KWON G, HILL JR, MARSHALL CA, CORBETT JA: Cytokines and nitric oxide in islet inflammation and diabetes. Proc. Soc. Exp. Biol. Med. (1996) 211(1):24-32.
  • SCARIM AL, HEITMEIER MR, CORBETT JA: Irreversible inhibition of metabolic function and islet destruction after a 36-hour exposure to interleukin-1β. Endocrinology (1997) 138(12):5301-5307.
  • TRUDEAU JD, DUTZ JP, ARANY E et al.: Neonatal β-cell apoptosis: a trigger for autoimmune diabetes? Diabetes (2000) 49(1):1-7.
  • OLDSTONE MB: Molecular mimicry and autoimmune disease. Cell (1987) 50(6):819-820.
  • OLDSTONE MB: Virus-induced autoimmunity: molecular mimicry as a route to autoimmune disease. J. Autoimmun. (1989) 2(Suppl.):187-194.
  • OLDSTONE MB: Molecular mimicry as a mechanism for the cause and a probe uncovering etiologic agent(s) of autoimmune disease. Curr. Top Microbiol. Immunol. (1989) 145:127-135.
  • CONRAD B, WEIDMANN E, TRUCCO G et al.: Evidence for superantigen involvement in insulin-dependent diabetes mellitus aetiology. Nature (1994) 371(6495):351-355.
  • CONRAD B, TRUCCO M: Superantigens as etiopathogenetic factors in the development of insulin-dependent diabetes mellitus. Diabetes Metab. Rev. (1994) 10(4):309-338.
  • JANSEN A, HOMO-DELARCHE F, HOOIJKAAS H et al.: Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and β-cell destruction in NOD mice. Diabetes (1994) 43(5):667-675.
  • JANSEN A, ROSMALEN JG, HOMO-DELARCHE F, DARDENNE M, DREXHAGE HA: Effect of prophylactic insulin treatment on the number of ER-MP23+ macrophages in the pancreas of NOD mice. Is the prevention of diabetes based on β-cell rest? J. Autoimmun. (1996) 9(3):341-348.
  • LO D, REILLY CR, SCOTT B et al.: Antigen-presenting cells in adoptively transferred and spontaneous autoimmune diabetes. Eur. J. Immunol. (1993) 23(7):1693-1698.
  • CLARE-SALZLER M, MULLEN Y: Marked dendritic cell-T cell cluster formation in the pancreatic lymph node of the non-obese diabetic mouse. Immunology (1992) 76(3):478-484.
  • HOGLUND P, MINTERN J, WALTZINGER C et al.: Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J. Exp. Med. (1999) 189(2):331-339.
  • SHIMIZU J, CARRASCO-MARIN E, KANAGAWA O, UNANUE ER: Relationship between β cell injury and antigen presentation in NOD mice. J. Immunol. (1995) 155(8):4095-4099.
  • GREEN EA, EYNON EE, FLAVELL RA: Local expression of TNF-α in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. Immunity (1998) 9(5):733-743.
  • DAHLEN E, DAWE K, OHLSSON L, HEDLUND G: Dendritic cells and macrophages are the first and major producers of TNF-α in pancreatic islets in the nonobese diabetic mouse. J. Immunol. (1998) 160(7):3585-3593.
  • EHL S, HOMBACH J, AICHELE P et al.: Viral and bacterial infections interfere with peripheral tolerance induction and activate CD8+ T cells to cause immunopathology. J. Exp. Med. (1998) 187(5):763-774.
  • LUDEWIG B, EHL S, KARRER U et al.: Dendritic cells efficiently induce protective antiviral immunity. J. Virol. (1998) 72(5):3812-3818.
  • LUDEWIG B, ODERMATT B, LANDMANN S, HENGARTNER H, ZINKERNAGEL RM: Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J. Exp. Med. (1998) 188(8):1493-1501.
  • CHRISTEN U, VON HERRATH MG: Transgenic animal models for Type 1 diabetes: linking a tetracycline-inducible promoter with a virus-inducible mouse model. Transgenic Res. (2002) 11(6):587-595.
  • CHRISTEN U, VON HERRATH MG: Manipulating the Type 1 versus Type 2 balance in Type 1 diabetes. Immunol. Res. (2004) 30(3):309-325.
