58
Views
15
CrossRef citations to date
0
Altmetric
Review

Current and future pharmacological intervention for diabetic retinopathy

&
Pages 441-455 | Published online: 10 May 2005

Bibliography

  • COWIE C, EBERHARDT ME: Diabetes 1996 American Diabetes Association Vital Statistics Alexandria, VA, USA (1996).
  • D'AMICO D: The management of diabetic eye disease. N EngL J. Med. (1994) 331:95–106.
  • NATIONAL SOCIETY TO PREVENT BLINDNESS: Vision problems in the US: data analysis, definitions, data sources, detailed data tables, analyses, interpretation. New York, USA (1980).
  • SPEISER P, GITTELSOHN A. PATZ A: Studies on diabetic retinopathy, III: influence of diabetes on intramural pericytes. Arch. OphthalmoL (1968) 80:332–337.
  • ANSARI N, ZHANG W, FULEP E, MANSOUR A: Prevention of pericyte loss by trolox in diabetic rat retina. J. ToxicoL Environ. Health (1998) 54:467–475.
  • PAGET C, LECOMTE M, RUGGIERO D et al.: Modification of enzymatic antioxidants in retinal microvascular cells by glucose or advanced glycation end products. Free Radic. Biol. Med. (1998) 25:121–129.
  • ANTONELLI-ORLIDGE A, SMITH S, D'AMORE P: Influence of pericytes on capillary endothelial cell growth. Am. Rev. Respir. Dis. (1989) 140:1129–1131.
  • CIULLA T, HARRIS A, LATKANY P et al.: Ocular perfusion abnormalities in diabetes. Acta Ophthalmol. Scand. (2002) 80:468–477.
  • AIELLO L, AVERY R, ARRIGG P et al.: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N EngL J. Med. (1994) 331:1480–1487.
  • KUBAWARA T, COGAN D: Retinal vascular patterns, VI: mural cells of the retinal capillaries. Arch. OphthalmoL (1962) 69:492–502.
  • SIMS D: The pericyte - a review. Tissue Cell (1986) 18:153–174.
  • FOLKMAN J: Angiogenesis: inhibition and control. Ann. NY Acad. Sci. (1982) 401:212–227.
  • KLEIN R, KLEIN B, MOSS S et al.: The Wisconsin epidemiology study of diabetic retinopathy. Four-year incidence and progression of diabetic retinopathy when age at diagnosis is 30 or more years. Arch. OphthalmoL (1989) 107:244–249.
  • SANCHEZ-THORIN J: The epidemiology of diabetes mellitus and diabetic retinopathy. Intl. OphthalmoL Clin. (1998) 38(2):11–18.
  • THE DIABETES CONTROL AND COMPLICATIONS TRIAL RESEARCH GROUP: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N EngL J. Med. (1993) 329:977–986.
  • ••This study showed that tight glycaemiccontrol prevented diabetic retinopathy progression in Type I diabetics.
  • UK PROSPECTIVE DIABETES STUDY GROUP: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes. Lancet (1998) 352: 837–853.
  • ••This study showed that tight glycaemiccontrol prevented diabetic retinopathy progression in Type II diabetics.
  • EPIDEMIOLOGY OF DIABETES INTERVENTIONS AND COMPLICATIONS STUDY GROUP: Effect of intensive therapy on the microvascular complications of Type 1 diabetes mellitus. JAMA (2002) 287:2563–2569.
  • UK PROSPECTIVE DIABETES STUDY GROUP: Tight blood pressure control and risk of macrovascular and microvascular complications in Type 2 diabetes: UKPDS 38. Br. Med. J. (1998) 317:703–713.
  • ORCHARD T, FORREST K, KULLER L et al.: Lipid and blood pressure treatment goals for Type 1 diabetes: 10-year incidence data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diab. Care (2001) 24:1053–1059.
  • LYONS T, JENKINS A, ZHENG D et al.:Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Invest. OphthalmoL Vi,s. Sci. (2004) 45:910–918.
  • DIABETIC RETINOPATHY STUDY RESEARCH GROUP: Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of diabetic retinopathy study (DRS) findings. DRS Report Number 8. Ophthalmology (1981) 88:583–600.
  • ••This study showed that panretinal laserphotocoagulation significantly reduced some complications of diabetic neovascularisation.
  • EARLY TREATMENT DIABETIC RETINOPATHY STUDY RESEARCH GROUP: Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report number 1. Arch. OphthalmoL (1985) 103:1796–1806.
  • ••This study showed that focal laserphotocoagulation significantly reduced some complications of diabetic ME.
  • EARLY TREATMENT DIABETIC RETINOPATHY STUDY RESEARCH GROUP: Early photocoagulation for diabetic retinopathy. ETDRS Report number 9. Ophthalmology (1991) 98:766–785.
  • VINE k The efficacy of additional argon laser photocoagulation for persistent, severe proliferative diabetic retinopathy. Ophthalmology (1985) 92:1532–1537.
  • GABBAY K: Hyperglycemia, polyol metabolism, and complications of diabetes mellitus. Ann. Rev. Med. (1975) 26:521–535.
  • AKAGI Y, YAJIMA Y, KADOR P et al.: Localization of aldose reductase in the human eye. Diabetes (1984) 33:562–566.
