184
Views
9
CrossRef citations to date
0
Altmetric
Reviews

A DNA vaccine for multiple sclerosis

, MD PhD
Pages 1539-1550 | Published online: 07 Sep 2008

Bibliography

  • Fairweather D, Rose NR. Women and autoimmune diseases. Emerg Infect Dis 2004;10(11):2005-11
  • Zhang J, Markovic-Plese S, Lacet B, et al. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 1994;179(3):973-84
  • Zhang J, Weiner HL, Hafler DA. Autoreactive T cells in multiple sclerosis. Int Rev Immunol 1992;9(3):183-201
  • Chou YK, Bourdette DN, Offner H, et al. Frequency of T cells specific for myelin basic protein and myelin proteolipid protein in blood and cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 1992;38(1-2):105-13
  • Kent SC, Chen Y, Bregoli L, et al. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 2005;435(7039):224-8
  • Weiner HL, Mackin GA, Matsui M, et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 1993;259(5099):1321-4
  • Hafler DA, Kent SC, Pietrusewicz MJ, et al. Oral administration of myelin induces antigen-specific TGF-β1 secreting T cells in patients with multiple sclerosis. Ann N Y Acad Sci 1997;835:120-31
  • Faria AM, Weiner HL. Oral tolerance. Immunol Rev 2005;206:232-59
  • Kappos L, Comi G, Panitch H, et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 2000;6(10):1176-82
  • Bielekova B, Goodwin B, Richert N, et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 2000;6(10):1167-75
  • Warren KG, Catz I, Ferenczi LZ, Krantz MJ. Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur J Neurol 2006;13(8):887-95
  • Warren KG, Catz I, Wucherpfennig KW. Tolerance induction to myelin basic protein by intravenous synthetic peptides containing epitope P85 VVHFFKNIVTP96 in chronic progressive multiple sclerosis. J Neurol Sci 1997;152(1):31-8
  • Garren H, Steinman L. DNA vaccination in the treatment of autoimmune disease. In: Fathman CG, editor, Biologic and Gene Therapy of Autoimmune Disease. Basel: Karger; 2000. p. 203-16
  • Tighe H, Corr M, Roman M, Raz E. Gene vaccination: plasmid DNA is more than just a blueprint. Immunol Today 1998;19(2):89-97
  • Cohen AD, Boyer JD, Weiner DB. Modulating the immune response to genetic immunization. FASEB J 1998;12(15):1611-26
  • Smith HA, Klinman DM. The regulation of DNA vaccines. Curr Opin Biotechnol 2001;12(3):299-303
  • Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization. Ann Rev Immunol 2000;18:927-74
  • Donnelly JJ, Wahren B, Liu MA. DNA vaccines: progress and challenges. J Immunol 2005;175(2):633-9
  • Ferrera F, La Cava A, Rizzi M, et al. Gene vaccination for the induction of immune tolerance. Ann N Y Acad Sci 2007;1110:99-111
  • Ledwith BJ, Manam S, Troilo PJ, et al. Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology 2000;43(4-6):258-72
  • Martin T, Parker SE, Hedstrom R, et al. Plasmid DNA malaria vaccine: the potential for genomic integration after intramuscular injection. Hum Gene Ther 1999;10(5):759-68
  • Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247(4949 Pt 1):1465-8
  • Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature 1992;356(6365):152-4
  • Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993;259(5102):1745-9
  • Stevenson FK, Ottensmeier CH, Johnson P, et al. DNA vaccines to attack cancer. Proc Natl Acad Sci USA 2004;101(Suppl 2):14646-52
  • Lu S, Wang S, Grimes-Serrano JM. Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 2008;7(2):175-91
  • Salonius K, Simard N, Harland R, Ulmer JB. The road to licensure of a DNA vaccine. Curr Opin Investig Drugs 2007;8(8):635-41
  • Bartlett RJ, Secore SL, Singer JT, et al. Long-term expression of a fluorescent reporter gene via direct injection of plasmid vector into mouse skeletal muscle: comparison of human creatine kinase and CMV promoter expression levels in vivo. Cell Transplant 1996;5(3):411-9
  • Robinson HL, Torres CA. DNA vaccines. Semin Immunol 1997;9(5):271-83
  • Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995;374(6522):546-9
  • Waisman A, Ruiz PJ, Hirschberg DL, et al. Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nat Med 1996;2(8):899-905
  • Ruiz PJ, Garren H, Ruiz IU, et al. Suppressive immunization with DNA encoding a self-peptide prevents autoimmune disease: modulation of T cell costimulation. J Immunol 1999;162(6):3336-41