  • CHRISTEN U, VON HERRATH MG: Induction, acceleration or prevention of autoimmunity by molecular mimicry. Mol. Immunol. (2004) 40(14-15):1113-1120.
  • VON HERRATH MG: Regulation of virally induced autoimmunity and immunopathology: contribution of LCMV transgenic models to understanding autoimmune insulin-dependent diabetes mellitus. Curr. Top Microbiol. Immunol. (2002) 263:145-175.
  • GALLUCCI S, MATZINGER P: Danger signals: SOS to the immune system. Curr. Opin. Immunol. (2001) 13(1):114-119.
  • MATZINGER P: Tolerance, danger, and the extended family. Ann. Rev. Immunol. (1994) 12:991-1045.
  • MATZINGER P: An innate sense of danger. Semin. Immunol. (1998) 10(5):399-415.
  • MATZINGER P: Essay 1: the danger model in its historical context. Scand. J. Immunol. (2001) 54(1-2):4-9.
  • MATZINGER P: An innate sense of danger. Ann. NY Acad. Sci. (2002) 961:341-342.
  • MARLEAU AM, SINGH B: Myeloid dendritic cells in non-obese diabetic mice have elevated costimulatory and T helper-1-inducing abilities. J. Autoimmun. (2002) 19(1-2):23-35.
  • SEN P, BHATTACHARYYA S, WALLET M et al.: NF-κB hyperactivation has differential effects on the APC function of nonobese diabetic mouse macrophages. J. Immunol. (2003) 170(4):1770-1780.
  • WEAVER DJ Jr, POLIGONE B, BUI T et al.: Dendritic cells from nonobese diabetic mice exhibit a defect in NF-κB regulation due to a hyperactive I κB kinase. J. Immunol. (2001) 167(3):1461-1468.
  • WHEAT W, KUPFER R, GUTCHES DG et al.: Increased NF-κB activity in B cells and bone marrow-derived dendritic cells from NOD mice. Eur. J. Immunol. (2004) 34(5):1395-1404.
  • BOUDALY S, MORIN J, BERTHIER R, MARCHE P, BOITARD C: Altered dendritic cells (DC) might be responsible for regulatory T cell imbalance and autoimmunity in nonobese diabetic (NOD) mice. Eur. Cytokine Netw. (2002) 13(1):29-37.
  • NIKOLIC T, BUNK M, DREXHAGE HA, LEENEN PJ: Bone marrow precursors of nonobese diabetic mice develop into defective macrophage-like dendritic cells in vitro. J. Immunol. (2004) 173(7):4342-4351.
  • STRID J, LOPES L, MARCINKIEWICZ J et al.: A defect in bone marrow derived dendritic cell maturation in the nonobesediabetic mouse. Clin. Exp. Immunol. (2001) 123(3):375-381.
  • EIBL N, SPATZ M, FISCHER GF et al.: Impaired primary immune response in Type-1 diabetes: results from a controlled vaccination study. Clin. Immunol. (2002) 103(3 Part 1):249-259.
  • MCMAHON MM, BISTRIAN BR: Host defenses and susceptibility to infection in patients with diabetes mellitus. Infect. Dis. Clin. North Am. (1995) 9(1):1-9.
  • WHEAT LJ: Infection and diabetes mellitus. Diabetes Care (1980) 3(1):187-197.
  • PENG R, LI Y, BREZNER K, LITHERLAND S, CLARE-SALZLER MJ: Abnormal peripheral blood dendritic cell populations in Type 1 diabetes. Ann. NY Acad. Sci. (2003) 1005:222-225.
  • SUMMERS KL, BEHME MT, MAHON JL, SINGH B: Characterization of dendritic cells in humans with Type 1 diabetes. Ann. NY Acad. Sci. (2003) 1005:226-229.
  • SUMMERS KL, MARLEAU AM, MAHON JL et al.: Reduced IFN-α secretion by blood dendritic cells in human diabetes. Clin. Immunol. (2006) 121(1):81-89.
  • COATES PT, THOMSON AW: Dendritic cells, tolerance induction and transplant outcome. Am. J. Transplant. (2002) 2(4):299-307.
  • DAVIS ID, JEFFORD M, PARENTE P, CEBON J: Rational approaches to human cancer immunotherapy. J. Leukoc. Biol. (2003) 73(1):3-29.
