272
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Cytokine therapy in cancer

, MD
Pages 1495-1505 | Published online: 07 Sep 2008

Bibliography

  • Mocellin S, Wang E, Marincola FM. Cytokines and immune response in the tumor microenvironment. J Immunother 2001;24:392-407
  • Margolin K, Clark J. Interleukin-2 and cancer therapy. In: Caligiuri MA, editor, Cancer drug discovery and development: cytokines in the genesis and treatment of cancer. Totowa: Humana Press. Inc; 2007. p. 307-16
  • Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant Interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999;17:2105-16
  • Fyfe G, Fisher RI, Rosenberg SA, et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant Interleukin-2 therapy. J Clin Oncol 1995;13:688-96
  • Petrulio CA, Kim-Schulze S, Kaufman HL. The tumour microenvironment and implications for cancer immunotherapy. Expert Opin Biol Ther 2006;6:671-84
  • Zorn E, Nelson EA, Mohseni M, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 2006;108:1571-9
  • Waldmann TA. The biology of Interleukin-2 and Interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 2006;6:595-601
  • Knutson KL, Dang Y, Lu H, et al. IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J Immunol 2006;177:84-91
  • Nagahama, K, Nishimura E, Sakaguchi S. Induction of tolerance by adoptive transfer of Treg cells. Methods Mol Biol 2007;380:431-42
  • Wang J, Jensen M, Linl Y, et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther 2007;18:712-25
  • Ahmadzadeh M, Rosenberg SA. Interleukin-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 2006;107:2409-14
  • Cesana GC, DeRaffele G, Cohen S, et al. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose Interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol 2006;24:1169-77
  • Panelli MC, Wang E, Phan G, et al. Gene-expression profiling of the response of peripheral blood mononuclear cells and melanoma metastases to systemic IL-2 administration. Genome Biol 2002;3:RESEARCH0035. Published online 25 June 2002, doi:10.1186/gb-2002-3-7-research0035
  • Panelli MC, White R, Foster, M, et al. Forecasting the cytokine storm following systemic interleukin (IL)-2 administration. J Transl Med 2004;2:17. Published online 2 June 2004, doi:10.1186/1479-5876-2-17
  • Atkins MM, Regan D, McDermott J, et al. Carbonic anhydrase IX expression predicts outcome of IL 2 therapy for renal cancer. Clin Cancer Res 2007;12:215-22
  • Schwarzberg T, Regan MM, Liu V, et al. Retrospective analysis of Interleukin-2 therapy in patients with metastatic renal cell carcinoma who had received prior antiangiogenic therapy. J Immunother 2007;30:877-88
  • Powell DJ Jr, Dudley ME, Hogan, KA, et al. Adoptive transfer of vaccine-induced peripheral blood mononuclear cells to patients with metastatic melanoma following lymphodepletion. J Immunol 2006;177:6527-39
  • Ives NJ, Stowe RL, Lorigan P, Wheatley K. Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: a meta-analysis of 18 trials involving 2,621 patients. J Clin Oncol 2007;25:5426-34
  • Stein AS, O'Donnell MR, Slovak ML, et al. Interleukin-2 after autologous stem-cell transplantation for adult patients with acute myeloid leukemia in first complete remission. J Clin Oncol 2003;21:615-23
  • Blaise D, Attal M, Reiffers J, et al. Randomized study of recombinant interleukin-2 after autologous bone marrow transplantation for acute leukemia in first complete remission. Eur Cytokine Netw 2000;11:91-8
  • Thompson JA, Fisher RI, Leblanc M, et al. Total body irradiation, etoposide, cyclophosphamide and autologous peripheral blood stem cell transplantation followed by randomization to therapy with Interleukin-2 versus observation for patients with non-Hodgkin's lymphoma: results of a phase III randomized trial by the Southwest Oncology Group (SWOG 9438). Blood 2008;111:4048-54
  • Dudley ME, Rosenberg SA. Adoptive cell transfer therapy. Semin Oncol 2007;34:524-31
  • Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006;314:126-9