  • ASNAGHI V GERHARDINGER C, HOEHN T et al.: A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes (2003) 52:506–511.
  • SATO S, SECCHI E, LIZAK M et al.: Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells. Invest. OphthalmoL Vis. Sci. (1999) 40:697–704.
  • DEL MONTE M, RABBANI R, DIAZ T et al.: Sorbitol, myo-inositol, and rod outer segment phagocytosis in cultured hRPE cells exposed to glucose. In vitro model of myo-inositol depletion hypothesis of diabetic complications. Diabetes (1991) 40:1335–1345.
  • LI W, TANG L, ZHOU Q et al.: DNA-synthesis regulation and correlation with inositol trisphosphate levels in cultured bovine retinal capillary pericytes. Exp. Eye Res. (1989) 49:677–683.
  • LI W, ZHOU Q, QIN M et al.: Reduced absolute rate of myo-inositol biosynthesis of cultured bovine retinal capillary pericytes in high glucose. Exp. Eye Res. (1991) 52:569–573.
  • SORBINIL RETINOPATHY TRIAL RESEARCH GROUP: A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Arch. Ophthalmol (1990) 108:1234–1244.
  • TROMP A, HOOYMANS J, BARENDSEN B, VAN DOORMAAL JJ: The effects of an aldose reductase inhibitor on the progression of diabetic retinopathy. Doc. Ophthalmol (1991) 78: 153–159.
  • ARAUZ-PACHECO C, RAMIREZ L, PRUNEDA L et al.: The effect of the aldose reductase inhibitor, ponalrestat, on the progression of diabetic retinopathy. J. Diabetes Complicat. (1992) 6:131–137.
  • VAN GERVEN J, BOOT J, LEMKES H, VAN BEST J: Effects of aldose reductase inhibition with tolrestat on diabetic retinopathy in a six months double blind trial. Doc. Ophthalmol. (1994) 87:355–365.
  • STEVENS M, HENRY D, THOMAS T et al.: Aldose reductase gene expression and osmotic dysregulation in cultured human retinal pigment epithelial cells. Am. J. Physiol (1993) 265:E428–E438.
  • OBROSOVA I, MINCHENKO A, VASUPURAM R et al.: Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes (2003) 52:864–871.
  • HAMADA Y, NAKUMURA J, NARUSE K et al.: Epalrestat, an aldose reductase inhibitor, reduces the levels of Nepsilon-(carboxymethyfilysine protein adducts and their precursors in erythrocytes from diabetic patients. Diab. Care (2000) 23:1539–1544.
  • CUSICK M, CHEW E, FERRIS Fl et al.:Effects of aldose reductase inhibitors and galactose withdrawal on fluorescein angiographic lesions in galactose-fed dogs. Arch. Ophthalmol. (2003) 121:1745–1751.
  • NISHIKAWA T, EDELSTEIN D, BROWNLEE M: The missing link: a single unifying mechanism for diabetic complications. Kidney Int. (2000) 58(Suppl 77):526–530.
  • ENGERMAN R, KERN T, LARSON M: Nerve conduction and aldose reductase inhibition during 5 years of diabetes or galactosemia in dogs. Diabetologia (1994) 37:141–144.
  • DAGHER Z, PARK Y, ASNAGHI V et al.:Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes (2004) 53:2404–2411.
  • BROWNLEE M, VLASSARA H, CERAMI A: Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann. Intern. Med. (1984) 101:527–537.
  • FREEDMAN B, WUERTH J, CARTWRIGHT K et al.: Design and baseline characteristics for the aminoguanidine clinical trial in overt Type 2 diabetic nephropathy (ACTION II). Control Clin. Trials (1999) 20:493–510.
  • SCHMIDT A, YAN S, WAUTIER J-L, STERN D: Activation of receptor for advanced glycation end products. A mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ. Res. (1999) 84:489–497.
  • SINGH R, BARDEN A, MORI T, BEILIN L: Advanced glycation end-products: a review. Diabetologia (2001) 44:129–146.
  • MAMPUTU J, RENIER G: Advanced glycation end-products increase monocyte adhesion to retinal endothelial cells through vascular endothelial growth factor-induced ICAM-1 expression: inhibitory effect of antioxidants. J. Leukocyte Biol. (2004) 75:1062–1069.
  • HAMMES H, MARTIN S, FEDERLIN K et al.: Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc. Natl Acad. Sci. USA (1991) 88:11555–11558.
  • KOWLURU R, ENGERMAN R, KERN T: Abnormalities of retinal metabolism in diabetes or experimental galactosemia, VIII: prevention by aminoguanidine. Curr. Eye Res. (2000) 21:814–819.
  • KERN T, ENGERMAN R: Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes (2001) 50:1636–1642.
  • BOLTON W, CATTRAN D, WILLIAMS M et al.: Randomized trial of an inhibitor of advanced glycation end products in diabetic nephropathy. Am. J. Nephrol. (2004) 24:32–40.
  • GIUGLIANO D, CERIELLO A, PAOLISSO G: Oxidative stress and diabetic vascular complications. Diabetes Care (1996) 19:257–267.
  • NISHIKAWA T, EDELSTEIN D, DU X et al.: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature (2000) 404:787–790.