  • DI NICOLA M, ANICHINI A, MORTARINI R et al.: Human dendritic cells: natural adjuvants in antitumor immunotherapy. Cytokines Cell Mol. Ther. (1998) 4(4):265-273.
  • HACKSTEIN H, MORELLI AE, THOMSON AW: Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol. (2001) 22(8):437-442.
  • HARDIN JA: Dendritic cells: potential triggers of autoimmunity and targets for therapy. Ann. Rheum. Dis. (2005) 64(Suppl. 4):iv86-iv90.
  • MORELLI AE, THOMSON AW: Dendritic cells: regulators of alloimmunity and opportunities for tolerance induction. Immunol. Rev. (2003) 196:125-146.
  • NOURI-SHIRAZI M, THOMSON AW: Dendritic cells as promoters of transplant tolerance. Expert Opin. Biol. Ther. (2006) 6(4):325-339.
  • PAUL S, CALMELS B, ACRES RB: Improvement of adoptive cellular immunotherapy of human cancer using ex-vivo gene transfer. Curr. Gene Ther. (2002) 2(1):91-100.
  • FEILI-HARIRI M, DONG X, ALBER SM et al.: Immunotherapy of NOD mice with bone marrow-derived dendritic cells. Diabetes (1999) 48(12):2300-2308.
  • STEINMAN RM, INABA K, TURLEY S, PIERRE P, MELLMAN I: Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies. Hum. Immunol. (1999) 60(7):562-567.
  • BOTTINO R, LEMARCHAND P, TRUCCO M, GIANNOUKAKIS N: Gene- and cell-based therapeutics for Type I diabetes mellitus. Gene Ther. (2003) 10(10):875-889.
  • CHEN D, SUNG R, BROMBERG JS: Gene therapy in transplantation. Transpl. Immunol. (2002) 9(2-4):301-314.
  • GIANNOUKAKIS N, RUDERT WA, ROBBINS PD, TRUCCO M: Targeting autoimmune diabetes with gene therapy. Diabetes (1999) 48(11):2107-2121.
  • GIANNOUKAKIS N, THOMSON A, ROBBINS P: Gene therapy in transplantation. Gene Ther. (1999) 6(9):1499-1511.
  • GIANNOUKAKIS N, TRUCCO M: Gene therapy for Type 1 diabetes. Am. J. Ther. (2005) 12(6):512-528.
  • TARNER IH, FATHMAN CG: The potential for gene therapy in the treatment of autoimmune disease. Clin. Immunol. (2002) 104(3):204-216.
  • TARNER IH, SLAVIN AJ, MCBRIDE J et al.: Treatment of autoimmune disease by adoptive cellular gene therapy. Ann. NY Acad. Sci. (2003) 998:512-519.
  • TRUCCO M, ROBBINS PD, THOMSON AW, GIANNOUKAKIS N: Gene therapy strategies to prevent autoimmune disorders. Curr. Gene Ther. (2002) 2(3):341-354.
  • CHEN W: Dendritic cells and (CD4+)CD25+ T regulatory cells: crosstalk between two professionals in immunity versus tolerance. Front. Biosci. (2006)11:1360-1370.
  • HUGUES S, BOISSONNAS A, AMIGORENA S, FETLER L: The dynamics of dendritic cell-T cell interactions in priming and tolerance. Curr. Opin. Immunol. (2006) 18(4):491-495.
  • BEISSERT S, SCHWARZ A, SCHWARZ T: Regulatory T cells. J. Invest. Dermatol. (2006) 126(1):15-24.
  • ENK AH: DCs and cytokines cooperate for the induction of tregs. Ernst. Schering Res. Found Workshop (2006) 56:97-106.
  • HUBER S, SCHRAMM C: TGF-β and CD4+CD25+ regulatory T cells. Front. Biosci. (2006) 11:1014-1023.
  • LOHR J, KNOECHEL B, ABBAS AK: Regulatory T cells in the periphery. Immunol. Rev. (2006) 212:149-162.
  • RONCAROLO MG, GREGORI S, BATTAGLIA M et al.: Interleukin-10-secreting Type 1 regulatory T cells in rodents and humans. Immunol. Rev. (2006) 212:28-50.
  • SHEVACH EM, DIPAOLO RA, ANDERSSON J et al.: The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol. Rev. (2006) 212:60-73.