  • Khan KD, Emmanouilides C, Benson DM Jr, et al. A phase 2 study of rituximab in combination with recombinant Interleukin-2 for rituximab-refractory indolent non-Hodgkin's lymphoma. Clin Cancer Res 2006;12:7046-53
  • Sosman JA, Weiss GR, Margolin KA, et al. Phase IB clinical trial of anti-CD3 followed by high-dose bolus interleukin-2 in patients with metastatic melanoma and advanced renal cell carcinoma: clinical and immunologic effects. J Clin Oncol 1993;11:1496-505
  • Yang JC, Topalian SL, Schwartzentruber DJ, et al. The use of polyethylene glycol-modified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma. A phase I study and a randomized prospective study comparing IL-2 alone versus IL-2 combined with PEG-IL-2. Cancer 1995;76:687-94
  • Melder RJ, Osborn BL, Riccobene T, et al. Pharmacokinetics and in vitro and in vivo anti-tumor response of an interleukin-2-human serum albumin fusion protein in mice. Cancer Immunol Immunother 2005;54:535-47
  • Margolin K, Atkins MB, Dutcher JP, et al. Phase I trial of BAY 50-4798, an interleukin-2-specific agonist in advanced melanoma and renal cancer. Clin Cancer Res 2007;13:3312-9
  • Shanafelt AB, Lin Y, Shanafelt MC, et al. A T-cell-selective IL 2 mutein exhibits potent antitumor activity and is well tolerated in vivo. Nat Biotechnol 2000;18:1197-202
  • Hu P, Mizokami M, Ruoff G, et al. Generation of low-toxicity interleukin-2 fusion proteins devoid of vasopermeability activity. Blood 2003;101:4853-61
  • Lode HN, Xiang R, Becker JC, et al. Immunocytokines: a promising approach to cancer immunotherapy. Pharmacol Ther 1998;80:277-92
  • Rasku MA, Clem AL, Telang S, et al. Transient T cell depletion causes regression of melanoma metastases. J Transl Med 2008;6:12. Published online 11 March 2008, doi:10.1186/1479-5876-6-12
  • Puri RK, Siegel JP. Interleukin-4 and cancer therapy. Cancer Invest 1993;11:473-86
  • Wang IM, Lin H, Goldman SJ, Kobayashi M. STAT-1 is activated by IL-4 and IL-13 in multiple cell types. Mol Immunol 2004;41:873-84
  • Tepper RI, Pattengale PK, Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 1989;57:503-12
  • Jinushi M, Hodi FS, Dranoff G. Enhancing the clinical activity of granulocyte-machrophage colony-stimulating factor-secreting tumor cell vaccines. Immunol Rev 2008;222:287-98
  • Atkins MB, Vachino G, Tilg HJ, et al. Phase I evaluation of thrice-daily intravenous bolus interleukin-4 in patients with refractory malignancy. J Clin Oncol 1992;10:1802-9
  • Trehu EG, Isner JM, Mier JW, et al. Possible myocardial toxicity associated with interleukin-4 therapy. J Immunother Emphasis Tumor Immunol 1993;14:348-51
  • Rubin, JT, Lotze MT. Acute gastric mucosal injury associated with the systemic administration of interleukin-4. Surgery 1992;111:274-80
  • Margolin K, Aronson FR, Sznol M, et al. Phase II studies of recombinant human interleukin-4 in advanced renal cancer and malignant melanoma. J Immunother Emphasis Tumor Immunol 1994;15:147-53
  • Stadler WM, Rybak ME, Vogelzang NJ. A phase II study of subcutaneous recombinant human interleukin-4 in metastatic renal cell carcinoma. Cancer 1995;76:1629-33
  • Whitehead RP, Unger JM, Goodwin JW, et al. Phase II trial of recombinant human interleukin-4 in patients with disseminated malignant melanoma: a Southwest Oncology Group study. J Immunother 1998;21:440-6
  • Jarnjak-Jankovic S, Hammerstad H, Saeboe-Larssen S, et al. A full scale comparative study of methods for generation of functional dendritic cells for use as cancer vaccines. BMC Cancer 2007;7:119. Published online 3 July 2007, doi:10.1186/1471-2407-7-119
  • Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, et al. Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine Growth Factor Rev 2006;17:173-88
  • Goxe B, Latour N, Chokri M, et al. Simplified method to generate large quantities of dendritic cells suitable for clinical applications. Immunol Invest 2000;29:319-36
  • Jarboe JS, Johnson KR, Choi Y, et al. Expression of Interleukin-13 receptor α2 in glioblastoma multiforme: implications for targeted therapies. Cancer Res 2007;67:7983-6
  • Kahlon KS, Brown C, Cooper LJ, et al. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 2004;64:9160-6
