618
Views
71
CrossRef citations to date
0
Altmetric
Reviews

L1-CAM in cancerous tissues

, , &
Pages 1749-1757 | Published online: 10 Oct 2008

Bibliography

  • Moos M, Tacke R, Scherer H, et al. Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 1988;334:701-3
  • Rathjen FG, Schachner M. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J 1984;3:1-10
  • Kowitz A, Kadmon G, Eckert M, et al. Expression and function of the neural cell adhesion molecule L1 in mouse leukocytes. Eur J Immunol 1992;22:1199-205
  • Kajat R, Miragall F, Drause D, et al. Immunolocalization of the neural cell adhesion molecule L1 in non-proliferating epithelial cells of the male urogenital tract. Histochem Cell Biol 1995;103:311-21
  • Thor G, Probstmeier R, Schachner M. Characterization of the cell adhesion molecules L1, N-CAM and J1 in the mouse intestine. EMBO J 1987;6:2581-6
  • Lemmon V, Farr K, Lagenaur C. L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 1989;2:1597-603
  • Martini R, Schachner M. Immunoelectron microscopic localization of neural cell adhesion molecules (L-l, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. J Cell Biol 1996;103:2439-48
  • Dahme M, Bartsch U, Martini R, et al. Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 1997;17:346-9
  • Cohen NR, Taylor JS, Scott LB, et al. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr Biol 1998;8:26-33
  • Fransen E, D'Hooge R, Van Camp G, et al. L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Hum Mol Genet 1998;7:999-1009
  • Itoh K, Cheng L, Kamei Y, et al. Brain development in mice lacking L1-L1 homophilic adhesion. J Cell Biol 2004;165:145-54
  • Wong EV, Kenwrick S, Willems P, et al. Mutations in the cell adhesion molecule L1 cause mental retardation. Trends Neurosci 1995;18:168-72
  • Fransen E, Van Camp G, Vits L, et al. L1-associated diseases: clinical geneticists divide, molecular geneticists unite. Hum Mol Genet 1997;6:1625-32
  • Kuhn TB, Stoeckli ET, Condrau MA, et al. Neurite outgrowth on immobilized axonin-1 is mediated by a heterophilic interaction with L1(G4). J Cell Biol 1991;4:1113-26
  • DeBernardo AP, Chang S. Heterophilic interactions of DM-GRASP: GRASP-NgCAM interactions involved in neurite extension. J Cell Biol 1996;133:657-6
  • Brummendorf T, Rathjen FG. Axonal glycoproteins with immunoglobulin- and fibronectin type III-related domains in vertebrates: structural features, binding activities, and signal transduction. J Neurochem 1993;4:1207-19
  • Milev P, Maurel P, Haring M, et al. TAG-1/axonin-1 is a high-affinity ligand of neurocan, phosphacan/protein-tyrosine phosphatase-ζ/β, and N-CAM. J Biol Chem 1996;271:15716-23
  • Friedlander DR, Milev P, Karthikeyan L, et al. The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules NgCAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol 1994;125:669-80
  • Ruppert M, Aigner S, Hubbe M, et al. The L1 adhesion molecule is a cellular ligand for VLA-5. J Cell Biol 1995;131:1881-91
  • Montgomery AM, Becker JC, Siu CH, et al. Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin αvβ3. J Cell Biol 1996;132:475-85
  • Kenwrick, S, Watkins A, De Angelis E. Neural cell recognition molecule L1: relating biological complexity to human disease mutations. Hum Mol Genet 2000;9:879-86
  • Morales G, Hubert M, Brummendorf T, et al. Induction of axonal growth by heterophilic interactions between the cell surface recognition proteins F11 and Nr-CAM/Bravo. Neuron 1993;11:1113-22
  • Blackmore M, Letourrneau PC. L1, β1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord. J Neurobiol 2006;66:1564-83
  • Polakis P. Wnt signaling and cancer. Genes Dev 2000;14:1837-51
  • Miyoshi Y, Nagase H, Ando H, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1992;1:229-33
  • Satoh S, Daigo Y, Furukawa Y, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 2000;24:245-50
  • Morin P, Sparks A, Korinek V, et al. Activation of β-cateinin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 1997;275:1787-90
  • Shtutman M, Zhurinsky J, Simcha I, et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999;96:5522-7