  • TANG Q, BLUESTONE JA: Regulatory T-cell physiology and application to treat autoimmunity. Immunol. Rev. (2006) 212:217-237.
  • VERHAGEN J, BLASER K, AKDIS CA, AKDIS M: Mechanisms of allergen-specific immunotherapy: T-regulatory cells and more. Immunol. Allergy Clin. North Am. (2006) 26(2):207-231, vi.
  • ZHANG L, YI H, XIA XP, ZHAO Y: Transforming growth factor-β: an important role in CD4+CD25+ regulatory T cells and immune tolerance. Autoimmunity (2006) 39(4):269-276.
  • ANDERSON CC, CHAN WF: Mechanisms and models of peripheral CD4 T cell self-tolerance. Front. Biosci. (2004) 9:2947-2963.
  • BALOMENOS D, MARTINEZ AC: Cell-cycle regulation in immunity, tolerance and autoimmunity. Immunol. Today (2000) 21(11):551-555.
  • BRENNAN PJ, SAOUAF SJ, GREENE MI, SHEN Y: Anergy and suppression as coexistent mechanisms for the maintenance of peripheral T cell tolerance. Immunol. Res. (2003) 27(2-3):295.
  • GOODNOW CC, SPRENT J, FAZEKAS DE ST GROTH B, VINUESA CG: Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature (2005) 435(7042):590-597.
  • LECHLER R, CHAI JG, MARELLI-BERG F, LOMBARDI G: The contributions of T-cell anergy to peripheral T-cell tolerance. Immunology (2001) 103(3):262-269.
  • LECHLER R, CHAI JG, MARELLI-BERG F, LOMBARDI G: T-cell anergy and peripheral T-cell tolerance. Philos. Trans. R. Soc. Lond. B. Biol. Sci. (2001) 356(1409):625-637.
  • SAOUAF SJ, BRENNAN PJ, SHEN Y, GREENE MI: Mechanisms of peripheral immune tolerance: conversion of the immune to the unresponsive phenotype. Immunol. Res. (2003) 28(3):193-199.
  • SINGH NJ, SCHWARTZ RH: Primer: mechanisms of immunologic tolerance. Nat. Clin. Pract. Rheumatol. (2006) 2(1):44-52.
  • BATTAGLIA M, GREGORI S, BACCHETTA R, RONCAROLO MG: Tr1 cells: from discovery to their clinical application. Semin. Immunol. (2006) 18(2):120-127.
  • MENNECHET FJ, UZE G: IFN-λ-treated dendritic cells specifically induce proliferation of FOXP3-expressing suppressor T cells. Blood (2006) 107(11):4417-4423.
  • RUTELLA S, BONANNO G, PROCOLI A et al.: Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood (2006) 108(1):218-227.
  • VIGOUROUX S, YVON E, BIAGI E, BRENNER MK: Antigen-induced regulatory T cells. Blood (2004) 104(1):26-33.
  • WATANABE N, WANG YH, LEE HK et al.: Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature (2005) 436(7054):1181-1185.
  • YVON ES, VIGOUROUX S, ROUSSEAU RF et al.: Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells. Blood (2003) 102(10):3815-3821.
  • DHODAPKAR MV, STEINMAN RM, KRASOVSKY J, MUNZ C, BHARDWAJ N: Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. (2001) 193(2):233-238.
  • JONULEIT H, SCHMITT E, SCHULER G, KNOP J, ENK AH: Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. (2000) 192(9):1213-1222.
  • BRINSTER C, SHEVACH EM: Bone marrow-derived dendritic cells reverse the anergic state of CD4+CD25+ T cells without reversing their suppressive function. J. Immunol. (2005) 175(11):7332-7340.
  • TARBELL KV, YAMAZAKI S, OLSON K, TOY P, STEINMAN RM: CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med. (2004) 199(11):1467-1477.
  • HARNAHA J, MACHEN J, WRIGHT M et al.: Interleukin-7 is a survival factor for CD4+ CD25+ T-cells and is expressed by diabetes-suppressive dendritic cells. Diabetes (2006) 55(1):158-170.
  • MA L, QIAN S, LIANG X et al.: Prevention of diabetes in NOD mice by administration of dendritic cells deficient in nuclear transcription factor-κB activity. Diabetes (2003) 52(8):1976-1985.
