161
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Effects of pharmaceuticals and other active chemicals at biological targets: mechanisms, interactions, and integration into PB-PK/PD models

, PhD, , , &
Pages 867-887 | Published online: 17 Jun 2009

Bibliography

  • Pelkonen O, Kapitulnik J, Gundert-Remy U, et al. Local kinetics and dynamics of xenobiotics. Crit Rev Toxicol 2008;38:1-24
  • Shitara Y, Horie T, Sugiyama Y. Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 2006;27:425-46
  • Hilgendorf C, Ahlin G, Seithel A, et al. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 2007;35:1333-40
  • Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain: importance for CNS drug discovery and development. Pharm Res 2007;24:1745-58
  • Watanabe T, Kusuhara H, Maeda K, et al. Physiologically-based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther 2009;328:652-62
  • Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov 2002;1:727-30
  • Ravna AW, Sylte I, Dahl SG. Molecular mechanism of citalopram and cocaine interactions with neurotransmitter transporters. J Pharmacol Exp Ther 2003;307:34-41
  • Ravna AW, Sylte I, Dahl SG. Molecular model of the neural dopamine transporter. J Comput Aided Mol Des 2003;17:367-82
  • Ravna AW, Sylte I, Kristiansen K, Dahl SG. Putative drug binding conformations of monoamine transporters. Bioorg Med Chem 2006;14:666-75
  • Ravna AW, Sylte I, Dahl SG. Structure and localisation of drug binding sites on neurotransmitter transporters. J Mol Model 2009: published online 24 February 2009, doi:10.1007/s00894-009-0478-1
  • Hjerde E, Dahl SG, Sylte I. Atypical and typical antipsychotic drug interactions with the dopamine D2 receptor. Eur J Med Chem 2005;40:185-94
  • Koo SH, Lee JD. Pharmacogenetics approach to therapeutics. Clin Exp Pharmacol Physiol 2006;33:525-32
  • Maeda K, Sugiyama Y. Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet 2008;23:223-35
  • Dietrich CG, De Waart DR, Ottenhoff R, et al. Increased bioavailability of the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in MRP2-deficient rats. Mol Pharmacol 2001;59:974-80
  • Van Herwaarden AE, Jonker JW, Wagenaar E, et al. The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res 2003;63:6447-52
  • Myllynen P, Kummu M, Kangas T, et al. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta. Toxicol Appl Pharmacol 2008;232:210-7
  • Vlaming MLH, Pala Z, van Esch A, et al. Impact of Abcc2 (Mrp2) and Abcc3 (Mrp3) on the in vivo elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate. Clin Cancer Res 2008;14:8152-60
  • Van Heek M, Farley C, Compton DS, et al. Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH58235, and its glucuronide, SCH60663. Br J Pharmacol 2000;129:1748-54
  • de Waart S, Vlaming MLH, Kunne C, et al. Complex pharmacokinetic behaviour of ezetimibe depends on Abcc2, Abcc3 and Abcg2. Drug Metab Dispos 2009 [published online 14 May 2009, doi:10.1124/dmd.108.026146]
  • Oswald S, Koll C, Siegmund W. Disposition of the cholesterol absorption inhibitor ezetimibe in mdr1a/b–/– mice. J Pharm Sci 2007;96:3478-84
  • Xia CQ, Milton MN, Gan LS. Evaluation of drug-transporter interactions using in vitro and in vivo models. Curr Drug Metab 2007;8:341-63
  • Kopplow K, Letschert K, König J, et al. Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol 2005;68:1031-8
  • Ishiguro N, Maeda K, Saito A, et al. Establishment of a set of double transfectants coexpressing organic anion transporting polypeptide 1B3 and hepatic efflux transporters for the characterization of the hepatobiliary transport of telmisartan acylglucuronide. Drug Metab Dispos 2008;36:796-805
  • Sasaki M, Suzuki H, Aoki J, et al. Prediction of in vivo biliary clearance from the in vitro transcellular transport of organic anions across a double-transfected Madin-Darby Canine Kidney II monolayer expressing both rat organic anion transporting polypeptide 4 and multidrug resistance associated protein 2. Mol Pharmacol 2004;66:450-9
  • Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989;96:736-49
  • Hubatsch I, Ragnarsson EGE, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2007;2:2111-9
  • Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 2001;46:27-43