  • Hong DS, Angelo LS, Kurzrock R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer 2007;110:1911-28
  • Grivennikov S Karin M. Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 2008;13:7-9
  • Blay JY, Negrier S, Combaret V, et al. Serum level of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma. Cancer Res 1992;52:3317-22
  • Blay JY, Rossi JF, Wijdenes J, et al. Role of interleukin-6 in the paraneoplastic inflammatory syndrome associated with renal-cell carcinoma. Int J Cancer 1997;72:424-30
  • Giuliani, N, Colla S, Rizzoli V. Update on the pathogenesis of osteolysis in multiple myeloma patients. Acta Biomed 2004;75:143-52
  • Kaser A, Brandacher G, Steurer W, et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood 2001;98:2720-5
  • Rose-John S, Weatzig GH, Scheller J, et al. The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Agents 2007;11:613-24
  • Sosman JA, Aronson FR, Sznol M, et al. Concurrent phase I trials of intravenous interleukin 6 in solid tumor patients: reversible dose-limiting neurological toxicity. Clin Cancer Res 1997;3:39-46
  • Weiss GR, Margolin KA, Sznol M, et al. A phase II study of the continuous intravenous infusion of Interleukin-6 for metastatic renal cell carcinoma. J Immunother Emphasis Tumor Immunol 1995;18:52-6
  • Lazarus HM, Winton EF, Williams SF, et al. Phase I multicenter trial of interleukin 6 therapy after autologous bone marrow transplantation in advanced breast cancer. Bone Marrow Transplant 1995;15:935-42
  • Veldhuis GJ, Willemse PH, Sleijfer DT, et al. Toxicity and efficacy of escalating dosages of recombinant human interleukin-6 after chemotherapy in patients with breast cancer or non small-cell lung cancer. J Clin Oncol 1995;13:2585-93
  • Trikha M, Corringham R, Klein B, Rossi JF. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 2003;9:4653-65
  • Fry TJ, MacKall CL. Promising γ-chain cytokines for cancer immunotherapy. In: Disis ML, editor, Cancer drug discovery and development: immunotherapy of cancer. Totowa: Humana Press, Inc.; 2006. p. 397-414
  • Fry TJ, Mackall CL. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J Immunol 2005;174:6571-6
  • Rosenberg SA, Sportes C, Ahmadzadehet M, et al. IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother 2006;29:313-9
  • Zou JP, Yamamoto N, Fujii T, et al. Systemic administration of rIL-12 induces complete tumor regression and protective immunity: response is correlated with a striking reversal of suppressed IFN-γ production by anti-tumor T cells. Int Immunol 1995;7:1135-45
  • Del Vecchio, M, Bajetta E, Canova S, et al. Interleukin-12: Biological properties and clinical application. Clin Cancer Res 2007;13:4677-85
  • Yue FY, Dummer R, Geertsen R, et al. Interleukin-10 production by human carcinoma cell lines and its relationship to interleukin-6 expression. Int J Cancer 1993;55:96-101
  • Petersson M, Charo J, Salazar-Onfray F, et al. Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2 function in the prototype NK target YAC-1. J Immunol 1998;161:2099-105
  • Beissert S, Hosoi J, Grabbe S, et al. IL-10 inhibits tumor antigen presentation by epidermal antigen presenting cells. J Immunol 1995;154:1280-6
  • Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007;449:819-26
  • Bacon CM, McVicar DW, Ortaldo JR, et al. Interleukin 12 (IL-12) induces tyrosine phosphorylation of JAK2 and TYK2; differential use of Janus family tyrosine kinases by IL-1 and IL-12. J Exp Med 1995a;181:399-404
  • Bacon CM, Petricoin EF 3rd, Ortaldo JR, et al. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc Natl Acad Sci USA 1995b;92:7307-11
  • Jacobson NG, Szabo SJ, Weber-Nordt RM, et al. IL 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J Exp Med 1995;181:1755-62
  • Portielje, JE, Gratama JW, van Ojik HH, et al. IL-12: a promising adjuvant for cancer vaccination. Cancer Immunol Immunother 2003;52:133-44
  • Colombo MP, Trinchieri G. Interleukin-12 in antitumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002;13:155-68
  • Leonard JP, Sherman ML, Fisher GL, et al. Effects of single-dose Interleukin-12 exposure on Interleukin-12–associated toxicity and interferon-γ production. Blood 1997;90:2541-8