  • MACHEN J, HARNAHA J, LAKOMY R et al.: Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J. Immunol. (2004) 173(7):4331-4341.
  • GORDON EJ, WICKER LS, PETERSON LB et al.: Autoimmune diabetes and resistance to xenograft transplantation tolerance in NOD mice. Diabetes (2005) 54(1):107-115.
  • MARKEES TG, SERREZE DV, PHILLIPS NE et al.: NOD mice have a generalized defect in their response to transplantation tolerance induction. Diabetes (1999) 48(5):967-974.
  • PEARSON T, MARKEES TG, SERREZE DV et al.: Genetic disassociation of autoimmunity and resistance to costimulation blockade-induced transplantation tolerance in nonobese diabetic mice. J. Immunol. (2003) 171(1):185-195.
  • PEARSON T, MARKEES TG, SERREZE DV et al.: Islet cell autoimmunity and transplantation tolerance: two distinct mechanisms? Ann. NY Acad. Sci. (2003) 1005:148-156.
  • PEARSON T, MARKEES TG, WICKER LS et al.: NOD congenic mice genetically protected from autoimmune diabetes remain resistant to transplantation tolerance induction. Diabetes (2003) 52(2):321-326.
  • ROSSINI AA: Autoimmune diabetes and the circle of tolerance. Diabetes (2004) 53(2):267-275.
  • ROSSINI AA, MORDES JP, GREINER DL, STOFF JS: Islet cell transplantation tolerance. Transplantation (2001) 72(8 Suppl.):S43-S46.
  • SEUNG E, MORDES JP, GREINER DL, ROSSINI AA: Induction of tolerance for islet transplantation for Type 1 diabetes. Curr. Diab. Rep. (2003) 3(4):329-335.
  • KARNES RJ, WHELAN CM, KWON ED: Immunotherapy for prostate cancer. Curr. Pharm. Des. (2006) 12(7):807-817.
  • KIKUCHI T: Genetically modified dendritic cells for therapeutic immunity. Tohoku J. Exp. Med. (2006) 208(1):1-8.
  • PINZON-CHARRY A, SCHMIDT C, LOPEZ JA: Dendritic cell immunotherapy for breast cancer. Expert Opin. Biol. Ther. (2006) 6(6):591-604.
  • RIKER AI, JOVE R, DAUD AI: Immunotherapy as part of a multidisciplinary approach to melanoma treatment. Front. Biosci. (2006) 11:1-14.
  • SAITO H, FRLETA D, DUBSKY P, PALUCKA AK: Dendritic cell-based vaccination against cancer. Hematol. Oncol. Clin. North Am. (2006) 20(3):689-710.
  • XIA D, MOYANA T, XIANG J: Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res. (2006) 16(3):241-259.
  • BUTTERFIELD LH, RIBAS A, DISSETTE VB et al.: A Phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four α-fetoprotein peptides. Clin. Cancer Res. (2006) 12(9):2817-2825.
  • DILLMAN R, SELVAN S, SCHILTZ P et al.: Phase I/II trial of melanoma patient-specific vaccine of proliferating autologous tumor cells, dendritic cells, and GM-CSF: planned interim analysis. Cancer Biother. Radiopharm. (2004) 19(5):658-665.
  • HERSEY P, MENZIES SW, HALLIDAY GM et al.: Phase I/II study of treatment with dendritic cell vaccines in patients with disseminated melanoma. Cancer Immunol. Immunother. (2004) 53(2):125-134.
  • KYTE JA, MU L, AAMDAL S et al.: Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther. (2006) 13(10):905-918.
  • LODGE PA, JONES LA, BADER RA, MURPHY GP, SALGALLER ML: Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a Phase II clinical trial. Cancer Res. (2000) 60(4):829-833.
  • LOU E, MARSHALL J, AKLILU M et al.: A Phase II study of active immunotherapy with PANVAC or autologous, cultured dendritic cells infected with PANVAC after complete resection of hepatic metastases of colorectal carcinoma. Clin. Colorectal Cancer (2006) 5(5):368-371.
  • MARTEN A, FLIEGER D, RENOTH S et al.: Therapeutic vaccination against metastatic renal cell carcinoma by autologous dendritic cells: preclinical results and outcome of a first clinical Phase I/II trial. Cancer Immunol. Immunother. (2002) 51(11-12):637-644.
