460
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Emerging drugs for treating skeletal muscle injury and promoting muscle repair

, BSc (Hons) & , PhD
Pages 163-182 | Published online: 16 Feb 2011

Bibliography

  • Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg 2002;84A:822-32
  • Lynch GS, Schertzer JD, Ryall JG. Anabolic agents for improving muscle regeneration and function after injury. Clin Exp Pharmacol Physiol 2008;16:852-8
  • Proske U, Morgan DL, Brockett CL, Identifying athletes at risk of hamstring strains and how to protect them. Clin Exp Pharmacol Physiol 2004;31:46-50
  • Barrie KA, Steinmann SP, Shin AY, Gracilis free muscle transfer for restoration of function after complete brachial plexus avulsion. Neurosurg Focus 2004;16:E8
  • Schoeller T, Wechselberger G, Hussl H, Functional transposition of the latissimus dorsi muscle for biceps reconstruction after upper arm replantation. J Plast Reconstr Aesthet Surg 2007;60:755-9
  • Lien SC, Cederna PS, Kuzon WM Jr. Optimizing skeletal muscle reinnervation with nerve transfer. Hand Clin 2008;24:445-54
  • Choudhury NA, Sakaguchi S, Koyano K, Free radical injury in skeletal muscle ischemia and reperfusion. J Surg Res 1991;51:392-8
  • Petrasek PF, Homer-Vanniasinkam S, Walker PM. Determinants of ischemic injury to skeletal muscle. J Vasc Surg 1994;19:623-31
  • Lazarus B, Messina A, Barker JE, The role of mast cells in ischaemia-reperfusion injury in murine skeletal muscle. J Pathol 2000;191:443-8
  • Tupling R, Green H, Senisterra G, Effects of 4-h ischemia and 1-h reperfusion on rat muscle sarcoplasmic reticulum function. Am J Physiol Endocrinol Metab 2001;281:E867-77
  • Blaisdell FW. The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovasc Surg 2002;10:620-30
  • Carvalho AJ, McKee NH, Green HJ. Metabolic and contractile responses of fast and slow twitch rat skeletal muscles to ischemia and reperfusion. Plast Reconstr Surg 1997;99:163-71
  • Mikos AG, Herring SW, Ochareon P, Engineering complex tissues. Tissue Eng 2006;12:3307-39
  • Pedowitz RA. Tourniquet-induced neuromuscular injury. A recent review of rabbit and clinical experiments. Acta Orthop Scand Suppl 1991;245:1-33
  • Eastlack RK, Groppo ER, Hargens AR, Ischemic-preconditioning does not prevent neuromuscular dysfunction after ischemia-reperfusion injury. J Orthop Res 2004;22:918-23
  • Hammers DW, Merritt EK, Matheny W, Functional deficits and insulin-like growth factor-I gene expression following tourniquet-induced injury of skeletal muscle in young and old rats. J Appl Physiol 2008;105:1274-81
  • Sato K, Li Y, Foster W, Improvement of muscle healing through enhancement of regeneration and prevention of fibrosis. Muscle Nerve 2003;28:365-72
  • Li Y, Foster W, Deasy BM, Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 2004;164:1007-19
  • Plant DR, Colarossi FE, Lynch GS. Notexin causes greater myotoxic damage and slower functional repair in mouse skeletal muscles than bupivacaine. Muscle Nerve 2006;34:577-85
  • Carlson BM, Faulkner JA. The regeneration of skeletal muscle fibers following injury: a review. Med Sci Sports Exerc 1983;15:187-98
  • Grounds MD. Towards understanding muscle regeneration. Pathol Res Pract 1991;187:1-22
  • Grounds MD. Muscle regeneration: molecular aspects and therapeutic implications. Curr Opin Neurol 1999;12:535-43
  • Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 2001;91:534-51
  • Charge SP, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev 2004;84:209-38
  • Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 2005;288:R345-53
  • Beiner JM, Jokl P. Muscle contusion injuries: current treatment options. J Am Acad Orthop Surg 2001;9:227-37
  • Jarvinen TA, Jarvinen TL, Kaariainen M, Muscle injuries: optimising recovery. Best Pract Res Clin Rheumatol 2007;21:317-31
  • Cutlip RG, Baker BA, Hollander M, Injury and adaptive mechanisms in skeletal muscle. J Electromyogr Kinesiol 2009;19:358-72