  • Keogh JP, Kunta JR. Development, validation and utility of an in vitro technique for assessment of potential clinical drug–drug interactions involving P-glycoprotein. Eur J Pharmacol Sci 2006;27:543-54
  • Shitara Y, Hirano M, Sato H, Sugiyama Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 2004;311:228-36
  • Shitara Y, Sato H, Sugiyama Y. Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 2005;45:689-723
  • Ogilvie BW, Zhang D, Li W, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions. Drug Metab Dispos 2006;34:191-7
  • Sakamoto S, Kusuhara H, Miyata K, et al. Glucuronidation converting methyl 1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate (S-8921) to a potent apical sodium-dependent bile acid transporter inhibitor, resulting in a hypocholesterolemic action. J Pharmacol Exp Ther 2007;322:610-8
  • Nozaki Y, Kusuhara H, Kondo T, et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J Pharmacol Exp Ther 2007;322:1162-70
  • Meijerman I, Beijnen JH, Schellens JH. Herb–drug interactions in oncology: focus on mechanisms of induction. Oncologist 2006;11:742-52
  • Watson J, Wright S, Lucas A, et al. Receptor occupancy and brain free fraction. Drug Metab Dispos 2009;37:753-60
  • Soars MG, Grime K, Sproston JL, et al. Use of hepatocytes to assess the contribution of hepatic uptake to clearance in vivo. Drug Metab Dispos 2007;35:859-65
  • Paine SW, Parker AJ, Gardiner P, et al. Prediction of the pharmacokinetics of atorvastatin, cerivastatin, and indomethacin using kinetic models applied to isolated rat hepatocytes. Drug Metab Dispos 2008;36:1365-74
  • Grime K, Webborn PJH, Riley RJ. Functional consequences of active hepatic uptake on cytochrome P450 inhibition in rat and human hepatocytes. Drug Metab Dispos 2008;36:1670-8
  • Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: Implications for interindividual variability in response to drugs. J Clin Pharmacol 2007;47:566-78
  • Pascussi JM, Gerbal-Chaloin S, Duret C, et al. The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 2008;48:1-32
  • Ohtake F, Baba A, Takada I, et al. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 2007;446:562-6
  • Tien ES, Negishi M. Nuclear receptors CAR and PXR in the regulation of hepatic metabolism. Xenobiotica 2006;36:1152-63
  • Konno Y, Negishi M, Kodama S. The roles of nuclear receptors CAR and PXR in hepatic energy metabolism. Drug Metab Pharmacokinet 2008;23:8-13
  • Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature 2003;423:550-5
  • Rhee J, Inoue Y, Yoon JC, et al. Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc Natl Acad Sci USA 2003;100:4012-7
  • Elaut G, Rogiers V, Vanhaecke T. The pharmaceutical potential of histone deacetylase inhibitors. Curr Pharm Des 2007;13:2584-620
  • Zimmermann S, Kiefer F, Prudenziati M, et al. Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Res 2007;67:9047-54
  • Trivedi CM, Luo Y, Yin Z, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nat Med 2007;13:324-31
  • Zhu P, Martin E, Mengwasser J, et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 2004;5:455-63
  • Göttlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001;20:6969-78
  • Krämer OH, Zhu P, Ostendorff HP, et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 2003;22:3411-20
  • Atmaca A, Al-Batran SE, Maurer A, et al. Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial. Br J Cancer 2007;97:177-82
  • Calafat AM, Wong LY, Kuklenyik Z, et al. Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and comparisons with NHANES 1999-2000. Environ Health Perspect 2007;115:1596-602
  • Fei C, McLaughlin JK, Lipworth L, Olsen J. Prenatal exposure to perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) and maternally reported developmental milestones in infancy. Environ Health Perspect 2008;116:1391-5
  • Fromme H, Tittlemier SA, Völkel W, et al. Perfluorinated compounds – Exposure assessment for the general population in western countries. Int J Hyg Environ Health 2008;209:489-96
  • Hölzer J, Midasch O, Rauchfuss K, et al. Biomonitoring of perfluorinated compounds in children and adults exposed to perfluorooctanoate-contaminated drinking water. Environ Health Perspect 2008;116:651-7
  • Olsen GW, Burris JM, Ehresman DJ, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect 2007;11:1298-305