  • INAGAKI Y, YAMAGISHI S, OKAMOTO T et al.: Pigment epithelium-derived factor prevents advanced glycation end products-induced monocyte chemoattractant protein-1 production in microvascular endothelial cells by suppressing intracellular reactive oxygen species generation. Diabetologia (2003) 46:284–287.
  • KUROKI M, VOEST E, AMANO S et al.: Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J. Clin. Invest. (1996) 98:1667–1675.
  • BURSELL S, CLERMONT A, AIELLO L et al.: High dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with Type I diabetes. Diabetes Care (1999) 22: 1245–1251.
  • BRIGNARDELLO E, BELTRAMO E, MOLINATTI P et al.: Dehydroepiandrosterone protects bovine retinal capillary pericytes against glucose toxicity. J. Endocrinol (1998) 158: 21–26.
  • KUNISAKI M, BURSELL S, CLERMONT A et al.: Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. Am. j Physiol (1995) 269:E239–E246.
  • GEY K: The antioxidant hypothesis of cardiovascular disease: epidemiology and mechanisms. Biochem. Soc. Trans. (1990) 18:1041–1045.
  • HOOGWERF B, YOUNG J: The HOPE study. Ramipril lowered cardiovascular risk, but vitamin E did not. Cleve. Clin. J. Med. (2000) 67:287–293.
  • PRUTHI S, ALLISON T, HENSRUD D: Vitamin E supplementation in the prevention of coronary heart disease. Mayo Clin. Proc. (2001) 76:1131–1136.
  • MILLEN A, GRUBER M, KLEIN R et al.: Relations of serum ascorbic acid and alpha-tocopherol to diabetic retinopathy in the Third National Health and Nutrition Examination Survey. Am. J. Epidemiol. (2003) 158:225–233.
  • OGURA Y, KIRYU J, TAKAHASHI K et al.: Visual improvement in diabetic macular edema by hyperbaric oxygen treatment. Nippon Ganka Gakkai Zasshi (1988) 92:1456–1460.
  • KROTT R, HELLER R, AINSENBREY S et al.: Adjunctive hyperbaric oxygenation in macular edema of vascular origin. Undersea Hyperb. Med. (2000) 27:195–204.
  • HARRIS A, AREND O, DANIS R et al.: Hyperoxia improves contrast sensitivity in early diabetic retinopathy. Br. J. OphthalmoL (1996) 80: 209–213.
  • NGUYEN Q, SHAH S, ANDEN E et al.: Supplemental oxygen improves diabetic macular edema: a pilot study. Invest. OphthalmoL Vis. Sci. (2004) 45:617–624.
  • •This recent study suggested a novel approach to treating ME with supplemental oxygen.
  • MILLER J, ADAMIS A, AIELLO L: Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diab. Metab. Rev. (1997) 13:37–50.
  • ISHIDA S, USUI T, YAMASHIRO K et al.: VEGF164 is proinflammatory in the diabetic retina. Invest. OphthalmoL Vis. (2003) 44:2155–2162.
  • ADAMIS A, SHIMA D, YEO T et al.: Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem. Biophys. Res. Commun. (1993) 193:631–638.
  • SIMORRE-PINATEL V, GUERRIN M, CHOLLET P et al.: Vasculotropin-VEGF stimulates retinal capillary endothelial cells through an autocrine pathway. Invest. OphthalmoL Vis. Sci. (1994) 35:3393–3400.
  • ADAMIS A, MILLER J, BERNAL M et al.: Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. OphthalmoL (1994) 118: 445–450.
  • PEER J, FOLBERG R, ITIN A et al.: Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy. Br. J. OphthalmoL (1996) 80:241–245.
  • MALECAZE F, CLAMENS S, SIMORRE-PINATEL V et al.: Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch. OphthalmoL (1994) 112:1476–1482.
  • AIELLO L, BURSELL S-E, CLERMONT A et al.: Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective 0-isoform-selective inhibitor. Diabetes (1997) 46:1473–1480.
  • MELDER R, KOENIG G, WITWER B et al.: During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat. Med. (1996) 2:992–997.
  • DETMAR M, BROWN L, SCHON M et al.: Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J. Invest. DermatoL (1998) 111:1–6.
  • LU M, PEREZ L, MAN et al.: VEGF increases retinal vascular ICAM-1 expression in vivo. Invest. OphthalmoL Vis. Sci. (1999) 40:1808–1812.
  • MIYAMOTO K, KHOSROF S, BURSELL S et al.: Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am. J. PathoL (2000) 156:1733–1739.
  • PRESTA L, CHEN H, O'CONNOR S et al.: Humanization of anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. (1997) 57:4593–4599.
  • ADAMIS A, SHIMA D, TOLENTINO M et al.: Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch. OphthalmoL (1996) 114:66–71.
  • INOGUCHI T, BATTAN R, HANDLER E et al.: Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc. Natl. Acad. Sci. USA (1991) 89:11059–11063.
  • XIA P, INOGUCHI T, KERN TS et al.: Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes (1994) 43:1122–1129.
  • KOYA D, KING G: Protein kinase C activation and the development of diabetic complications. Diabetes (1998) 47:859–866.
