483
Views
83
CrossRef citations to date
0
Altmetric
Review

The role of cathelicidin and defensins in pulmonary inflammatory diseases

, &
Pages 1449-1461 | Published online: 29 Aug 2007

Bibliography

  • WHITSETT JA: Intrinsic and innate defenses in the lung: intersection of pathways regulating lung morphogenesis, host defense, and repair. J. Clin. Invest. (2002) 109:565-569.
  • BALS R, HIEMSTRA PS: Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur. Respir. J. (2004) 23:327-333.
  • BINGLE CD, CRAVEN CJ: PLUNC: a novel family of candidate host defence proteins expressed in the upper airways and nasopharynx. Hum. Mol. Genet. (2002) 11:937-943.
  • ZANETTI M, GENNARO R, ROMEO D: Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. (1995) 374:1-5.
  • BOMAN HG: Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand. J. Immunol. (1998) 48:15-25.
  • LEHRER RI, GANZ T: Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. (1999) 11:23-27.
  • GANZ T, LEHRER RI: Antimicrobial peptides of vertebrates. Curr. Opin. Immunol. (1998) 10:41-44.
  • RAMANATHAN B, DAVIS EG, ROSS CR, BLECHA F: Cathelicidins: microbicidal activity, mechanisms of action, and roles in innate immunity. Microbes. Infect. (2002) 4:361-372.
  • GUDMUNDSSON GH, AGERBERTH B, ODEBERG J, BERGMAN T, OLSSON B, SALCEDO R: The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. (1996) 238:325-332.
  • FROHM NM, SANDSTEDT B, SORENSEN O, WEBER G, BORREGAARD N, STAHLE-BACKDAHL M: The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect. Immun. (1999) 67:2561-2566.
  • HIRATA M, SHIMOMURA Y, YOSHIDA M et al.: Characterization of a rabbit cationic protein (CAP18) with lipopolysaccharide-inhibitory activity. Infect. Immun. (1994) 62:1421-1426.
  • AUMELAS A, MANGONI M, ROUMESTAND C et al.: Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur. J. Biochem. (1996) 237:575-583.
  • FAHRNER RL, DIECKMANN T, HARWIG SS, LEHRER RI, EISENBERG D, FEIGON J: Solution structure of protegrin-1, a broad spectrum antimicrobial peptide from porcine leukocytes. Chem. Biol. (1996) 3:543-550.
  • COWLAND JB, JOHNSEN AH, BORREGAARD N: hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett. (1995) 368:173-176.
  • BALS R, WANG X, ZASLOFF M, WILSON JM: The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc. Natl. Acad. Sci. USA (1998) 95:9541-9546.
  • AGERBERTH B, CHARO J, WERR J et al.: The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood (2000) 96:3086-3093.
  • AGERBERTH B, GRUNEWALD J, CASTANOS-VELEZ E et al.: Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am. J. Respir. Crit. Care Med. (1999) 160:283-290.
  • SORENSEN OE, FOLLIN P, JOHNSEN AH et al.: Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with protease 3. Blood (2001) 97:3951-3959.
  • SORENSEN OE, GRAM L, JOHNSEN AH et al.: Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: a novel mechanism of generating antimicrobial peptides in vagina. J. Biol. Chem. (2003) 278:28540-28546.
  • MURAKAMI M, LOPEZ-GARCIA B, BRAFF M, DORSCHNER RA, GALLO RL: Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J. Immunol. (2004) 172:3070-3077.
  • YAMASAKI K, SCHAUBER J, CODA A et al.: Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J. (2006) 20:2068-2080.
  • ZAIOU M, NIZET V, GALLO RL: Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J. Invest. Dermatol. (2003) 120:810-816.
  • GANZ T, LEHRER RI: Defensins. Pharmacol. Ther. (1995) 66:191-205.
  • GANZ T, SELSTED ME, SZKLAREK D et al.: Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. (1985) 76:1427-1435.
  • WILDE CG, GRIFFITH JE, MARRA MN, SNABLE JL, SCOTT RW: Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J. Biol. Chem. (1989) 264:11200-11203.
  • JONES DE, BEVINS CL: Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. (1992) 267:23216-23225.
  • JONES DE, BEVINS CL: Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett. (1993) 315:187-192.
  • BENSCH KW, RAIDA M, MAGERT HJ, SCHULZ-KNAPPE P, FORSSMANN WG: hBD-1: a novel β-defensin from human plasma. FEBS Lett. (1995) 368:331-335.