  • Heiderscheit BC, Sherry MA, Silder A, Hamstring strain injuries: recommendations for diagnosis, rehabilitation, and injury prevention. J Orthop Sports Phys Ther 2010;40:67-81
  • Dennis RG, Kosnik PE II. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 2000;36:327-35
  • Fodor WL. Tissue engineering and cell based therapies, from the bench to the clinic: the potential to replace, repair and regenerate. Reprod Biol Endocrinol 2003;1:102
  • Bach AD, Arkudas A, Tjiawi J, A new approach to tissue engineering of vascularized skeletal muscle. J Cell Mol Med 2006;10:716-26
  • Corsi KA, Schwarz EM, Mooney DJ, Huard J. Regenerative medicine in orthopaedic surgery. J Orthop Res 2007;25:1261-8
  • Pacak CA, Cowan DB. Fabrication of myogenic engineered tissue constructs. J Vis Exp 2009;27pii:1137
  • Atala A. Advances in tissue and organ replacement. Curr Stem Cell Res Ther 2008;3(1):21-31
  • Stern-Straeter J, Bach AD, Stangenberg L, Impact of electrical stimulation on three-dimensional myoblast cultures – a real-time RT-PCR study. J Cell Mol Med 2005;9:883-92
  • Freed LE, Guilak F, Guo XE, Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng 2006;12:3285-305
  • Hutmacher DW, Cool S. Concepts of scaffold-based tissue engineering–the rationale to use solid free-form fabrication techniques. J Cell Mol Med 2007;11:654-69
  • Sherry MA, Best TM. A comparison of 2 rehabilitation programs in the treatment of acute hamstring strains. J Orthop Sports Phys Ther 2004;34:116-25
  • Guillodo Y, Saraux A. Treatment of muscle trauma in sportspeople (from injury on the field to resumption of the sport). Ann Phys Rehabil Med 2009;52:246-55
  • Moore RA, Derry S, Phillips CJ, McQuay HJ. Nonsteroidal anti-inflammatory drugs (NSAIDs), cyxlooxygenase-2 selective inhibitors (coxibs) and gastrointestinal harm: review of clinical trials and clinical practice. BMC Musculoskelet Disord 2006;7:79
  • Buenaventura RM, Datta S, Abdi S, Smith HS. Systematic review of therapeutic lumbar transforaminal epidural steroid injections. Pain Physician 2009;12:233-51
  • Massey T, Derry S, Moore RA, Topical NSAIDs for acute pain in adults. Cochrane Database Syst Rev 2010;6:CD007402
  • Ziltener JL, Leal S, Fournier PE. Non-steroidal anti-inflammatory drugs for athletes: an update. Ann Physical Rehabil Med 2010;53:278-82
  • Thorsson O, Rantanen J, Hurme T, Effects of nonsteroidal anti-inflammatory medication on satellite cell proliferation during muscle regeneration. Am J Sports Med 1998;26:172-6
  • Wright-Carpenter T, Klein P, Schaferhoff P, Treatment of muscle injuries by local administration of autologous conditioned serum: a pilot study on sportsmen with muscle strains. Int J Sports Med 2004;25:588-93
  • Dreyer HC, Blanco CE, Sattler FR, Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve 2006;33:242-53
  • Mackey AL, Kjaer M, Dandanell S, The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol 2007;103:425-31
  • Mikkelsen UR, Langberg H, Helmark IC, Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J Appl Physiol 2009;107:1600-11
  • Spiro AS, Beil FT, Baranowsky A, BMP-7-induced ectopic bone formation and fracture healing is impaired by systemic NSAID application in C57BL/6-mice. J Orthop Res 2010;28:785-91
  • Novak ML, Billich W, Smith SM, COX-2 inhibitor reduces skeletal muscle hypertrophy in mice. Am J Physiol Regul Integr Comp Physiol 2009;296:R1132-9
  • Burd NA, Dickinson JM, Lemoine JK, Effect of a cyclooxygenase-2 inhibitor on postexercise muscle protein synthesis in humans. Am J Physiol Endocrinol Metab 2010;298:E354-61
  • Cohen DB, Kawamura S, Ehteshami JR, Rodeo SA. Indomethacin and celecoxib impair rotator cuff tendon-to-bone healing. Am J Sports Med 2006;34:362-9
  • Dimmen S, Nordsletten L, Engebretsen L, Negative effect of parecoxib on bone mineral during fracture healing in rats. Acta Orthop 2008;79:438-44
  • Boursinos LA, Karachalios T, Poultsides L, Malizos KN. Do steroids, conventional non-steroidal anti-inflammatory drugs and selective Cox-2 inhibitors adversely affect fracture healing? J Musculoskelet Neuronal Interact 2009;9:44-52