  • TAHER M, GARCIA J, NATARAJAN V: Hydroperoxide-induced diacylglycerol formation and protein kinase C activation in vascular endothelial cells. Arch. Biochem. Biophys. (1993) 303:260–266.
  • NAGPALA P, MALIK A, VUONG P, LUM H: Protein kinase C bl overexpression augments phorbol ester-induced increase in endothelial permeability. J. Cell PhysioL (1996) 166:249–255.
  • HUANG Q, YUAN Y: Interaction of PKC and NOS in signal transduction of microvascular hyperpermeability. Am. J. PhysioL (1997) 273:H2442–H2451.
  • PARK J-Y, TAKAHARA N, GABRIELE A et al.: Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes (2000) 49:1239–1248.
  • XIA P, AIELLO L, ISHII H et al.: Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J. Clin. Invest. (1996) 98:2018–2026.
  • WILLIAMS B, GALLAGHER B, PATEL H et al.: Glucose induced protein kinase C activation regulates vascular permeability factor (VEGF) mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes (1997) 46: 1497–1503.
  • CHIBBER R, BEN-MAHMUD B, COPPINI D et al.: Activity of core 2 GlcNAc (B1,6) transferase is higher in polymorphonuclear leukocytes from diabetic patients compared with age-matched control subjects. Diabetes (2000):1724–1730.
  • CHIBBER R, BEN-MAHMUD B, MANN G et al.: Protein kinase C 02-dependent phosphorylation of core 2 GlcNAc-T promotes leukocyte endothelial cell adhesion. Diabetes (2003) 52:1519–1527.
  • TAKAHARA N, CLERMONT A, KAGOKAWA H et al.: Transgenic mice overexpressing protein kinase C isoform mimicked the early changes of diabetes (Abstract). Diabetes (1999) 48:A138.
  • SEO M, KWAK N, OZAKI H et al.: Dramatic inhibition of retinal and choroidal neovascularization by oral administration of a kinase inhibitor. Am. J. PathoL (1999) 154:1743–1753.
  • FABBRO D, RUETZ S, BODIS S et al.: PKC412 - a protein kinase inhibitor with a broad therapeutic potential. Anti-Cancer Drug Des. (2000) 15:17–28.
  • PROPPER D, MCDONALD A, MAN P et al.: Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. Clin. OncoL (2001) 19:1485–1492.
  • CAMPOCHIARO P, C99-PKC412-003 STUDY GROUP: Reduction of diabetic macular edema by oral administration of the 451 Expert Op/n. Emerging Drugs (2005) 10(2) kinase inhibitor PKC412. Invest. Ophthalmol. Vis. Sci. (2004) 45:922–931.
  • JIROUSEK M, GILLIG J, GONZALEZ C et al.: (S)-13-[(climethylamino)methy1]-10,11,14,15-tetrahydro-4,9:16,21-dimetheno-1H,13H- dibenzo [e,k] pyrrolo [3,4- h] [1,4,13]oxadiazacyclohexadecene-1,3(2H)-dione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase C. J. Med. Chem. (1996) 39:2664–2671.
  • ISHII H, JIROUSEK M, KOYA D et al.:Amelioration of vascular dysfunctions in diabetic rats by an oral PKC inhibitor. Science (1996) 272:728–731.
  • NONAKA A, KIRYU J, TSUJIKAWA A et al.: PKC-beta inhibitor (LY333531) attenuates leukocyte entrapment in retinal microcirculation of diabetic rats. Invest. Ophthalmol. Vis. Sci. (2000) 41:2702–2706.
  • ABIKO T, ABIKO A, CLERMONT A et al.: Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes (2003) 52:829–837.
  • DANIS R, BINGAIVIAN D, JIROUSEK M, YANG Y: Inhibition of intraocular neovascularization caused by retinal ischemia in pigs by PKC inhibition with LY333531. Invest. Ophthalmol. Vis. Sci. (1998) 39:171–179.
  • AIELLO L, BURSELL S, DEVRIES T et al.: Protein kinase C selective inhibitor LY333531 ameliorates abnormal retinal hemodynamics in patients with diabetes (Abstract). Diabetes (1999) 48:A19.
  • MORI K, DUH E, GEHLBACK P et al.: Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J. Cell Invest. (2001) 188:253–263.
  • DAWSON D, VOLPERT O, GILLIS P et al.: Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science (1999) 285:245–248.
  • STELLMACH V, CRAWFORD S, ZHOU W, BOUCK N: Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor. Proc. Natl. Acad. Sci. USA (2001) 98:2593–2597.
  • GAO G, LI Y, ZHANG D et al.: Unbalanced expression of VEFG and PEDF in ischemia induced retinal neovascularization. FEBS Lett. (2001) 489:270–276.
  • OHNO-MATSUI K, MORITA I, TOMBRAN-TINK J et al.: Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J. Cell Physiol. (2001) 189:323–333.
  • DUH E, YANG H, SUZUMA I et al.: Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Invest. Ophthalmol. Vis. Sci. (2002) 43:821–829.
  • DUH E, YANG H, HALLER J et al.: Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am. J. Ophthalmol. (2004) 137:668–674.
  • SPRANGER J, OSTERHOFF M, REIMANN M et al.: Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes (2001) 50:2641–2645.
  • OGATA N, NISHIKAWA T, NISHIMURA T et al.: Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am. J. Ophthalmol. (2002) 134:348–353.