  • MCCRAY PB Jr, BENTLEY L: Human airway epithelia express a β-defensin. Am. J. Respir. Cell Mol. Biol. (1997) 16:343-349.
  • GOLDMAN MJ, ANDERSON GM, STOLZENBERG ED, KARI UP, ZASLOFF M, WILSON JM: Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell (1997) 88:553-560.
  • VALORE EV, PARK CH, QUAYLE AJ, WILES KR, MCCRAY PB, GANZ T Jr: Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest. (1998) 101:1633-1642.
  • HARDER J, BARTELS J, CHRISTOPHERS E, SCHRODER JM: A peptide antibiotic from human skin. Nature (1997) 387:861.
  • BALS R, WANG X, WU Z et al.: Human β-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Invest. (1998) 102:874-880.
  • SINGH PK, JIA HP, WILES K et al.: Production of β-defensins by human airway epithelia. Proc. Natl. Acad. Sci. USA (1998) 95:14961-14966.
  • DUITS LA, RAVENSBERGEN B, RADEMAKER M, HIEMSTRA PS, NIBBERING PH: Expression of β-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology (2002) 106:517-525.
  • JIA HP, SCHUTTE BC, SCHUDY A et al.: Discovery of new human β-defensins using a genomics-based approach. Gene (2001) 263:211-218.
  • HARDER J, BARTELS J, CHRISTOPHERS E, SCHRODER JM: Isolation and characterization of human β -defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. (2001) 276:5707-5713.
  • GARCIA JR, JAUMANN F, SCHULZ S et al.: Identification of a novel, multifunctional β-defensin (human β-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res. (2001) 306:257-264.
  • GARCIA JR, KRAUSE A, SCHULZ S et al.: Human β-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. (2001) 15:1819-1821.
  • ARMOGIDA SA, YANNARAS NM, MELTON AL, SRIVASTAVA MD: Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc. (2004) 25:297-304.
  • ISHIMOTO H, MUKAE H, DATE Y et al.: Identification of hBD-3 in respiratory tract and serum: the increase in pneumonia. Eur. Respir. J. (2006) 27:253-260.
  • YANAGI S, ASHITANI J, ISHIMOTO H et al.: Isolation of human β-defensin-4 in lung tissue and its increase in lower respiratory tract infection. Respir. Res. (2005) 6:130.
  • SCHUTTE BC, MITROS JP, BARTLETT JA et al.: Discovery of five conserved β-defensin gene clusters using a computational search strategy. Proc. Natl. Acad. Sci. USA (2002) 99:2129-2133.
  • TANG YQ, YUAN J, OSAPAY G et al.: A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science (1999) 286:498-502.
  • TRAN D, TRAN PA, TANG YQ, YUAN J, COLE T, SELSTED ME: Homodimeric θ-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J. Biol. Chem. (2002) 277:3079-3084.
  • COLE AM, HONG T, BOO LM et al.: Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc. Natl. Acad. Sci. USA (2002) 99:1813-1818.
  • MUNK C, WEI G, YANG OO et al.: The θ-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res. Hum. Retroviruses (2003) 19:875-881.
  • SELSTED ME: θ-defensins: cyclic antimicrobial peptides produced by binary ligation of truncated α-defensins. Curr. Protein Pept. Sci. (2004) 5:365-371.
  • SELSTED ME, TANG YQ, MORRIS WL et al.: Purification, primary structures, and antibacterial activities of β-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem. (1993) 268:6641-6648.
  • WILDE CG, GRIFFITH JE, MARRA MN, SNABLE JL, SCOTT RW: Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J. Biol. Chem. (1989) 264:11200-11203.
  • ZHAO C, WANG I, LEHRER RI: Widespread expression of β-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett. (1996) 396:319-322.
  • SCHALLER-BALS S, SCHULZE A, BALS R: Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am. J. Respir. Crit. Care Med. (2002) 165:992-995.
  • HARDER J, MEYER-HOFFERT U, TERAN LM et al.: Mucoid Pseudomonas aeruginosa, TNF-α, and IL-1β but not IL-6, induce human β-defensin-2 in respiratory epithelia. Am. J. Respir. Cell Mol. Biol. (2000) 22:714-721.