  • Paoloni JA, Orchard JW. The use of therapeutic medications for soft-tissue injuries in sports medicine. Med J Aust 2005;183:384-8
  • Mehallo CJ, Drezner JA, Bytomski JR. Practical management: nonsteroidal antiinflammatory drug (NSAID) use in athletic injuries. Clin J Sports Med 2006;16:170-4
  • Feucht CL, Patel DR. Analgesics and anti-inflammatory medications in sports: use and abuse. Pediatr Clin North Am 2010;57:751-74
  • Warden SJ. Cyclo-oxygenase-2 inhibitors: beneficial or detrimental for athletes with acute musculoskeletal injuries? Sports Med 2005;35:271-83
  • Warden SJ. Prophylactic use of NSAIDs by athletes: a risk/benefit assessment. Phys Sportsmed 2010;38:132-8
  • Jones P, Lamdin R. Oral cyclo-oxygenase 2 inhibitors versus other oral analgesics for acute soft tissue injury: systematic review and meta-analysis. Clin Drug Investig 2010;30:419-37
  • Garcia Rodriguez LA, Gonzalez-Perez A. Long-term use of non-steroidal anti-inflammatory drugs and the risk of myocardial infarction in the general population. BMC Medicine 2005;3:17
  • Hernandez-Diaz S, Varas-Lorenzo C, Garcia Rodriguez LA. Non-steroidal antiinflammatory drugs and the risk of acute myocardial infarction. Basic Clin Pharmacol Toxicol 2006;98:266-74
  • McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of the observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA 2006;296:1633-44
  • Singh G, Wu O, Langhorne P, Long-term use of non-steroidal anti-inflammatory drugs and the risk of myocardial infarction in the general population. Arthritis Res Ther 2006;8:R153
  • Ray WA, Varas-Lorenzo C, Chung CP, Cardiovascular risks of nonsteroidal antiinflammatory drugs in patients after hospitalization for serious coronary heart disease. Circ Cardiovasc Qual Outcomes 2009;2:155-63
  • Mowlavi A, Ghavami A, Song YH, Neumeister M. Limited use of cyclosporin A in skeletal muscle ischemia – reperfusion injury. Ann Plast Surg 2001;46:426-30
  • Askar I, Bozkurt M. Protective effects of immunosuppressants and steroids against ischemia-reperfusion injury in cremaster muscle flap at microcirculatory level. Microsurgery 2002;22:361-6
  • Chunasuwankul R, Ayrout C, Dereli Z, Low dose discontinued FK506 treatment enhances peripheral nerve regeneration. Int Surg 2002;87:274-8
  • Udina E, Gold BG, Navarro X. Comparison of continuous and discontinuous FK506 administration on autograft or allograft repair of sciatic nerve resection. Muscle Nerve 2004;29:812-22
  • Chabas JF, Alluin O, Rao G, FK506 induces changes in muscle properties and promotes metabosensitive nerve fiber regeneration. J Neurotrauma 2009;26:97-108
  • Zbreski MG, Helwig BG, Mitchell KE, Effects of cyclosporine-A on rat soleus muscle fiber size and phenotype. Med Sci Sports Exerc 2006;38:833-9
  • Aydin MA, Urbanchek MG, Kuzon WM. Improved early muscle recovery using FK506 in a rat nerve-repair model. J Reconstr Microsurg 2004;20:183-92
  • Sakuma K, Nakao R, Aoi W, Cyclosporin A treatment upregulates Id1 and Smad3 expression and delays skeletal muscle regeneration. Acta Neuropathol 2005;110:269-80
  • Murphy KT, Ryall JG, Snell SM, Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice. Am J Pathol 2010;176:2425-34
  • Murphy KT, Koopman R, Naim T, Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J. 2010; In press
  • Lynch GS, Schertzer JD, Ryall JG. Therapeutic approaches for muscle wasting disorders. Pharmacol Ther 2007;113:461-87
  • Lynch GS, Ryall JG. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 2008;88:729-67
  • Lynch GS. Update on emerging drugs for sarcopenia – age-related muscle wasting. Expert Opin Emerg Drugs 2008;13:655-73
  • Ryall JG, Lynch GS. The potential and the pitfalls of beta-adrenoceptor agonists for the management of skeletal muscle wasting. Pharmacol Ther 2008;120:219-32