  • MALLET B, VIALETTES B, HAROCHE S et al.: Stabilization of severe proliferative diabetic retinopathy by long-term treatment with SMS 201-995. Diabetes MetaboL (1992) 8:438–444.
  • GRANT M, MAMES R, FITZGERALD C et al.: The efficacy of octreotide in the therapy of severe nonproliferative and early proliferative diabetic retinopathy. Diabetes Care (2000) 23:504–509.
  • POULSEN J: The Houssay phenomenon in man: recovery from retinopathy in a case of diabetes with Simmond's disease. Diabetes (1953) 2:7–12.
  • GRANT M, MAMES R, FITZGERALD C et al.: Insulin-like growth factor 1 acts as an angiogenic agent in rabbit cornea and retina: comparative studies with basic fibroblast growth factor. Diabetologia (1993) 36:282–291.
  • SMITH L, KOPCHICK J, CHEN W et al.: Essential role of growth hormone in ischemia-induced retinal neovascularization. Science (1997) 276:1706–1709.
  • KONDO T, VICENT D, SUZUMA K et al.: Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization. Clin. Invest. (2003) 111:1835–1842.
  • SIMO R, LECUBE A, SARAROLS L et al.: Deficit of somatostatin-like immunoreactivity in the vitreous fluid of diabetic patients: possible role in the development of proliferative diabetic retinopathy. Diab. Care (2002) 25:2282–2286.
  • MCCOMBE M, LIGHTMAN S, ECKLAND D et al.: Effect of a long-acting somatostatin analogue (BIM23014) on proliferative diabetic retinopathy: a pilot study. Eye (1991) 5:569–575.
  • GROWTH HORMONE ANTAGONIST For PROLIFERATIVE DIABETIC RETINOPATHY STUDY GROUP: The effect of a growth hormone receptor antagonist drug on proliferative diabetic retinopathy. Ophthalmology (2001) 108:2266–2272.
  • CHEW E, KLEIN M, FERRIS Fl et al.: Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. ETDRS report 22. Arch. Ophthalmol. (1996) 114:1079–1084.
  • KLEIN B, MOSS S, KLEIN R, SURAWICZ T: The Wisconsin Epidemiologic Study of Diabetic Retinopathy, XII: relationship of serum cholesterol to retinopathy and hard exudates. Ophthalmology (1991) 98:1261–1265.
  • FONG D, SEGAL P, MYERS F et al.: Subretinal fibrosis in diabetic macular edema. ETDRS report 23. Arch. Ophthalmol. (1997) 115:873–877.
  • CUSICK M, CHEW E, CHAN C-C et al.: Histopathology and regression of retinal hard exudates in diabetic retinopathy after reduction of elevated serum lipid levels. Ophthalmology (2003) 110:2126–2133.
  • GORDON B, CHANG S, KAVANAGH M et al.: The effect of lipid lowering on diabetic retinopathy. Am. J. Ophthalmol. (1991) 112:385–391.
  • MIYAHARA S, KIRYU J, YAMASHIRO K et al.: Simvastatin inhibits leukocyte accumulation and vascular permeability in the retinas of rats with streptozotocin-induced diabetes. Am. J. Pathol. (2004) 164:1697–1706.
  • GUPTA A. GUPTA S., BHANSALI A: Lipid-lowering drug atorvastatin as an adjunct in the management of diabetic macular edema. Am. J. Ophthalmol. (2004) 137:675–682.
  • •This recent study lends further support to the growing belief that statin drugs might help with the management of DR.
  • SEN K, MISRA A, KUMAR A, PANDEY R: Simvastatin retards progression of retinopathy in diabetic patients with hypercholesterolemia. Diab. Res. Clin. Pract. (2002) 56:1–11.
  • MASFERRER J, LEAHY K, KOKI A et al.: Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. (2000) 60:1306–1311.
  • LEAHY K, ORNBERG R, WANG Y et al.: Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer Res. (2002) 62:625–631.
  • TSUJII M, KAWANO S, TSUJII S et al.: Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell (1998) 93:705–716.
  • JONES J, WANG H, PESKAR B et al.: Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat. Med. (1999) 5:1418–1423.
  • DEGI R, THORE C, BARI F et al.: Ischemia increases prostaglandin H synthase-2 levels in retina and visual cortex in piglets. Graefes Arch. Clin. Exp. Ophthalmol. (2001) 239:59–65.
  • SENNLAUB F, VALAMANESH F, VAZQUEZ-TELLO A et al.: Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy. Circulation (2003) 108:198–204.
  • TOLENTINO M, ADAMIS A: Angiogenic factors in the development of diabetic iris neovascularization and retinopathy. Int. Ophthalmol. Clin. (1998) 38:77–94.
  • CHATURVEDI N, SJOLIE A-K, STEPHENSON J et al.: EUCLID Study Group. Effect of lisinopril on progression of retinopathy in normotensive people with Type 1 diabetes. Lancet (1998) 351: 28–31.
  • UK PROSPECTIVE DIABETES STUDY GROUP: Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in Type 2 diabetes: UKPDS 39. Br. Med. J. (1998) 317:713–772.