  • Tetsu O, McCormick F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999;398:422-6
  • He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science 1998;281:1509-12
  • Brabletz T, Jung A, Reu S, et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 2001;98:10356-61
  • Wielenga VJ, Smits R, Korinek V, et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 1999;154:515-23
  • Mann B, Gelos M, Siedow A, et al. Target genes of β-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 1999;96:1603-8
  • Conacci-Sorrell M, Ben-Yedidia T, Shtutman M, et al. Nr-CAM is a target gene of the β-catenin/LEF-1 pathway in melanoman and common cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 2002;16:2058-72
  • Gavert N, Conacci-Sorrell M, Gast D, et al. L1, a novel target of β-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 2005;168:633-42
  • Brabletz T, Jung A, Dag S, et al. β-catenin regulates the expression of the matrix metalooproteinase-7 in human colorectal cancer. Am J Pathol 1999;155:1033-8
  • Crawford H, Fingleton B, Rudolph-Owen L, et al. The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors. Oncogene 1999;18:2883-91
  • Takahashi M, Tsunoda T, Seiki M, et al. Identification of membrane-type matrix metalloproteinase-1 as a target of the β-catenin/Tcf4 complex in human colorectal cancers. Oncogene 2002;21:5861-7
  • Hlubek F, Spaderna, Jung A, et al. β-catenin activates a coordinated expression of the proinvasive factors laminin-5 γ2 chain and MT1-MMP in colorectal carcinomas. Int J Cancer 2004;108:321-6
  • Powell WC, Knox JD, Navre M, et al. Expression of the metalloproteinase matrilysin in DU-145 cells increases their invasive potential in severe combined immunodeficient mice. Cancer Res 1993;53:417-22
  • Gradl D, Kuhl M, Wedlich D. The Wnt/Wg signal transducer β-catenin controls fibronectin expression. Mol Cell Biol 1999;19:5576-87
  • Hlubek F, Jung,A, Kotzor N, et al. Expression of the invasion factor laminin 2 in colorectal carcinomas is regulated by β-catenin. Cancer Res 2001;61:8089-93
  • Koh TJ, Bulitta CJ, Fleming JV, et al. Gastrin is a target of the β-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis. J Clin Invest 2000;106:533-9
  • Kaifi JT, Reichelt U, Quaas A, et al. L1 is associated with micrometastatic spread and poor outcome in colorectal cancer. Mod Pathol 2007;20:1183-90
  • Boo YJ, Park JM, Kim J, et al. L1 expression as a marker for poor prognosis, tumor progression, and short survival in patients with colorectal cancer. Ann Surg Oncol 2000;14:1703-11
  • Gavert N, Sheffer M, Raveh S, et al. Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res 2007;67:7703-12
  • Fogel M, Gutwein P, Mechtersheimer S, et al. L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet 2003;362:869-75
  • Zecchini S, Bianchi M, Colombo N, et al. The differential role of L1 in ovarian carcinoma and normal ovarian surface epithelium. Cancer Res 2008;68:1110-8
  • Allory Y, Matsuoka Y, Bazille C, et al. The L1 cell adhesion molecule is induced in renal cancer cells and correlates with metastasis in clear cell carcinomas. Clin Cancer Res 2005;11:1190-7
  • Thies A, Schachner M, Moll I, et al. Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. Eur J Cancer 2002;38:1708-16
  • Linnemann D, Raz A, Bock E. Differential expression of cell adhesion molecules in variants of K1735 melanoma cells differing in metastatic capacity. Int J Cancer 1989;43:709-12
  • Meier F, Busch S, Gast D, et al. The adhesion molecule L1 (CD171) promotes melanoma progression. Int J Cancer 2006;119:549-55
  • Talantov D, Mazumder A, Yu JX, et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 2005;11:7234-42
  • Ghaneh P, Costello E, Neoptolemos JP. Biology and management of pancreatic cancer. Gut 2007;56:1134-52
  • Müerköster SS, Werbing V, Sipos B, et al. Drug-induced expression of the cellular adhesion molecule L1CAM confers anti-apoptotic protection and chemoresistance in pancreatic ductal adenocarcinoma cells. Oncogene 2007;26:2759-68
  • Kaifi JT, Heidtmann S, Schurr PG, et al. Absence of L1 in pancreatic masses distinguishes adenocarcinomas from poorly differentiated neuroendocrine carcinomas. Anticancer Res 2006;26:1167-70