  • Koopman R, Ryall JG, Church JE, Lynch GS. The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders. Curr Opin Clin Nutr Metab Care 2009;12:601-6
  • Murphy KT, Lynch GS. Update on emerging drugs for cancer cachexia. Expert Opin Emerg Drugs 2009;14:619-32
  • Ryall JG, Church JE, Lynch GS. Novel role for beta-adrenergic signalling in skeletal muscle growth, development and regeneration. Clin Exp Pharmacol Physiol 2010;37:397-401
  • Harmon KG. Muscle injuries and PRP: what does the science say? Br J Sports Med 2010;44:616-17
  • Mei-Dan O, Mann G, Maffulli N. Platelet-rich plasma: any substance into it? Br J Sports Med 2010;44:618-19
  • Eppley BL, Woodell JE, Higgins J. Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast Reconstr Surg 2004;114:1502-8
  • Mehta S, Watson JT. Platelet rich concentrate: basic science and current clinical applications. J Orthop Trauma 2008;22:432-8
  • Lopez-Vidriero E, Goulding KA, Simon DA, The use of platelet-rich plasma in arthroscopy and sports medicine: optimizing the healing environment. Arthroscopy 2010;26:269-78
  • Hall MP, Band PA, Meislin RJ, Platelet-rich plasma: current concepts and application in sports medicine. J Am Acad Orthop Surg 2009;17:602-8
  • Sanchez M, Anitua E, Orive G, Platelet-rich therapies in the treatment of orthopaedic sport injuries. Sports Med 2009;39:345-54
  • Hammond JW, Hinton RY, Curl LA, Use of autologous platelet-rich plasma to treat muscle strain injuries. Am J Sports Med 2009;37:1135-42
  • Mishra A, Woodall J Jr, Vieira A. Treatment of tendon and muscle using platelet-rich plasma. Clin Sports Med 2009;28:113-25
  • Obremsky WT, Seaber AV, Ribbeck BM, Biomechanical and histologic assessment of a controlled muscle strain injury treated with piroxicam. Am J Sports Med 1994;22:558-61
  • Wright-Carpenter T, Opolon P, Appell HJ, Treatment of muscle injuries by local administration of autologous conditioned serum: animal experiments using a muscle contusion model. Int J Sports Med 2004;25:582-7
  • Mock C, Cherian MN. The global burden of musculoskeletal injuries: challenges and solutions. Clin Orthop Relat Res 466:2306-16
  • United States Bone and Joint Decade. The burden of musculoskeletal diseases in the United States. Rosemont, IL. 2008; American Academy of Orthopaedic Surgeons. Available from: www.boneandjointburden.org for updates
  • Bevan S, Quadrello T, McGee R, Fit for work? Musculoskeletal disorders in the European workforce. 2009; The Work Foundation, London. Available from: www.theworkfoundation.com for updates
  • Wagers AJ, Conboy IM. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 2005;122:659-67
  • Toumi H, F'guyer S, Best TM. The role of neutrophils in injury and repair following muscle stretch. J Anat 2006;208:459-70
  • Smith C, Kruger MJ, Smith RM, The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med 2008;38:947-69
  • Karalaki M, Fili S, Philippou A, Muscle regeneration: cellular and molecular events. In Vivo 2009;23:779-96
  • Ghaly A, Marsh DR. Ischaemia-reperfusion modulates inflammation and fibrosis of skeletal muscle after contusion injury. Int J Exp Pathol 2010;91:244-55
  • Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc 1995;27:1022-32
  • Davis J. Eculizumab. Am J Health Syst Pharm 2008;65:1609-15
  • Robak E, Robak T. Monoclonal antibodies in the treatment of systemic lupus erythematosus. Curr Drug Targets 2009;10:26-37
  • Zareba KM. Eculizumab: a novel therapy for paroxysmal nocturnal hemoglobinuria. Drugs Today 2007;43:539-46
  • Charneski L, Patel PN. Eculizumab in paroxysmal nocturnal haemoglobinuria. Drugs 2008;68:1341-6
  • Zhou Y, Gong B, Lin F, Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J Immunol 2007;179:8562-7
  • Halstead SK, Zitman FM, Humphreys PD, Eculizumab prevents anti-ganglioside antibody-mediated neuropathy in a murine model. Brain 2008;131:1197-208
  • Moliterno JA, Henry E, Pannullo SC. Corticorelin acetate injections for the treatment of peritumoral brain edema. Expert Opin Investig Drugs 2009;18:1413-19