  • WILLIAMS B, BAKER A, GALLAGHER B, LODWICK D: Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension (1995) 25: 913–917.
  • OTANI A, TAKAGI H, SUZUMA K, HONDA Y: Angiotensin II potentiates vascular endothelial growth factor-induced angiogenic activity in retinal microcapillary endothelial cells. Circ. Res. (1998) 82:619–628.
  • MORAVSKI C, KELLY D, COOPER M et al.: Retinal neovascularization is prevented by blockade of the renin-angiotensin system. Hypertension (2000) 36:1099–1104.
  • GILBERT R, KELLY D, COX A et al.: Angiotensin converting enzyme inhibition reduces retinal overexpression of vascular endothelial growth factor and hyperpermeability in experimental diabetes. Diabetologia (2000) 43:1360–1367.
  • TIKELLIS C, COOPER M, TWIGG S et al.: Connective tissue growth factor is up-regulated in the diabetic retina: amelioration by angiotensin-converting enzyme inhibition. Endocrinology (2004) 145:860–866.
  • ZHANG J-Z, GAOL, WIDNESS M et al.: Captopril inhibits glucose accumulation in retinal cells in diabetes. Invest. Ophthalmol. Vis. Sci. (2003) 44:4001–4005.
  • HEART OUTCOMES PREVENTION EVALUATION (HOPE) STUDY INVESTIGATORS: Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet (2000) 355:253–259.
  • ESTACIO R, JEFFERS B, GIFFORD N, SCHRIER R: Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and Type 2 diabetes. Diabetes Care (2000) 23:B54–B64.
  • NAGISA Y, SHINTANI A, NAKAGAWA S et al.: The angiotensin II receptor antagonist candesartan cilexetil (TCV-116) ameliorates retinal disorders in rats. Diabetologia (2001) 44:883–888.
  • KNUDSEN S, BEK T, POULSEN P et al.: Effects of losartan on diabetic maculopathy in Type 2 diabetic patients: a randomized, double-masked study. J. Int. Med. (2003) 254:147–158.
  • JOUSSEN A, POULAKI V, MITSIADES N et al.: Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB (2002) 16:438–440.
  • THE DAMAD STUDY GROUP: Effect of aspirin alone and aspirin plus dipyridamole in early diabetic retinopathy. A multicenter randomized controlled clinical trial. Diabetes (1989) 38:491–498.
  • BROUTY-BOYN D, ZETTER B: Inhibition of cell motility by interferon. Science (1980) 208:516–518.
  • SIDKY Y, BORDEN E: Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res. (1987) 47:5151–5161.
  • WHITE C, SONDHEIMER H, CROUCH E et al.: Treatment of pulmonary hemangiomatosis with recombinant interferon a-2a. N EngL J. Med. (1989) 320:1197–1200.
  • EZEKOWITZ R, MULLIKEN J, FOLKMAN J: Interferon a-2a therapy for life-threatening hemangiomas of infancy. N Engl. J. Med. (1992) 326:1456–1463.
  • FUNG W: Interferon a 2a for treatment of age-related macular degeneration. Am. J. Ophthalmol. (1991) 112:349–350.
  • ENGLER C, SANDER B, VILLUMSEN J, LUND-ANDERSON H: Interferon a 2a modifies the course of subfoveal and juxtafoveal choroidal neovascularization. Br. J. Ophthalmol. (1994) 78:749–753.
  • CHAN C, KEMPIN S, NOBLES, PALMER G: The treatment of choroidal neovascular membranes by a interferon. An efficacy and toxicity study. Ophthalmology (1994) 101:289–300.
  • MILLER J, STINSON W, FOLKMAN J: Regression of experimental iris neovascularization with systemic a-interferon. Ophthalmology (1993) 100:9–14.
  • JAAKKOLA A, ANTTILA P, INNONEN I: Interferon a-2a in the treatment of exudative senile macular degeneration. Acta. Ophthalmol. (1994) 72:545–549.
  • THOMAS M, IBANEZ H: Interferon a-2a in the treatment of subfoveal choroidal neovascularization. Am. J. Ophthalmol. (1993) 115:563–568.
  • THOELEN A, MENOZZI M, HUBER C, MESSMER E: Treatment of choroidal neovascularization in age-related macular degeneration with interferon a-2a: a short term, nonrandomized pilot study. Ger. J. Ophthalmol. (1995) 4:137–143.
  • PHARMACOLOGICAL THERAPY FOR MACULAR DEGENERATION STUDY GROUP: Interferon a-2a is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration. Arch. Ophthalmol (1997) 115:865–872.
  • LEIBOVITCH I, LOEWENSTEIN A, ALSTER Y et al.: Interferon a-2a for proliferative diabetic retinopathy after complete laser panretinal photocoagulation treatment. Ophthalmic Surg. Lasers Imaging (2004) 35:16–22.
  • MIYAMOTO K, KHOSROF S, BURSELL S et al.: Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc. Natl Acad. Sci. USA (1999) 96:10836–10841.
  • BAROUCH F, MIYAMOTO K, ALLPORT J et al.: Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest. Ophthalmol lTzs. Sci. (2000) 41:1153–1158.
  • MIYAMOTO K, HIROSHIBA N, TSUJIKAWA A et al.: In vivo demonstration of increased leukocyte entrapment in retinal microcirculation of diabetic rats. Invest. Ophthalmol. Vis. Sci. (1998) 39:2190–2194.