  • Lobell A, Weissert R, Storch MK, et al. Vaccination with DNA encoding an immunodominant myelin basic protein peptide targeted to Fc of immunoglobulin G suppresses experimental autoimmune encephalomyelitis. J Exp Med 1998;187(9):1543-8
  • Garren H, Ruiz PJ, Watkins TA, et al. Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 2001;15(1):15-22
  • Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408(6813):740-5
  • Bretscher P, Cohn M. A theory of self-nonself discrimination. Science 1970;169(950):1042-9
  • Ingelfinger JR, Schwartz RS. Immunosuppression–the promise of specificity. N Engl J Med 2005;353(8):836-9
  • Van Parijs L, Abbas AK. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 1998;280(5361):243-8
  • Ho PP, Fontoura P, Ruiz PJ, et al. An immunomodulatory GpG oligonucleotide for the treatment of autoimmunity via the innate and adaptive immune systems. J Immunol 2003;171(9):4920-6
  • Ho PP, Fontoura P, Platten M, et al. A suppressive oligodeoxynucleotide enhances the efficacy of myelin cocktail/IL-4-tolerizing DNA vaccination and treats autoimmune disease. J Immunol 2005;175(9):6226-34
  • Fontoura P, Garren H, Steinman L. Antigen-specific therapies in multiple sclerosis: going beyond proteins and peptides. Int Rev Immunol 2005;24(5-6):415-46
  • Ousman SS, Tomooka BH, van Noort JM, et al. Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature 2007;448(7152):474-9
  • Stinissen P, Medaer R, Raus J. Myelin reactive T cells in the autoimmune pathogenesis of multiple sclerosis. Mult Scler 1998;4(3):203-11
  • Allegretta M, Nicklas JA, Sriram S, Albertini RJ. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science 1990;247(4943):718-21
  • Vandevyver C, Mertens N, van den Elsen P, et al. Clonal expansion of myelin basic protein-reactive T cells in patients with multiple sclerosis: restricted T cell receptor V gene rearrangements and CDR3 sequence. Eur J Immunol 1995;25(4):958-68
  • Oksenberg JR, Panzara MA, Begovich AB, et al. Selection for T-cell receptor Vβ-Dβ-Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 1993;362(6415):68-70
  • Jingwu Z, Medaer R, Hashim GA, et al. Myelin basic protein-specific T lymphocytes in multiple sclerosis and controls: precursor frequency, fine specificity, and cytotoxicity. Ann Neurol 1992;32(3):330-8
  • Martin R, Jaraquemada D, Flerlage M, et al. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol 1990;145(2):540-8
  • Kamholz J, de Ferra F, Puckett C, Lazzarini R. Identification of three forms of human myelin basic protein by cDNA cloning. Proc Natl Acad Sci USA 1986;83(13):4962-6
  • Yew NS, Zhao H, Wu IH, et al. Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol Ther 2000;1(3):255-62
  • Bar-Or A, Vollmer T, Antel J, et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol 2007;64(10):1407-15
  • Youssef S, Stuve O, Patarroyo JC, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002;420(6911):78-84
  • Vollmer T, Key L, Durkalski V, et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 2004;363(9421):1607-8
  • Robinson WH, DiGennaro C, Hueber W, et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat Med 2002;8(3):295-301
  • Robinson WH, Fontoura P, Lee BJ, et al. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat Biotechnol 2003;21(9):1033-9
  • Waldmann H, Adams E, Fairchild P, Cobbold S. Infectious tolerance and the long-term acceptance of transplanted tissue. Immunol Rev 2006;212:301-13
  • Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 2001;182:207-14
  • Garren H, Robinson WH, Krasulová E, et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann Neurol 2008;635:611-20
  • Holz A, Bielekova B, Martin R, Oldstone MB. Myelin-associated oligodendrocytic basic protein: identification of an encephalitogenic epitope and association with multiple sclerosis. J Immunol 2000;164(2):1103-9
  • Kerlero de Rosbo N, Hoffman M, et al. Predominance of the autoimmune response to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis: reactivity to the extracellular domain of MOG is directed against three main regions. Eur J Immunol 1997;27(11):3059-69
  • Meinl E, Weber F, Drexler K, et al. Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones. J Clin Invest 1993;92(6):2633-43
  • Wucherpfennig KW, Catz I, Hausmann S, et al. Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest 1997;100(5):1114-22
  • Drachman DB. Myasthenia gravis. N Engl J Med 1994;330(25):1797-810