  • [No authors listed] Corticorelin: ACTH RF, corticoliberin, corticotrophin-releasing hormone, corticotropin-releasing factor, human corticotropin-releasing hormone, ovine corticotrophin-releasing factor, Xerecept. Drugs R D 2004;5:218-19
  • Reimann J, Schnell S, Schwartz S, Macrophage migration inhibitory factor in normal human skeletal muscle and inflammatory myopathies. J Neuropathol Exp Neurol 2010;69:654-62
  • Supinski GS, Ji X, Wang W, The extrinsic caspase pathway modulates endotoxin-induced diaphragm contractile dysfunction. J Appl Physiol 2007;102:1649-57
  • Supinski GS, Ji X, Callahan LA. The JNK MAP kinase pathway contributes to the development of endotoxin-induced diaphragm caspase activation. Am J Physiol Regul Integr Comp Physiol 2009;297:R825-34
  • Supinski GS, Ji XY, Callahan LA. p38 Mitogen-activated protein kinase modulates endotoxin-induced diaphragm caspase activation. Am J Respir Cell Mol Biol 2010;43:121-7
  • Koseki T, Inohara N, Chen S, Nunez G. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA 1998;95:5156-60
  • Tracey D, Klareskog L, Sasso EH, Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 2008;117:244-79
  • Choi DE, Jeong JY, Lim BJ, Pretreatment with the tumor nerosis factor-alpha blocker etanercept attenuated ischemia-reperfusion renal injury. Transplant Proc 2009;41:3590-6
  • Esposito E, Cuzzocrea S. TNF-alpha as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Curr Med Chem 2009;16:3152-67
  • Assasi N, Blackhouse G, Xie F, Patient outcomes after anti TNF-alpha drugs for Crohn's disease. Expert Rev Pharmacoecon Outcomes Res 2010;10:163-75
  • Bachmann F, Nast A, Sterry W, Safety and efficacy of the tumor necrosis factor antagonists. Semin Cutan Med Surg 2010;29:35-47
  • Nam JL, Winthrop KL, van Vollenhoven RF, Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of RA. Ann Rheum Dis 2010;69:976-86
  • Wiens A, Venson R, Correr CJ, Meta-analysis of the efficacy and safety of adalimumab, etanercept, and infliximab for the treatment of rheumatoid arthritis. Pharmacotherapy 2010;30:339-53
  • Zador E, Mendler L, Takacs V, Regenerating soleus and extensor digitorum longus muscles of the rat show elevated levels of TNF-alpha and its receptors, TNFR-60 and TNFR-80. Muscle Nerve 2001;24:1058-67
  • Peterson JM, Feeback KD, Baas JH, Tumor necrosis factor-alpha promotes the accumulation of neutrophils and macrophages in skeletal muscle. J Appl Physiol 2006;101:1394-9
  • Chen SE, Jin B, Li YP. TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am J Physiol Cell Physiol 2007;292:C1660-71
  • Musaro A, Giacinti C, Pelosi L, Stem cell-mediated muscle regeneration and repair in aging and neuromuscular diseases. Eur J Histochem 2007;51(Suppl 1):35-43
  • Moresi V, Pristera A, Scicchitano BM, Tumor necrosis factor-alpha inhibition of skeletal muscle regeneration is mediated by a caspase-dependent stem cell response. Stem Cells 2008;26:997-1008
  • Moresi V, Garcia-Alvarez G, Pristera A, Modulation of caspase activity regulates skeletal muscle regeneration and function in response to vasopressin and tumor necrosis factor. PLoS One 2009;4:e5570
  • Gierer P, Rother J, Mittlmeier T, Ebselen reduces inflammation and microvascular perfusion failure after blunt skeletal muscle injury of the rat. J Trauma 2010;68:853-8
  • Grounds MD, Davies M, Torrisi J, Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice. Cell Tissue Res 2005;320:509-15
  • Hodgetts S, Radley H, Davies M, Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 2006;16:591-602
  • Grounds MD, Torrisi J. Anti-TNFalpha (Remicade) therapy protects dystrophic skeletal muscle from necrosis. FASEB J 2004;18:676-82
  • Radley HG, Davies MJ, Grounds MD. Reduced muscle necrosis and long-term benefits in dystrophic mdx mice after cV1q (blockade of TNF) treatment. Neuromuscul Disord 2008;18:227-38
  • Diak P, Siegel J, La Grenade L, Tumor necrosis factor alpha blockers and malignancy in children: Forty-eight cases reported to the food and drug administration. Arthritis Rheum 2010;62:2517-24