  • JOUSSEN A, MURATA T, TSUJIKAWAA et al.: Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am. J. PathoL (2001) 158:147–152.
  • XU Q, QAUM T, ADAMIS A: Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Invest. Ophthalmol. Vis. Sci. (2001) 42:789–794.
  • ADAMIS A: Is diabetic retinopathy an inflammatory disease? Br. J. Ophthalmol (2002) 86:363–366.
  • FRIEDLANDER M, THEESFELD C, SUGITA M et al.: Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc. Natl Acad. Sci. USA (1996) 93:9764–9769.
  • HAMMES H, BROWNLEE M, JONCZYK A et al.: Subcutaneous injection of a cyclic peptide antagonist of neovascularization. Nat. Med. (1996) 2:529–533.
  • WOESNNER J: The matrix metalloproteinase family. Academy Press, San Diego, USA (1998):1–14.
  • STEEN B, SEJERSEN S, BERGLIN L et al.: Matrix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes. Invest. Ophthalmol Vis. Sci. (1998) 39:2194–2200.
  • NODA K, SUSUMU I, INOUE M et al.: Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest. Ophthalmol lTzs. Sci. (2003) 44:2163–2170.
  • JIN M, KASHIWAGI K, IIZUKA Y et al.: Matrix metalloproteinases in human diabetic and nondiabetic vitreous. Retina (2001) 21:28–33.
  • STERNLICHT M, WERB Z: How matrix metalloproteinases regulate cell behavior. Ann. Rev. Cell Dev. Biol. (2001)463–516
  • KINOSHITA T, SATO H, OKADA A et al.: TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J. Biol. Chem. (1998) 273:16098–16103.
  • BUTLER G, BUTLER M, ATKINSON S et al.: The TIMP-2 membrane Type 1 metalloproteinase 'receptor' regulates the concentration and efficient activation of progelatinase A: a kinetic study. J. Biol. Chem. (1998) 273:871–880.
  • OZERDEM U, MACH-HOFACRE B, KEEFE K et al.: The effect of prinomastat (AG3340), a synthetic inhibitor of matrix metalloproteinases, on posttraumatic proliferative vitreoretinopathy. Ophthalmic Res. (2001) 33:20–23.
  • OZERDEM U, MACH-HOFACRE B, VARKI N et al.: The effect of prinomastat (AG2240), a synthetic inhibitor of matrix metalloproteinases, on uveal melanoma rabbit model. Curr. Eye Res. (2002) 24:86–91.
  • CHENG L, RIVERO M, GARCIA G et al.: Evaluation of intraocular pharmacokinetics and toxicity of prinomastat (AG3340) in the rabbit. J. Ocular Pharm. Ther. (2001) 17:295–304.
  • ZHANG K, MCDERMOTT C, BREKKEN J et al.: Ocular bioavailability and pharmacokinetics of AG3340, a potent MMP inhibitor with antiangiogenic activity, following oral administration. Proc. NY Acad. Sci. (1998).
  • COLLIER M, YUEN B, BANSAL S et al.: Phase I study of the matrix metalloprotease inhibitor AG3340 given in a single dose to healthy volunteers. Proc. Am. Assoc. Cancer Res. (1997) 38:A1491.
  • GARCIA C, BARTSCH D, RIVERO M et al.: Efficacy of prinomastat (AG3340), a matrix metalloprotease inhibitor, in treatment of retinal neovascularization. Curr. Eye Res. (2002) 24:33–38.
  • CHALLA J, GILLIES M, PENFOLD P et al.: Exudative macular degeneration and intravitreal triamcinolone: 18 month follow up. Aust. N Z. J. Ophthalmol (1998) 26:277–281.
  • ISHIBASHI T, MIKI K, SORGENTE N et al.: Effects of intravitreal administration of steroids on experimental subretinal neovascularization in the subhuman primate. Arch. Ophthalmol (1985) 103:708–711.
  • PENFOLD P, GYORY J, HUNYOR A, BILLSON F: Exudative macular degeneration and intravitreal triamcinolone. A pilot study. Aust. N Zeal. J. Ophthalmol (1995) 23:293–298.
  • WANG Y, FRIEDRICHS U, EICHLER W et al.: Inhibitory effects of triamcinolone acetonide on bEGF-induced migration and tube formation in choroidal microvascular endothelial cells. Graefis Arch. Clin. Exp. Ophthalmol (2002) 240:42–48.
  • FOLKMAN J, INGBER D: Angiostatic steroids. Method of discovery and mechanism of action. Ann. Surg (1987) 206:374–383.
  • PENFOLD P, WEN L, MADIGAN M et al.: Modulation of permeability and adhesion molecule expression by human choroidal endothelial cells. Invest. Ophthalmol. Vis. Sci. (2002) 43:3125–3130.
  • PENFOLD P, WONG J, GYORY J et al.: Effects of triamcinolone acetonide on microglial morphology and quantitative expression of MHC-II in exudative age-related macular degeneration. Clin. Exp. Ophthalmol (2001) 29:188–192.