  • DUITS LA, NIBBERING PH, VAN SE et al.: Rhinovirus increases human β-defensin-2 and -3 mRNA expression in cultured bronchial epithelial cells. FEMS Immunol. Med. Microbiol. (2003) 38:59-64.
  • TSUTSUMI-ISHII Y, NAGAOKA I: NF-κB-mediated transcriptional regulation of human β-defensin-2 gene following lipopolysaccharide stimulation. J. Leukoc. Biol. (2002) 71:154-162.
  • KRISANAPRAKORNKIT S, KIMBALL JR, DALE BA: Regulation of human β-defensin-2 in gingival epithelial cells: the involvement of mitogen-activated protein kinase pathways but not the NF-κB transcription factor family. J. Immunol. (2002) 168:316-324.
  • MOON SK, LEE HY, LI JD et al.: Activation of a Src-dependent Raf-MEK1/2-ERK signalling pathway is required for IL-1α-induced upregulation of β-defensin 2 in human middle ear epithelial cells. Biochim. Biophys. Acta (2002) 1590:41-51.
  • WANG X, ZHANG Z, LOUBOUTIN JP, MOSER C, WEINER DJ, WILSON JM: Airway epithelia regulate expression of human β-defensin 2 through Toll-like receptor 2. FASEB J. (2003) 17:1727-1729.
  • LU Z, KIM KA, SUICO MA, SHUTO T, LI JD, KAI H: MEF upregulates human β-defensin 2 expression in epithelial cells. FEBS Lett. (2004) 561:117-121.
  • TOMITA T, NAGASE T, OHGA E, YAMAGUCHI Y, YOSHIZUMI M, OUCHI Y: Molecular mechanisms underlying human β-defensin-2 gene expression in a human airway cell line (LC2/ad). Respirology (2002) 7:305-310.
  • HERTZ CJ, WU Q, PORTER EM et al.: Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human β defensin-2. J. Immunol. (2003) 171:6820-6826.
  • BIRCHLER T, SEIBL R, BUCHNER K et al.: Human Toll-like receptor 2 mediates induction of the antimicrobial peptide human β-defensin 2 in response to bacterial lipoprotein. Eur. J. Immunol. (2001) 31:3131-3137.
  • BECKER MN, DIAMOND G, VERGHESE MW, RANDELL SH: CD14-dependent lipopolysaccharide-induced β-defensin-2 expression in human tracheobronchial epithelium. J. Biol. Chem. (2000) 275:29731-29736.
  • TSUTSUMI-ISHII Y, NAGAOKA I: Modulation of human β-defensin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via pro-inflammatory cytokine production. J. Immunol. (2003) 170:4226-4236.
  • GRIFFIN S, TAGGART CC, GREENE CM, O'NEILL S, MCELVANEY NG: Neutrophil elastase upregulates human β-defensin-2 expression in human bronchial epithelial cells. FEBS Lett. (2003) 546:233-236.
  • AGERBERTH B, GUNNE H, ODEBERG J, KOGNER P, BOMAN HG, GUDMUNDSSON GH: FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc. Natl. Acad. Sci. USA (1995) 92:195-199.
  • LIU PT, STENGER S, LI H et al.: Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science (2006) 311:1770-1773.
  • GOMBART AF, BORREGAARD N, KOEFFLER HP: Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly upregulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. (2005) 19:1067-1077.
  • ZUYDERDUYN S, NINABER DK, HIEMSTRA PS, RABE KF: The antimicrobial peptide LL-37 enhances IL-8 release by human airway smooth muscle cells. J. Allergy Clin. Immunol. (2006) 117:1328-1335.
  • CHEN CI, SCHALLER-BALS S, PAUL KP, WAHN U, BALS R: β-defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosis. J. Cyst. Fibros. (2004) 3:45-50.
  • BEISSWENGER C, KANDLER K, HESS C et al.: Allergic airway inflammation inhibits pulmonary antibacterial host defense. J. Immunol. (2006) 177:1833-1837.
  • TAGGART CC, GREENE CM, SMITH SG et al.: Inactivation of human β-defensins 2 and 3 by elastolytic cathepsins. J. Immunol. (2003) 171:931-937.
  • SCHMIDTCHEN A, FRICK IM, ANDERSSON E, TAPPER H, BJORCK L: Proteases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. (2002) 46:157-168.