  • Di Napoli M, Papa F. NCX-4016 NicOx. Curr Opin Investig Drugs 2003;4:1126-39
  • Siddique A, Butt M, Shantsila E, New antiplatelet drugs: beyond aspirin and clopidogrel. Int J Clin Pract 2009;63:776-89
  • Emanueli C, Van Linthout S, Salis MB, Nitric oxide-releasing aspirin derivative, NCX 4016, promotes reparative angiogenesis and prevents apoptosis and oxidative stress in a mouse model of peripheral ischemia. Arterioscler Thromb Vasc Biol 2004;24:2082-7
  • Gresele P, Momi S. Pharmacologic profile and therapeutic potential of NCX 4016, a nitric oxide-releasing aspirin, for cardiovascular disorders. Cardiovasc Drug Rev 2006;24:148-68
  • Kurthy M, Mogyorosi T, Nagy K, Effect of BRX-220 against peripheral neuropathy and insulin resistance in diabetic rat models. Ann NY Acad Sci 2002;967:482-9
  • Kalmar B, Greensmith L, Malcangio M, The effect of treatment with BRX-220, a co-inducer of heat shock proteins, on sensory fibers of the rat following peripheral nerve injury. Exp Neurol 2003;184:636-47
  • Traynor BJ, Bruijn L, Conwit R, Neuroprotective agents for clinical trials in ALS: a systematic assessment. Neurology 2006;67:20-7
  • Lanka V, Wieland S, Barber J, Arimoclomol: a potential therapy under development for ALS. Expert Opin Investig Drugs 2009;18:1907-18
  • Phukan J. Arimoclomol, a coinducer of heat shock proteins for the potential treatment of amyotrophic lateral sclerosis. IDrugs 2010;13:482-96
  • Kieran D, Kalmar B, Dick JR, Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 2004;10:402-5
  • Kalmar B, Novoselov S, Gray A, Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. J Neurochem 2008;107:339-50
  • Kandzari DE, Dery JP, Armstrong PW, MC-1 (pyridoxal 5′-phosphate): novel therapeutic applications to reduce ischaemic injury. Expert Opin Investig Drugs 2005;14:1435-42
  • MEND-CABG II Investigators, Alexander JH, Emery RW Jr, Efficacy and safety of pyridoxal 5′-phosphate (MC-1) in high-risk patients undergoing coronary artery bypass graft surgery: the MEND-CABG II randomized clinical trial. JAMA 2008;299:1777-87
  • Carrier M, Emery R, Kandzari DE, Protective effect of pyridoxal-5-phosphate (MC-1) on perioperative myocardial infarction is independent of aortic cross clamp time: results from the MEND-CABG trial. J Cardiovasc Surg 2008;49:249-53
  • Dube GP, Vranckx P, Greenburg AG. HBOC-201: the multi-purpose oxygen therapeutic. EuroIntervention 2008;4:161-5
  • Greenburg AG. The ideal blood substitute. Crit Care Clin 2009;25:415-24
  • Chen JY, Scerbo M, Kramer G. A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics 2009;64:803-13
  • Donahue LL, Shapira I, Shander A, Management of acute anemia in a Jehovah's Witness patient with acute lymphoblastic leukemia with polymerized bovine hemoglobin-based oxygen carrier: a case report and review of literature. Transfusion 2010;50:1561-7
  • Yonezawa T, Kurata R, Kimura M, Inoko H. PKC delta and epsilon in drug targeting and therapeutics. Recent Pat DNA Gene Seq 2009;3:96-101
  • Direct Inhibition of delta-Protein Kinase C Enzyme to Limit Total Infarct Size in Acute Myocardial Infarction (DELTA MI) Investigators, Bates E, Bode C, Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation 2008;117:886-96
  • Han R, Bakker AJ. The effect of chelerythrine on depolarization-induced force responses in skinned fast skeletal muscle fibres of the rat. Br J Pharmacol 2003;138:417-26
  • Wei W, Wei FC, Hung LM. Diazoxide ameliorates microcirculatory disturbances through PKC-dependent pathway in I/R-injured rat cremaster muscles. J Biomed Sci 2005;12:521-9
  • Lin JY, Hung LM, Lai LY, Kappa-opioid receptor agonist protects the microcirculation of skeletal muscle from ischemia reperfusion injury. Ann Plast Surg 2008; 61:330-6
  • Tracey WR, Treadway JL, Magee WP, Cardioprotective effects of ingliforib, a novel glycogen phosphorylase inhibitor. Am J Physiol Heart Circ Physiol 2004;286:H1177-84