  • Takamori M, Maruta T, Komai K. Lambert-Eaton myasthenic syndrome as an autoimmune calcium-channelopathy. Neurosci Res 2000;36(3):183-91
  • Yoo TJ, Du X, Kwon SS. Molecular mechanism of autoimmune hearing loss. Acta Otolaryngol Suppl 2002;548:3-9
  • Yuki N. Current cases in which epitope mimicry is considered a component cause of autoimmune disease: Guillain-Barre syndrome. Cell Mol Life Sci 2000;57(4):527-33
  • Gershwin ME, Ansari AA, Mackay IR, et al. Primary biliary cirrhosis: an orchestrated immune response against epithelial cells. Immunol Rev 2000;174:210-25
  • Mackay IR, Whittingham S, Fida S, et al. The peculiar autoimmunity of primary biliary cirrhosis. Immunol Rev 2000;174:226-37
  • Gleeson PA, Toh BH. Molecular targets in pernicious anaemia. Immunol Today 1991;12(7):233-8
  • Greenwood DL, Sentry JW. Murine experimental autoimmune gastritis models refractive to development of intrinsic factor autoantibodies, cobalamin deficiency and pernicious anemia. Clin Immunol 2007;122(1):41-52
  • Manns MP, Vogel A. Autoimmune hepatitis, from mechanisms to therapy. Hepatology 2006;43(2 Suppl 1):S132-44
  • Green PH, Cellier C. Celiac disease. N Engl J Med 2007;357(17):1731-43
  • Wieser H. The precipitating factor in coeliac disease. Baillieres Clin Gastroenterol 1995;9(2):191-207
  • Blank M, Gisondi P, Mimouni D, et al. New insights into the autoantibody-mediated mechanisms of autoimmune bullous diseases and urticaria. Clin Exp Rheumatol 2006;24(1 Suppl 40):S20-5
  • Baroni A, Lanza A, Cirillo N, et al. Vesicular and bullous disorders: pemphigus. Dermatol Clin 2007;25(4):597-603, ix
  • Marietta EV, Camilleri MJ, Castro LA, et al. Transglutaminase autoantibodies in dermatitis herpetiformis and celiac sprue. J Invest Dermatol 2008;128(2):332-5
  • Houghton AN, Vijayasaradhi S, Bouchard B, et al. Recognition of autoantigens by patients with melanoma. Ann N Y Acad Sci 1993;690:59-68
  • Becker MD, Adamus G, Davey MP, Rosenbaum JT. The role of T cells in autoimmune uveitis. Ocul Immunol Inflamm 2000;8(2):93-100
  • Baekkeskov S, Aanstoot HJ, Christgau S, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990;347(6289):151-6
  • Davidson HW, Hutton JC. The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem J 1987;245(2):575-82
  • Palmer JP, Asplin CM, Clemons P, et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 1983;222(4630):1337-9
  • Payton MA, Hawkes CJ, Christie MR. Relationship of the 37,000- and 40,000-M(r) tryptic fragments of islet antigens in insulin-dependent diabetes to the protein tyrosine phosphatase-like molecule IA-2 (ICA512). J Clin Invest 1995;96(3):1506-11
  • Pietropaolo M, Castano L, Babu S, et al. Islet cell autoantigen 69 kD (ICA69). Molecular cloning and characterization of a novel diabetes-associated autoantigen. J Clin Invest 1993;92(1):359-71
  • Atger M, Misrahi M, Young J, et al. Autoantibodies interacting with purified native thyrotropin receptor. Eur J Biochem 1999;265(3):1022-31
  • McLachlan SM, Rapoport B. Thyroid peroxidase as an autoantigen. Thyroid 2007;17(10):939-48
  • Chardes T, Chapal N, Bresson D, et al. The human anti-thyroid peroxidase autoantibody repertoire in Graves' and Hashimoto's autoimmune thyroid diseases. Immunogenetics 2002;54(3):141-57
  • Borza DB, Neilson EG, Hudson BG. Pathogenesis of Goodpasture syndrome: a molecular perspective. Semin Nephrol 2003;23(6):522-31
  • Tan EM. Autoantibodies in pathology and cell biology. Cell 1991;67(5):841-2
  • Provost TT, Reichlin M. Immunopathologic studies of cutaneous lupus erythematosus. J Clin Immunol 1988;8(4):223-33
  • Galli M, Luciani D, Bertolini G, Barbui T. Lupus anticoagulants are stronger risk factors for thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: a systematic review of the literature. Blood 2003;101(5):1827-32
  • Dalakas MC, Hohlfeld R. Polymyositis and dermatomyositis. Lancet 2003;62(9388):971-82
  • Jenne DE, Kuhl A. Production and applications of recombinant proteinase 3, Wegener's autoantigen: problems and perspectives. Clin Nephrol 2006;66(3):153-9
  • Ichim TE, Zheng X, Suzuki M, et al. Antigen-specific therapy of rheumatoid arthritis. Expert Opin Biol Ther 2008;8(2):191-9
  • Robinson WH, DiGennaro C, Hueber W, et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat Med 2002;8(3):295-301
  • Weissmann G. The pathogenesis of rheumatoid arthritis. Bull NYU Hosp Jt Dis 2006;64(1-2):12-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.