  • MORSE MA, NAIR SK, BOCZKOWSKI D et al.: The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int. J. Gastrointest. Cancer (2002) 32(1):1-6.
  • O'ROURKE MG, JOHNSON M, LANAGAN C et al.: Durable complete clinical responses in a Phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol. Immunother. (2003) 52(6):387-395.
  • PECHER G, HARING A, KAISER L, THIEL E: Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a Phase I/II clinical trial. Cancer Immunol. Immunother. (2002) 51(11-12):669.
  • SLINGLUFF CL Jr, PETRONI GR, YAMSHCHIKOV GV et al.: Clinical and immunologic results of a randomized Phase II trial of vaccination using four melanoma peptides either administered in ranulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J. Clin. Oncol. (2003) 21(21):4016-4026.
  • TJOA BA, SIMMONS SJ, BOWES VA et al.: Evaluation of Phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate (1998) 36(1):39-44.
  • TJOA BA, SIMMONS SJ, ELGAMAL A et al.: Follow-up evaluation of a Phase II prostate cancer vaccine trial. Prostate (1999) 40(2):125-129.
  • WEIHRAUCH MR, ANSEN S, JURKIEWICZ E et al.: Phase I/II combined chemoimmunotherapy with carcinoembryonic antigen-derived HLA-A2-restricted CAP-1 peptide and irinotecan, 5-fluorouracil, and leucovorin in patients with primary metastatic colorectal cancer. Clin. Cancer Res. (2005) 11(16):5993-6001.
  • YAMANAKA R, ABE T, YAJIMA N et al.: Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical Phase I/II trial. Br. J. Cancer (2003) 89(7):1172-1179.
  • YAMANAKA R, HOMMA J, YAJIMA N et al.: Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical Phase I/II trial. Clin. Cancer Res. (2005) 11(11):4160-4167.
  • O'DOHERTY U, PENG M, GEZELTER S et al.: Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology (1994) 82(3):487-493.
  • GROUARD G, RISSOAN MC, FILGUEIRA L et al.: The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. (1997) 185(6):1101-1111.
  • CLARE-SALZLER MJ, BROOKS J, CHAI A, VAN HERLE K, ANDERSON C: Prevention of diabetes in nonobese diabetic mice by dendritic cell transfer. J. Clin. Invest. (1992) 90(3):741-748.
  • FEILI-HARIRI M, FALKNER DH, GAMBOTTO A et al.: Dendritic cells transduced to express interleukin-4 prevent diabetes in nonobese diabetic mice with advanced insulitis. Hum. Gene Ther. (2003) 14(1):13-23.
  • ADORINI L: Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting autoimmune diabetes. Ann. NY Acad. Sci. (2003) 987:258-261.
  • KARED H, MASSON A, ADLE-BIASSETTE H et al.: Treatment with granulocyte colony-stimulating factor prevents diabetes in NOD mice by recruiting plasmacytoid dendritic cells and functional CD4(+)CD25(+) regulatory T-cells. Diabetes (2005) 54(1):78-84.
  • MORIN J, FAIDEAU B, GAGNERAULT MC et al.: Passive transfer of flt-3L-derived dendritic cells delays diabetes development in NOD mice and associates with early production of interleukin (IL)-4 and IL-10 in the spleen of recipient mice. Clin. Exp. Immunol. (2003) 134(3):388-395.
  • PAPACCIO G, NICOLETTI F, PISANTI FA, BENDTZEN K, GALDIERI M: Prevention of spontaneous autoimmune diabetes in NOD mice by transferring in vitro antigen-pulsed syngeneic dendritic cells. Endocrinology (2000) 141(4):1500-1505.
  • STEPTOE RJ, RITCHIE JM, JONES LK, HARRISON LC: Autoimmune diabetes is suppressed by transfer of proinsulin-encoding Gr-1+ myeloid progenitor cells that differentiate in vivo into resting dendritic cells. Diabetes (2005) 54(2):434-442.
  • MENGES M, ROSSNER S, VOIGTLANDER C et al.: Repetitive injections of dendritic cells matured with TNF-α induce antigen-specific protection of mice from autoimmunity. J. Exp. Med. (2002) 195(1):15-21.
  • VERGINIS P, LI HS, CARAYANNIOTIS G: Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T cells. J. Immunol. (2005) 174(11):7433-7439.