  • Baker DJ, Greenhaff PL, MacInnes A, The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction. Diabetes 2006;55:1855-61
  • Landa N, Miller L, Feinberg MS, Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 2008;117:1388-96
  • Leor J, Tuvia S, Guetta V, Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J Am Coll Cardiol 2009;54:1014-23
  • Tsur-Gang O, Ruvinov E, Landa N, The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction. Biomaterials 2009;30:189-95
  • Barton ER. The ABCs of IGF-I isoforms: impact on muscle hypertrophy and implications for repair. Appl Physiol Nutr Metab 2006;31:791-7
  • Ambrosio F, Kadi F, Lexell J, The effect of muscle loading on skeletal muscle regenerative potential: an update of current research findings relating to aging and neuromuscular pathology. Am J Phys Med Rehabil 2009;88:145-55
  • Frystyk J. Exercise and the growth hormone-insulin-like growth factor axis. Med Sci Sports Exerc 2010;42:58-66
  • Matheny RW Jr, Nindl BC, Adamo ML. Mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 2010;151:865-75
  • Lynch GS. Emerging drugs for sarcopenia: age-related muscle wasting. Expert Opin Emerg Drugs 2004;9:345-61
  • Engert JC, Berglund EB, Rosenthal N. Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol 1996;135:431-40
  • Musaro A, McCullagh K, Paul A, Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet 2001;27:195-200
  • Barton ER, Morris L, Musaro A, Muscle specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 2002;157:137-48
  • Shavlakadze T, White J, Hoh JF, Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice. Mol Ther 2004;10:829-43
  • Schertzer JD, van der Poel C, Shavlakadze T, Muscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice. Am J Physiol Cell Physiol 2008;294:C161-8
  • Schertzer JD, Lynch GS. Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury. Gene Ther 2006;13:1657-64
  • Schertzer JD, Ryall JG, Lynch GS. Systemic administration of IGF-I enhances oxidative status and reduces contraction-induced injury in skeletal muscles of mdx dystrophic mice. Am J Physiol Endocrinol Metab 2006;291:E499-505
  • Schertzer JD, Gehrig SM, Ryall JG, Modulation of insulin-like growth factor (IGF)-I and IGF-binding protein interactions enhances skeletal muscle regeneration and ameliorates the dystrophic pathology in mdx mice. Am J Pathol 2007;171:1180-8
  • Gehrig SM, Ryall JG, Schertzer JD, Insulin-like growth factor-I analogue protects muscles of dystrophic mdx mice from contraction-mediated damage. Exp Physiol 2008;93:1190-8
  • Anwer K, Shi M, French MF, Systemic effect of human growth hormone after intramuscular injection of a single dose of a muscle-specific gene medicine. Hum Gene Ther 1998;9:659-70
  • Alila H, Coleman M, Nitta H, Expression of biologically active human insulin-like growth factor-I following intramuscular injection of a formulated plasmid in rats. Hum Gene Ther 1997;8:1785-95
  • Blaschuk OW, Devemy E. Cadherins as novel targets for anti-cancer therapy. Eur J Pharmacol 2009;625:195-8
  • Burden-Gulley SM, Gates TJ, Craig SE, Novel peptide mimetic small molecules of the HAV motif in N-cadherin inhibit N-cadherin-mediated neurite outgrowth and cell adhesion. Peptides 2009;30:2380-7
  • Burden-Gulley SM, Gates TJ, Craig SE, Stimulation of N-cadherin-dependent neurite outgrowth by small molecule peptide mimetic agonists of the N-cadherin HAV motif. Peptides 2010;31:842-9
  • Hatoko M, Niitsuma K, Tanaka A, Expression of N-cadherin and alphaN-catenin in the degeneration/regeneration process of rat skeletal muscle after nerve injury. J Reconstr Microsurg 2004;20:267-73
  • Cao Y. Monotherapy versus combination therapy of angiogenic and arteriogenic factors for the treatment of ischemic disorders. Curr Mol Med 2009;9:967-72
  • Cao R, Brakenhielm E, Pawliuk R, Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 2003;9:604-13
  • Li J, Wei Y, Liu K, Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle regeneration in rabbit hindlimb ischemia model. Microvasc Res 2010;80:10-7