  • WEINER DJ, BUCKI R, JANMEY PA: The antimicrobial activity of the cathelicidin LL37 is inhibited by F-actin bundles and restored by gelsolin. Am. J. Respir. Cell Mol. Biol. (2003) 28:738-745.
  • FELGENTREFF K, BEISSWENGER C, GRIESE M, GULDER T, BRINGMANN G, BALS R: The antimicrobial peptide cathelicidin interacts with airway mucus. Peptides (2006) 27:3100-3106.
  • HERASIMENKA Y, BENINCASA M, MATTIUZZO M, CESCUTTI P, GENNARO R, RIZZO R: Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens. Peptides (2005) 26:1127-1132.
  • GANZ T, SELSTED ME, SZKLAREK D et al.: Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. (1985) 76:1427-1435.
  • OUELLETTE AJ, SELSTED ME: Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J. (1996) 10:1280-1289.
  • LEHRER RI, BARTON A, DAHER KA, HARWIG SS, GANZ T, SELSTED ME: Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. (1989) 84:553-561.
  • WILSON CL, OUELLETTE AJ, SATCHELL DP et al.: Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science (1999) 286:113-117.
  • MOSER C, WEINER DJ, LYSENKO E, BALS R, WEISER JN, WILSON JM: β-Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. (2002) 70:3068-3072.
  • MORRISON G, KILANOWSKI F, DAVIDSON D, DORIN J: Characterization of the mouse β defensin 1, Defb1, mutant mouse model. Infect. Immun. (2002) 70:3053-3060.
  • NIZET V, OHTAKE T, LAUTH X et al.: Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature (2001) 414:454-457.
  • CHROMEK M, SLAMOVA Z, BERGMAN P et al.: The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. (2006) 12:636-641.
  • BALS R, WEINER DJ, MEEGALLA RL, WILSON JM: Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J. Clin. Invest. (1999) 103:1113-1117.
  • SALZMAN NH, GHOSH D, HUTTNER KM, PATERSON Y, BEVINS CL: Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature (2003) 422:522-526.
  • KLOTMAN ME, CHANG TL: Defensins in innate antiviral immunity. Nat. Rev. Immunol. (2006) 6:447-456.
  • QUINONES-MATEU ME, LEDERMAN MM, FENG Z et al.: Human epithelial β-defensins 2 and 3 inhibit HIV-1 replication. AIDS (2003) 17:F39-F48.
  • PROUD D, SANDERS SP, WIEHLER S: Human rhinovirus infection induces airway epithelial cell production of human β-defensin 2 both in vitro and in vivo. J. Immunol. (2004) 172:4637-4645.
  • MACKEWICZ CE, YUAN J, TRAN P et al.: α-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS (2003) 17:F23-F32.
  • CHANG TL, VARGAS JJ, DELPORTILLO A, KLOTMAN ME: Dual role of α-defensin-1 in anti-HIV-1 innate immunity. J. Clin. Invest. (2005).
  • CHANG TL, FRANCOIS F, MOSOIAN A, KLOTMAN ME: CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from β-defensin-1 HIV inhibition. J. Virol. (2003) 77:6777-6784.
  • WANG W, OWEN SM, RUDOLPH DL et al.: Activity of α- and θ-defensins against primary isolates of HIV-1. J. Immunol. (2004) 173:515-520.
  • LYSENKO ES, GOULD J, BALS R, WILSON JM, WEISER JN: Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect. Immun. (2000) 68:1664-1671.
  • ERNST RK, YI EC, GUO L et al.: Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science (1999) 286:1561-1565.
  • SMITH JJ, TRAVIS SM, GREENBERG EP, WELSH MJ: Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell (1996) 85:229-236.
  • MARTIN RJ, KRAFT M, CHU HW, BERNS EA, CASSELL GH: A link between chronic asthma and chronic infection. J. Allergy Clin. Immunol. (2001) 107:595-601.
  • MURPHY TF: The role of bacteria in airway inflammation in exacerbations of chronic obstructive pulmonary disease. Curr. Opin. Infect. Dis. (2006) 19:225-230.
  • CHILVERS MA, O'CALLAGHAN C: Local mucociliary defence mechanisms. Paediatr. Respir. Rev. (2000) 1:27-34.
  • SOONG LB, GANZ T, ELLISON A, CAUGHEY GH: Purification and characterization of defensins from cystic fibrosis sputum. Inflamm. Res. (1997) 46:98-102.