  • PENFOLD P, WEN L, MADIGAN M et al.: Triamcinolone acetonide modulates permeability and intercellular adhesion molecule-1 ICAM-1 expression of the ECV304 cell line: implications for macular degeneration. Exp. Immunol (2000) 121:458–465.
  • PENN J, RAJARATNAM V, COLLIER R, CLARK A: The effect of an angiostatic steroid on neovascularization in a rat model of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. (2001) 42:283–290.
  • DANIS R, BINGAMAN D, YANG Y, LADD L: Inhibition of preretinal and optic nerve head neovascularization in pigs by intravitreal triamcinolone acetonide. Ophthalmology (1996) 103: 2099–2104.
  • JONAS J, HAYLER J, SOFKER A, PANDA-JONES S: Intravitreal injection of crystalline cortisone as adjunctive treatment of proliferative diabetic retinopathy. Am. J. Ophthalmol. (2001) 131:468–471.
  • JONAS J, HAYLER J, SOFKER A et al.: Regression of neovascular iris vessels by intravitreal injection of crystalline cortisone. J. Glaucoma (2001) 10:284–287.
  • JONAS J, SOFKER k Intraocular injection of crystalline cortisone as adjunctive treatment of diabetic macular edema. Am. J. Ophthalmol. (2001) 132:425–427.
  • JONAS J, DEGENRING R: [Intravitreal injection of crystalline triamcinolone acetonide in the treatment of diffuse diabetic macular oedema]. lain. Monatsbl Augenheilkd (2002) 219:429–432.
  • MARTIDIS A, DUKER J, GREENBERG P et al.: Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology (2002) 109:920–927.
  • JONAS J, KREISSIG I, SOFKER A, DEGENRING R: Intravitreal injection of triamcinolone for diffuse diabetic macular edema. Arch. Ophthalmol. (2003) 121:57–61.
  • JONAS J, KREISSIG I, HUGGER P et al.: Intravitreal triamcinolone acetonide for exudative age-related macular degeneration. Br. J. Ophthalmol. (2003) 87:462–468.
  • MASSIN P, AUDREN F, HAOUCHINE B et al.: Intravitreal triamcinolone acetonide for diabetic diffuse macular edema. Preliminary results of a prospective controlled trial. Ophthalmology (2004) 111:218–225.
  • •This is one of the first prospective studies to evaluate the growing tendency to use intravitreal triamcinolone acetonide in the treatment of ME.
  • SPEICHER M, DANIS R, CRISWELL M, PRATT L: Pharmacologic therapy for diabetic retinopathy. Expert Opin. Emerg. Drugs (2003) 8:239–250.
  • KIM N, YU H, YU Y, CHUNG H: Long-term effect of plasmin on the vitreolysis in rabbit eyes. Korean J. Ophthalmol. (2004) 18:35–40.
  • HIKICHI T, YANAGIYA N, KADO M et al.: Posterior vitreous detachment induced by injection of plasmin and sulfur hexafluoride in the rabbit vitreous. Retina (1999) 19:55–58.
  • GANDORFER A, PUTZ E, WELGE-LUSSEN U et al.: Ultrastructure of the vitreoretinal interface following plasmin assisted vitrectomy. Br. J. Ophthalmol. (2001) 85:6–10.
  • GANDORFER A, ROHLEDER M, SETHI C et al.: Posterior vitreous detachment induced by microplasmin. Invest. Ophthalmol. Vis. Sci. (2004) 45:641–647.
  • MEN G, PEYMAN G, GENAIDY M et al.: The role of recombinant lysine-plasminogen and recombinant urokinase and sulfur hexafluoride combination in inducing posterior vitreous detachment. Retina (2004) 24:199–209.
  • TEZEL T, PRIORE L, KAPLAN H: Posterior vitreous detachment with dispase. Retina (1998) 18:7–15.
  • AZZOLINI C, D'ANGELO A, MAESTRANZI G et al.: Intrasurgical plasmin enzyme in diabetic macular edema. Am. J. Ophthalmol. (2004) 138:560–566.
  • •This recent study expanded on the increasing body of evidence that a chemically induced vitreous detachement might help in the treatment of DR.

Websites

  • http://www.eyetk.com/clinical/ clinicalindex.asp. EYETECH PHARMACEUTICALS (2005).
  • http://www.Ophthalmologytimes.com.cn/ articles/ articleDetail.jsp?MAG ARTICLESID=692 48cLANGUAGEID=2. GROVES N: Ruboxistaurin slows central DME, does not halt progression (2005).
  • http://www.clinicaltrials.gov/ct/gui/show/ NCT00090519;jsessionid=400F595E5DD C845218F5C5FAB3FCC2D5?ordet=7.
  • http://www.clinicaltrials.gov/ct/show/ NCT00050479?ordet=87.
  • http://www.atacand.com/index.asp?did=34618caid=320798c11=8c12= 8cmid=.
  • http//:www.controldelivery.com/ PRMay72003.htm;Accessed 10/7/2004. CONTROL DELIVERY SYSTEMS: Analysis of 12-month data from diabetic macular edema clinical trail sponsored by Bausch & Lomb and Control Delivery Systems to be presented at ARVO 2003. Press release (2003).
  • http://www.shareholder.com/agn/ ReleaseDetail.cfm?ReleaseID=123213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.