  • Bogoyevitch MA. An update on the cardiac effects of erythropoietin cardioprotection by erythropoietin and the lessons learnt from studies in neuroprotection. Cardiovasc Res 2004;63:208-16
  • Binbrek AS, Mittal B, Rao KN, The potential of erythropoietin for conferring cardioprotection complementing reperfusion. Coron Artery Dis 2007;18:583-5
  • Tamareille S, Ghaboura N, Treguer F, Myocardial reperfusion injury management: erythropoietin compared with postconditioning. Am J Physiol Heart Circ Physiol 2009;297:H2035-43
  • Rezaeian F, Wettstein R, Egger JF, Erythropoietin-induced upregulation of endothelial nitric oxide synthase but not vascular endothelial growth factor prevents musculocutaneous tissue from ischemic damage. Lab Invest 2010;90:40-51
  • Rotter R, Menshykova M, Winkler T, Erythropoietin improves functional and histological recovery of traumatized skeletal muscle tissue. J Orthop Res 2008;26:1618-26
  • Conrad MF, Stone DH, Albadawi H, Local inflammatory and thrombotic responses differ in a murine model of partial and complete hindlimb ischemia/reperfusion. Surgery 2005;138:75-81
  • Hoffmann JN, Vollmar B, Inthorn D, The thrombin antagonist hirudin fails to inhibit endotoxin-induced leukocyte/endothelial cell interaction and microvascular perfusion failure. Shock 2000;14:528-34
  • Hoffmann JN, Vollmar B, Laschke MW, Microcirculatory alterations in ischemia-reperfusion injury and sepsis: effects of activated protein C and thrombin inhibition. Crit Care 2005;9(Suppl 4):S33-7
  • Radley HG, De Luca A, Lynch GS, Duchenne muscular dystrophy: focus on pharmaceutical and nutritional interventions. Int J Biochem Cell Biol 2007;39:469-77
  • Strem BM, Hicok KC, Zhu M, Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 2005;54:132-41
  • Daniels E. Cytori therapeutics, Inc. Regen Med 2007;2:317-20
  • Fraser JK, Zhu M, Wulur I, Adipose-derived stem cells. Methods Mol Biol 2008;449:59-67
  • Fraser JK, Wulur I, Alfonso Z, Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006;24:150-4
  • Zhu M, Kohan E, Bradley J, The effect of age on osteogenic, adipogenic and proliferative potential of female adipose-derived stem cells. J Tissue Eng Regen Med 2009;3:290-301
  • Mizuno H. The potential for treatment of skeletal muscle disorders with adipose-derived stem cells. Curr Stem Cell Res Ther 2010;5:133-6
  • Goudenege S, Pisani DF, Wdziekonski B, Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol Ther 2009;17:1064-72
  • Liu Y, Yan X, Sun Z, Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev 2007;16:695-706
  • Schuster MD, Kocher AA, Seki T, Myocardial neovascularization by bone marrow angioblasts results in cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol 2004;287:H525-32
  • Martens TP, See F, Schuster MD, Mesenchymal lineage precursor cells induce vascular network formation in ischemic myocardium. Nat Clin Pract Cardiovasc Med 2006;3(Suppl 1):S18-22
  • Dixon JA, Gorman RC, Stroud RE, Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction. Circulation 2009;120(11 Suppl):S220-9
  • Keler T, He L, Ramakrishna V, Antibody-targeted vaccines. Oncogene 2007;26:3758-67
  • Deasy BM, Qu-Peterson Z, Greenberger JS, Mechanisms of muscle stem cell expansion with cytokines. Stem Cells 2002;20:50-60
  • Takenaka H, Horiba M, Ishiguro H, Midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction. Am J Physiol Heart Circ Physiol 2009;296:H462-9
  • Sumida A, Horiba M, Ishiguro H, Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction. Cardiovasc Res 2010;86:113-21
  • Sakakima H, Kamizono T, Matsuda F, Midkine and its receptor in regenerating rat skeletal muscle after bupivacaine injection. Acta Histochem 2006;108:357-64
  • Hu J, Higuchi I, Yoshida Y, Expression of midkine in regenerating skeletal muscle fibers and cultured myoblasts of human skeletal muscle. Eur Neurol 2002;47:20-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.