  • Portielje JE, Cor A, Lamers HJ, et al. Repeated administrations of interleukin (IL)-12 are associated with persistently elevated plasma levels of IL-10 and declining IFN-γ, tumor necrosis factor-α, Interleukin-6, and Interleukin-8 responses. Clin Cancer Res 2003;5:76-83
  • Hunter CA. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 2005;5:521-31
  • Lu J, Giuntoli RL2nd, Omiya R, et al. Interleukin 15 promotes antigen-independent in vitro expansion and long-term survival of antitumor cytotoxic T lymphocytes. Clin Cancer Res 2002;8:3877-84
  • Cooper MA, Bush JF, Fehniger TA, et al. In vivo evidence for a dependence on Interleukin 15 for survival of natural killer cells. Blood 2002;100:3633-8
  • Sato N, Patel HJ, Waldmann TA, Tagaya Y. The IL-15/IL-15Rα on cell surfaces enables sustained IL-15 activity and contributes to the long survival of CD8 memory T cells. Proc Natl Acad Sci USA 2007;104:588-93
  • Tagaya Y, Bamford RN, DeFilippis AP, Waldmann TA. IL-15: a pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity 1996;4:329-36
  • Stoklasek TA, Schluns KS, Lefrançois L. Combined IL-15/IL-15Rα immunotherapy maximizes Interleukin-15 activity in vivo. J Immunol 2006;177:6072-80
  • Swain SL. Interleukin 18: tipping the balance towards a T helper cell 1 response. J Exp Med 2001;194:F11-4
  • Tsutsui H, Matsui K, Kawada N, et al. IL-18 accounts for both TNF-alpha- and Fas ligand-mediated hepatotoxic pathways in endotoxin-induced liver injury in mice. J Immunol 1997;159:3961-7
  • Son Y, Dallal RM, Mailliard RB, et al. Interleukin-18 (IL-18) synergizes with IL-2 to enhance cytotoxicity, interferon-γ production, and expansion of natural killer cells. Cancer Res 2001;61:884-8
  • Son Y, Dallal RM, Lotze MT. Combined treatment with interleukin-18 and low-dose interleukin-2 induced regression of a murine sarcoma and memory response. J Immunother 2003;25:234-40
  • Li Q, Car AL, Donald EJ, et al. Synergistic effects of IL-12 and IL-18 in skewing tumor-reactive T-Cell responses towards a type 1 pattern. Cancer Res 2005;65:1063-70
  • Robertson MJ, Mier JW, Logan T, et al. Clinical and biological effects of recombinant human interleukin-18 administered by intravenous infusion to patients with advanced cancer. Clin Cancer Res 2006;12:4265-73
  • Moroz A, Eppolito C, Li Q, et al. Interleukin-21 Enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: Comparative evaluation of IL-2, IL-15, and IL-21. J Immunol 2004;173:900-8
  • Sivakumar PV, Foster DC, Clegg CH. Interleukin-21 is a T-helper cytokine that regulates humoral immunity and cell-mediated anti-tumour responses. Immunology 2004;112:177-82
  • Davis ID, Skak K, Smyth MJ, et al. Interleukin-21 signaling: functions in cancer and autoimmunity. Clin Cancer Res 2007;12:6926-31
  • He H, Wisner P, Yang G, et al. Combined IL-21 and low-dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model. J Transl Med 2006;4:24. Published online 13 June 2006, doi:10.1186/1479-5876-4-24
  • Strengell M, Matikainen S, Siren J, et al. IL-21 in synergy with IL-15 or IL-18 enhances IFN-γ production in human NK and T cells. J Immunol 2003;170:5454-69
  • Iuchi T, Teitz-Tennenbaum S, Huang J, et al. Interleukin-21 augments the efficacy of T-cell therapy by eliciting concurrent cellular and humoral responses. Cancer Res 2008;68:4431-41
  • Hinrichs CS, Spilski R, Paulos CM, et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 2008;111:5326-33
  • Davis ID, Skrumsager BK, Cebon J. et al. An open-label, two-arm, Phase I trial of recombinant human interleukin-21 in patients with metastatic melanoma. Clin Cancer Res 2007;13:3630-6
  • Thompson JA, Curti BD, Redman BD, et al. Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J Clin Oncol 2008;26:2034-9
  • Cheever MA. Twelve immunotherapy drugs that could cure cancers. Immunol Rev 2008;222:357-68
  • Mandruzzato SA, Callegaro G, Turcatel S, et al. A gene expression signature associated with survival in metastatic melanoma. J Transl Med 2006;4:1-11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.