  • PANYUTICH AV, PANYUTICH EA, KRAPIVIN VA, BATUREVICH EA, GANZ T: Plasma defensin concentrations are elevated in patients with septicemia or bacterial meningitis. J. Lab. Clin. Med. (1993) 122:202-207.
  • VAN WS, MANNESSE-LAZEROMS SP, DIJKMAN JH, HIEMSTRA PS: Effect of neutrophil serine proteases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production. J. Leukoc. Biol. (1997) 62:217-226.
  • AARBIOU J, TJABRINGA GS, VERHOOSEL RM et al.: Mechanisms of cell death induced by the neutrophil antimicrobial peptides α-defensins and LL-37. Inflamm. Res. (2006) 55:119-127.
  • VAN WS, MANNESSE-LAZEROMS SP, VAN STERKENBURG MA et al.: Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am. J. Physiol. (1997) 272:L888-L896.
  • VAN WS, MANNESSE-LAZEROMS SP, VAN STERKENBURG MA, HIEMSTRA PS: Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: modulation by dexamethasone. Inflamm. Res. (2002) 51:8-15.
  • ASHITANI J, MUKAE H, NAKAZATO M et al.: Elevated concentrations of defensins in bronchoalveolar lavage fluid in diffuse panbronchiolitis. Eur. Respir. J. (1998) 11:104-111.
  • PANYUTICH AV, HIEMSTRA PS, VAN WS, GANZ T: Human neutrophil defensin and serpins form complexes and inactivate each other. Am. J. Respir. Cell Mol. Biol. (1995) 12:351-357.
  • ZHANG H, PORRO G, ORZECH N, MULLEN B, LIU M, SLUTSKY AS: Neutrophil defensins mediate acute inflammatory response and lung dysfunction in dose-related fashion. Am. J. Physiol. Lung. Cell Mol. Physiol. (2001) 280:L947-L954.
  • OPPENHEIM JJ, YANG D: Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol. (2005) 17:359-365.
  • HIRATA M, ZHONG J, WRIGHT SC, LARRICK JW: Structure and functions of endotoxin-binding peptides derived from CAP18. Prog. Clin. Biol. Res. (1995) 392:317-326.
  • BRACKETT DJ, LERNER MR, LACQUEMENT MA, HE R, PEREIRA HA: A synthetic lipopolysaccharide-binding peptide based on the neutrophil-derived protein CAP37 prevents endotoxin-induced responses in conscious rats. Infect. Immun. (1997) 65:2803-2811.
  • LILLARD JW Jr, BOYAKA PN, CHERTOV O, OPPENHEIM JJ, MCGHEE JR: Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc. Natl. Acad. Sci. USA (1999) 96:651-656.
  • YANG D, BIRAGYN A, HOOVER DM, LUBKOWSKI J, OPPENHEIM JJ: Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. (2004) 22:181-215.
  • CHERTOV O, MICHIEL DF, XU L et al.: Identification of defensin-1, defensin-2, and CAP37/azurocidin as T cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. (1996) 271:2935-2940.
  • YANG D, CHEN Q, CHERTOV O, OPPENHEIM JJ: Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J. Leukoc. Biol. (2000) 68:9-14.
  • BIRAGYN A, SURENHU M, YANG D et al.: Mediators of innate immunity that target immature but not mature, dendritic cells induce antitumour immunity when genetically fused with nonimmunogenic tumour antigens. J. Immunol. (2001) 167:6644-6653.
  • YANG D, CHERTOV O, BYKOVSKAIA SN et al.: β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science (1999) 286:525-528.
  • NIYONSABA F, IWABUCHI K, MATSUDA H, OGAWA H, NAGAOKA I: Epithelial cell-derived human β-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int. Immunol. (2002) 14:421-426.
  • DE Y, CHEN Q, SCHMIDT AP et al.: LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. (2000) 192:1069-1074.
  • NAGAOKA I, TAMURA H, HIRATA M: An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. J. Immunol. (2006) 176:3044-3052.
  • NIYONSABA F, SOMEYA A, HIRATA M, OGAWA H, NAGAOKA I: Evaluation of the effects of peptide antibiotics human β-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur. J. Immunol. (2001) 31:1066-1075.
  • BOWDISH DM, DAVIDSON DJ, SPEERT DP, HANCOCK RE: The human cationic peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. J. Immunol. (2004) 172:3758-3765.
  • ELSSNER A, DUNCAN M, GAVRILIN M, WEWERS MD: A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 β processing and release. J. Immunol. (2004) 172:4987-4994.