  • GANGI E, VASU C, CHEATEM D, PRABHAKAR BS: IL-10-producing CD4+CD25+ regulatory T cells play a critical role in granulocyte-macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis. J. Immunol. (2005) 174(11):7006-7013.
  • CHORNY A, GONZALEZ-REY E, FERNANDEZ-MARTIN A, GANEA D, DELGADO M: Vasoactive intestinal peptide induces regulatory dendritic cells that prevent acute graft-versus-host disease while maintaining the graft-versus-tumor response. Blood (2006) 107(9):3787-3794.
  • CHORNY A, GONZALEZ-REY E, FERNANDEZ-MARTIN A et al.: Vasoactive intestinal peptide induces regulatory dendritic cells with therapeutic effects on autoimmune disorders. Proc. Natl. Acad. Sci. USA (2005) 102(38):13562-13567.
  • FAUNCE DE, TERAJEWICZ A, STEIN-STREILEIN J: Cutting edge: in vitro-generated tolerogenic APC induce CD8+ T regulatory cells that can suppress ongoing experimental autoimmune encephalomyelitis. J. Immunol. (2004) 172(4):1991-1995.
  • KIM SH, KIM S, EVANS CH et al.: Effective treatment of established murine collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express IL-4. J. Immunol. (2001) 166(5):3499-3505.
  • KIM SH, LECHMAN ER, BIANCO N et al.: Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol. (2005) 174(10):6440-6448.
  • WHALEN JD, THOMSON AW, LU L, ROBBINS PD, EVANS CH: Viral IL-10 gene transfer inhibits DTH responses to soluble antigens: evidence for involvement of genetically modified dendritic cells and macrophages. Mol. Ther. (2001) 4(6):543-550.
  • HOVES S, KRAUSE SW, HALBRITTER D et al.: Mature but not immature Fas ligand (CD95L)-transduced human monocyte-derived dendritic cells are protected from Fas-mediated apoptosis and can be used as killer APC. J. Immunol. (2003) 170(11):5406-5413.
  • HOVES S, KRAUSE SW, HERFARTH H et al.: Elimination of activated but not resting primary human CD4+ and CD8+ T cells by Fas ligand (FasL/CD95L)-expressing killer-dendritic cells. Immunobiology (2004) 208(5):463-475.
  • FU F, LI Y, QIAN S et al.: Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation (1996) 62(5):659-665.
  • LUTZ MB, SURI RM, NIIMI M et al.: Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur. J. Immunol. (2000) 30(7):1813-1822.
  • RASTELLINI C, LU L, RICORDI C et al.: Granulocyte/macrophage colony-stimulating factor-stimulated hepatic dendritic cell progenitors prolong pancreatic islet allograft survival. Transplantation (1995) 60(11):1366-1370.
  • SATO K, YAMASHITA N, YAMASHITA N, BABA M, MATSUYAMA T: Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity (2003) 18(3):367-379.
  • GREGORI S, CASORATI M, AMUCHASTEGUI S et al.: Regulatory T cells induced by 1α,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J. Immunol. (2001) 167(4):1945-1953.
  • GRIFFIN MD, LUTZ W, PHAN VA et al.: Dendritic cell modulation by 1α,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc. Natl. Acad. Sci. USA (2001) 98(12):6800-6805.
  • HACKSTEIN H, MORELLI AE, LARREGINA AT et al.: Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. J. Immunol. (2001) 166(12):7053-7062.
  • HACKSTEIN H, TANER T, ZAHORCHAK AF et al.: Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood (2003) 101(11):4457-4463.
  • HACKSTEIN H, THOMSON AW: Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat. Rev. Immunol. (2004) 4(1):24-34.
  • LEE JI, GANSTER RW, GELLER DA et al.: Cyclosporine A inhibits the expression of costimulatory molecules on in vitro-generated dendritic cells: association with reduced NF-κB. Transplantation (1999) 68(9):1255-1263.
  • MA L, RUDERT WA, HARNAHA J et al.: Immunosuppressive effects of glucosamine. J. Biol. Chem. (2002) 277(42):39343-39349.
  • MATASIC R, DIETZ AB, VUK-PAVLOVIC S: Cyclooxygenase-independent inhibition of dendritic cell maturation by aspirin. Immunology (2000) 101(1):53-60.