  • Kaifi JT, Zinnkann U, Yekebas EF, et al. L1 is a potential marker for poorly-differentiated pancreatic neuroendocrine carcinoma. World J Gastroenterol 2006;12:94-8
  • Valladares A, Hernandez NG, Gomez FS, et al. Genetic expression profiles and chromosomal alterations in sporadic breast cancer in Mexican women. Cancer Genet Cytogenet 2006;170:147-51
  • Horak CE, Lee JH, Elkahloun AG, et al. Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res 2007;67:7238-46
  • Conacci-Sorrell M, Kaplan A, Raveh S, et al. The shed ectodomain of Nr-CAM stimulates cell proliferation and motility, and confers cell transformation. Cancer Res 2005;65:11605-12
  • Montgomery AM, Becker JC, Siu CH, et al. Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin αvβ3. J Cell Biol 1996;132:475-85
  • Stoeck A, Gast D, Sanderson MP, et al. L1-CAM in a membrane-bound or soluble form augments protection from apoptosis in ovarian carcinoma cells. Gynecol Oncol 2007;104:461-9
  • Novak-Hofer I, Cohrs S, Grünberg J, et al. Antibodies directed against L1-CAM synergize with Genistein in inhibiting growth and survival pathways in SKOV3ip human ovarian cancer cells. Cancer Lett 2008;261:193-204
  • Shtutman M, Levina E, Ohouo P, et al. Cell adhesion molecule L1 disrupts E-cadherin-containing adherens junctions and increases scattering and motility of MCF7 breast carcinoma cells. Cancer Res 2006;66:11370-8
  • Gutwein P, Stoeck A, Riedle S, et al. Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin Cancer Res 2005;11:2492-501
  • Mechtersheimer S, Gutwein P, Agmon-Levin N, et al. Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 2001;155:661-73
  • Cheng L, Itoh K, Lemmon V. L1-mediated branching is regulated by two ezrin-radixin-moesin (ERM)-binding sites, the RSLE region and a novel juxtamembrane ERM-binding region. J Neurosci 2005;25:395-403
  • Mintz CD, Dickson TC, Gripp ML, et al. ERMs colocalize transiently with L1 during neocortical axon outgrowth. J Comp Neurol 2003;464:438-48
  • Gil OD, Sakurai T, Bradley AE, et al. Ankyrin binding mediates L1CAM interactions with static components of the cytoskeleton and inhibits retrograde movement of L1CAM on the cell surface. J Cell Biol 2003;162:719-30
  • Garver TD, Ren Q, Tuvia S, et al. Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. J Cell Biol 1997;137:703-14
  • Schmid RS, Pruitt WM, Maness PF. A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J Neurosci 2000;20:4177-88
  • Whittard JD, Sakurai T, Cassella MR, et al. MAP kinase pathway-dependent phosphorylation of the L1-CAM ankyrin binding site regulates neuronal growth. Mol Biol Cell 2006;17:2696-706
  • Primiano T, Baig M, Maliyekkel A, et al. Identification of potential anticancer drug targets through the selection of growth-inhibitory genetic suppressor elements. Cancer Cell 2003;4:41-53. Erratum in: Cancer Cell 2003;4:415
  • Gelman MS, Ye XK, Stull R, et al. Identification of cell surface and secreted proteins essential for tumor cell survival using a genetic suppressor element screen. Oncogene 2004;23:8158-70
  • Arlt MJ, Novak-Hofer I, Gast D, et al. Efficient inhibition of intra-peritoneal tumor growth and dissemination of human ovarian carcinoma cells in nude mice by anti-L1-cell adhesion molecule monoclonal antibody treatment. Cancer Res 2006;66:936-43
  • Novak-Hofer I. The L1 cell adhesion molecule as a target for radioimmunotherapy. Cancer Biother Radiopharm 2007;2:175-84
  • Knogler K, Grünberg J, Zimmermann K, et al. Copper-67 radioimmunotherapy and growth inhibition by anti-L1-cell adhesion molecule monoclonal antibodies in a therapy model of ovarian cancer metastasis. Clin Cancer Res 2007;13:603-11
  • Silletti S, Yebra M, Perez B, et al. Extracellular signal-regulated kinase (ERK)-dependent gene expression contributes to L1 cell adhesion molecule-dependent motility and invasion. J Biol Chem 2004;279:28880-8
  • Gast D, Riedle S, Issa Y, et al. The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies. Oncogene 2008;27:1281-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.