  • DAVIDSON DJ, CURRIE AJ, REID GS et al.: The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. (2004) 172:1146-1156.
  • DI NA, BRAFF MH, TAYLOR KR et al.: Cathelicidin antimicrobial peptides block dendritic cell TLR4 activation and allergic contact sensitization. J. Immunol. (2007) 178:1829-1834.
  • KANDLER K, SHAYKHIEV R, KLEEMANN P et al.: The antimicrobial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. Int. Immunol. (2006) 18:1729-1736.
  • AARBIOU J, ERTMANN M, VAN WS et al.: Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J. Leukoc. Biol. (2002) 72:167-174.
  • AARBIOU J, VERHOOSEL RM, VAN WS et al.: Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro. Am. J. Respir. Cell Mol. Biol. (2004) 30:193-201.
  • TJABRINGA GS, AARBIOU J, NINABER DK et al.: The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J. Immunol. (2003) 171:6690-6696.
  • HEILBORN JD, NILSSON MF, KRATZ G et al.: The cathelicidin antimicrobial peptide LL-37 is involved in reepithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J. Invest. Dermatol. (2003) 120:379-389.
  • SHAYKHIEV R, BEISSWENGER C, KANDLER K et al.: Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am. J. Physiol. Lung Cell Mol. Physiol. (2005) 289:L842-L848.
  • KOCZULLA R, VON DG, KUPATT C et al.: An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J. Clin. Invest. (2003) 111:1665-1672.
  • LI J, POST M, VOLK R et al.: PR39, a peptide regulator of angiogenesis. Nat. Med. (2000) 6:49-55.
  • GALLO RL, ONO M, POVSIC T et al.: Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc. Natl. Acad. Sci. USA (1994) 91:11035-11039.
  • ZEIDLER C, WELTE K: Kostmann syndrome and severe congenital neutropenia. Semin. Hematol. (2002) 39:82-88.
  • PUTSEP K, CARLSSON G, BOMAN HG, ANDERSSON M: Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet (2002) 360:1144-1149.
  • ONG PY, OHTAKE T, BRANDT C et al.: Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. (2002) 347:1151-1160.
  • NOMURA I, GOLEVA E, HOWELL MD et al.: Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. (2003) 171:3262-3269.
  • ISLAM D, BANDHOLTZ L, NILSSON J et al.: Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat. Med. (2001) 7:180-185.
  • FELLERMANN K, WEHKAMP J, HERRLINGER KR, STANGE EF: Crohn's disease: a defensin deficiency syndrome? Eur. J. Gastroenterol. Hepatol. (2003) 15:627-634.
  • LAAN M, BOZINOVSKI S, ANDERSON GP: Cigarette smoke inhibits lipopolysaccharide-induced production of inflammatory cytokines by suppressing the activation of activator protein-1 in bronchial epithelial cells. J. Immunol. (2004) 173:4164-4170.
  • CIRCO R, SKERLAVAJ B, GENNARO R, AMOROSO A, ZANETTI M: Structural and functional characterization of hBD-1(Ser35), a peptide deduced from a DEFB1 polymorphism. Biochem. Biophys. Res. Commun. (2002) 293:586-592.
  • MATSUSHITA I, HASEGAWA K, NAKATA K, YASUDA K, TOKUNAGA K, KEICHO N: Genetic variants of human β-defensin-1 and chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun. (2002) 291:17-22.
  • VATTA S, BONIOTTO M, BEVILACQUA E et al.: Human β defensin 1 gene: six new variants. Hum. Mutat. (2000) 15:582-583.
  • DORK T, STUHRMANN M: Polymorphisms of the human β-defensin-1 gene. Mol. Cell Probes. (1998) 12:171-173.
  • JUREVIC RJ, BAI M, CHADWICK RB, WHITE TC, DALE BA: Single-nucleotide polymorphisms (SNPs) in human β-defensin 1: high-throughput SNP assays and association with Candida carriage in Type I diabetics and nondiabetic controls. J. Clin. Microbiol. (2003) 41:90-96.
  • HOLLOX EJ, ARMOUR JA, BARBER JC: Extensive normal copy number variation of a β-defensin antimicrobial-gene cluster. Am. J. Hum. Genet. (2003) 73:591-600.