  • MATYSZAK MK, CITTERIO S, RESCIGNO M, RICCIARDI-CASTAGNOLI P: Differential effects of corticosteroids during different stages of dendritic cell maturation. Eur. J. Immunol. (2000) 30(4):1233-1242.
  • MEHLING A, GRABBE S, VOSKORT M et al.: Mycophenolate mofetil impairs the maturation and function of murine dendritic cells. J. Immunol. (2000) 165(5):2374-2381.
  • NOURI-SHIRAZI M, GUINET E: Direct and indirect cross-tolerance of alloreactive T cells by dendritic cells retained in the immature stage. Transplantation (2002) 74(7):1035-1044.
  • PENNA G, ADORINI L: 1α,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J. Immunol. (2000) 164(5):2405-2411.
  • PIEMONTI L, MONTI P, ALLAVENA P et al.: Glucocorticoids affect human dendritic cell differentiation and maturation. J. Immunol. (1999) 162(11):6473-6481.
  • ROELEN DL, SCHUURHUIS DH, VAN DEN BOOGAARDT DE et al.: Prolongation of skin graft survival by modulation of the alloimmune response with alternatively activated dendritic cells. Transplantation (2003) 76(11):1608-1615.
  • THOMAS JM, CONTRERAS JL, JIANG XL et al.: Peritransplant tolerance induction in macaques: early events reflecting the unique synergy between immunotoxin and deoxyspergualin. Transplantation (1999) 68(11):1660-1673.
  • VOSTERS O, NEVE J, DE WIT D et al.: Dendritic cells exposed to nacystelyn are refractory to maturation and promote the emergence of alloreactive regulatory T cells. Transplantation (2003) 75(3):383-389.
  • BONHAM CA, PENG L, LIANG X et al.: Marked prolongation of cardiac allograft survival by dendritic cells genetically engineered with NF-κB oligodeoxyribonucleotide decoys and adenoviral vectors encoding CTLA4-Ig. J. Immunol. (2002) 169(6):3382-3391.
  • COATES PT, KRISHNAN R, KIRETA S, JOHNSTON J, RUSS GR: Human myeloid dendritic cells transduced with an adenoviral IL-10 gene construct inhibit human skin graft rejection in humanized NOD-scid chimeric mice. Gene Ther. (2001) 8(16):1224-1233.
  • GORCZYNSKI RM, BRANSOM J, CATTRAL M et al.: Synergy in induction of increased renal allograft survival after portal vein infusion of dendritic cells transduced to express TGF-β and IL-10, along with administration of CHO cells expressing the regulatory molecule OX-2. Clin. Immunol. (2000) 95(3):182-189.
  • LU L, GAMBOTTO A, LEE WC et al.: Adenoviral delivery of CTLA4-Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients. Gene Ther. (1999) 6(4):554-563.
  • MIN WP, GORCZYNSKI R, HUANG XY et al.: Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J. Immunol. (2000) 164(1):161-167.
  • O'ROURKE RW, KANG SM, LOWER JA et al.: A dendritic cell line genetically modified to express CTLA4-Ig as a means to prolong islet allograft survival. Transplantation (2000) 69(7):1440-1446.
  • TAKAYAMA T, MORELLI AE, ROBBINS PD, TAHARA H, THOMSON AW: Feasibility of CTLA4-Ig gene delivery and expression in vivo using retrovirally transduced myeloid dendritic cells that induce alloantigen-specific T cell anergy in vitro. Gene Ther. (2000) 7(15):1265-1273.
  • TAKAYAMA T, NISHIOKA Y, LU L et al.: Retroviral delivery of viral interleukin-10 into myeloid dendritic cells markedly inhibits their allostimulatory activity and promotes the induction of T-cell hyporesponsiveness. Transplantation (1998) 66(12):1567-1574.
  • TERNESS P, BAUER TM, ROSE L et al.: Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J. Exp. Med. (2002) 196(4):447-457.
  • GARROVILLO M, ALI A, OLUWOLE SF: Indirect allorecognition in acquired thymic tolerance: induction of donor-specific tolerance to rat cardiac allografts by allopeptide-pulsed host dendritic cells. Transplantation (1999) 68(12):1827-1834.
  • TANER T, HACKSTEIN H, WANG Z, MORELLI AE, THOMSON AW: Rapamycin-treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival. Am. J. Transplant. (2005) 5(2):228-236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.