  • HIRATSUKA T, NAKAZATO M, DATE Y et al.: Identification of human β-defensin-2 in respiratory tract and plasma and its increase in bacterial pneumonia. Biochem. Biophys. Res. Commun. (1998) 249:943-947.
  • ASHITANI J, MUKAE H, NAKAZATO M et al.: Elevated pleural fluid levels of defensins in patients with empyema. Chest (1998) 113:788-794.
  • ASHITANI J, MUKAE H, HIRATSUKA T, NAKAZATO M, KUMAMOTO K, MATSUKURA S: Elevated levels of α-defensins in plasma and BAL fluid of patients with active pulmonary tuberculosis. Chest (2002) 121:519-526.
  • ASHITANI J, MUKAE H, HIRATSUKA T, NAKAZATO M, KUMAMOTO K, MATSUKURA S: Plasma and BAL fluid concentrations of antimicrobial peptides in patients with Mycobacterium avium-intracellulare infection. Chest (2001) 119:1131-1137.
  • RIVAS-SANTIAGO B, SADA E, TSUTSUMI V, GUILAR-LEON D, CONTRERAS JL, HERNANDEZ-PANDO R: β-Defensin gene expression during the course of experimental tuberculosis infection. J. Infect. Dis. (2006) 194:697-701.
  • WEBER G, HEILBORN JD, CHAMORRO JIMENEZ CI, HAMMARSJO A, TORMA H, STAHLE M: Vitamin D induces the antimicrobial protein hCAP18 in human skin. J. Invest. Dermatol. (2005) 124:1080-1082.
  • ZASLOFF M: Fighting infections with vitamin D. Nat. Med. (2006) 12:388-390.
  • BALS R, WEINER DJ, MEEGALLA RL, ACCURSO F, WILSON JM: Salt-independent abnormality of antimicrobial activity in cystic fibrosis airway surface fluid. Am. J. Respir. Cell Mol. Biol. (2001) 25:21-25.
  • DAULETBAEV N, GROPP R, FRYE M, LOITSCH S, WAGNER TO, BARGON J: Expression of human β defensin (HBD-1 and HBD-2) mRNA in nasal epithelia of adult cystic fibrosis patients, healthy individuals, and individuals with acute cold. Respiration (2002) 69:46-51.
  • YANAGIHARA K, KADOTO J, KOHNO S: Diffuse panbronchiolitis-pathophysiology and treatment mechanisms. Int. J. Antimicrob. Agents (2001) 18(Suppl. 1):S83-S87.
  • ASHITANI J, MUKAE H, IHIBOSHI H et al.: Defensin in plasma and in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome. Nihon Kyobu Shikkan Gakkai Zasshi (1996) 34:1349-1353.
  • HIRATSUKA T, MUKAE H, IIBOSHI H et al.: Increased concentrations of human β-defensins in plasma and bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Thorax (2003) 58:425-430.
  • HERSH CP, DEMEO DL, RABY BA et al.: Genetic linkage and association analysis of COPD-related traits on chromosome 8p. COPD (2006) 3:189-194.
  • HIRATA M, SHIMOMURA Y, YOSHIDA M, WRIGHT SC, LARRICK JW: Endotoxin-binding synthetic peptides with endotoxin-neutralizing, antibacterial and anticoagulant activities. Prog. Clin. Biol. Res. (1994) 388:147-159.
  • CIRIONI O, GIACOMETTI A, GHISELLI R et al.: LL-37 protects rats against lethal sepsis caused by Gram-negative bacteria. Antimicrob. Agents Chemother. (2006) 50:1672-1679.
  • MUKAE H, IIBOSHI H, NAKAZATO M et al.: Raised plasma concentrations of α-defensins in patients with idiopathic pulmonary fibrosis. Thorax (2002) 57:623-628.
  • ASHITANI J, MATSUMOTO N, NAKAZATO M: Elevated levels of antimicrobial peptides in bronchoalveolar lavage fluid in patients with chronic eosinophilic pneumonia. Respiration (2007) 74:69-75.
  • PRESNEILL JJ, NAKATA K, INOUE Y, SEYMOUR JF: Pulmonary alveolar proteinosis. Clin. Chest Med. (2004) 25:593-613.
  • MUKAE H, ISHIMOTO H, YANAGI S et al.: Elevated BALF concentrations of α- and β-defensins in patients with pulmonary alveolar proteinosis. Respir. Med. (2007) 101:715-721.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.