  • Kudo N, Katakura M, Sato Y, Kawashima Y. Sex hormone-regulated renal transport of perfluorooctanoic acid. Chem Biol Interact 2002;139:301-16
  • Katakura M, Kudo N, Tsuda T, et al. Rat organic anion transporter 3 and organic anion transporting polypeptide 1 mediate perfluorooctanoic acid transport. J Health Sci 2007;53:77-83
  • Klaassen CD, Lu H. Xenobiotic transporters: ascribing function from gene knockout and mutation studies. Toxicol Sci 2008;101:186-96
  • Andersen ME, Clewell HJ 3rd, Tan YM, et al. Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys – Probing the determinants of long plasma half-lives. Toxicology 2006;227:156-64
  • Kennedy GL Jr, Butenhoff JL, Olsen GW, et al. The toxicology of perfluorooctanoate. Crit Rev Toxicol 2004;34:351-84
  • Peraza MA, Burdick AD, Marin HE, et al. The toxicology of ligands for peroxisome proliferator-activated receptors (PPAR). Toxicol Sci 2006;90:269-95
  • Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-α, -β, and -γ, liver X receptor-β, and retinoid X receptor-α. Toxicol Sci 2006;92:476-89
  • Takacs ML, Abbott BD. Activation of mouse and human peroxisome proliferator-activated receptors (α, β/δ, γ) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci 2007;95:108-17
  • Martin MT, Brennan RJ, Hu W, et al. Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity. Toxicol Sci 2007;97:595-613
  • Rosen MB, Lee JS, Ren H, et al. Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: evidence for the involvement of nuclear receptors PPARα and CAR. Toxicol Sci 2008;103:46-56
  • Cheung C, Akiyama TE, Ward JM, et al. Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor α. Cancer Res 2004;64:3849-54
  • Morimura K, Cheung C, Ward JM, et al. Differential susceptibility of mice humanized for peroxisome proliferator-activated receptor α to Wy-14,643-induced liver tumorigenesis. Carcinogenesis 2006;27:1074-80
  • Shah YM, Morimura K, Yang Q, et al. Peroxisome proliferator-activated receptor α regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol 2007;27:4238-47
  • Tagawa H, Karube K, Tsuzuki S, et al. Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci 2007;98:1482-90
  • Yang Q, Nagano T, Shah Y, et al. The PPARα-humanized mouse: a model to investigate species differences in liver toxicity mediated by PPARα. Toxicol Sci 2008;101:132-9
  • Butenhoff JL, Kennedy GL Jr, Frame SR, et al. The reproductive toxicology of ammonium perfluorooctanoate (APFO) in the rat. Toxicology 2004;196:95-116
  • Hinderliter PM, Mylchreest E, Gannon SA, et al. Perfluorooctanoate: placental and lactational transport pharmacokinetics in rats. Toxicology 2005;211:139-48
  • Lau C, Thibodeaux JR, Hanson RG, et al. Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol Sci 2006;90:510-8
  • Henderson WM, Smith MA. Perfluorooctanoic acid and perfluorononanoic acid in fetal and neonatal mice following in utero exposure to 8-2 fluorotelomer alcohol. Toxicol Sci 2007;95:452-61
  • Wolf CJ, Fenton SE, Schmid JE, et al. Developmental toxicity of perfluorooctanoic acid in the CD-1 mouse after cross-foster and restricted gestational exposures. Toxicol Sci 2007;95:462-73
  • Zhang L, Sinha V, Forgue ST, et al. Model-based drug development: the road to quantitative pharmacology. J Pharmacokinet Pharmacodyn 2006;33:369-93
  • Dingemanse J, Appel-Dingemanse S. Integrated pharmacokinetics and pharmacodynamics in drug development. Clin Pharmacokinet 2007;46:713-37
  • Danhof M, de Jongh J, De Lange EC, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 2007;47:357-400
  • Rajman I. PK/PD modelling and simulations: utility in drug development. Drug Discov Today 2008;13:341-6
  • Westerhoff HV, Mosekilde E, Noe CR, Clemensen AM. Integrating systems approaches into pharmaceutical sciences. Eur J Pharm Sci 2008;35:1-4
  • Henney AM. Systems biology: a new hope for drug discovery? Expert Opin Drug Discov 2006;1:653-61
  • Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci USA 2007;104:5860-5
  • Hendriks BS, Cook J, Burke JM, et al. Computational modelling of ErbB family phosphorylation dynamics in response to transforming growth factor alpha and heregulin indicates spatial compartmentation of phosphatase activity. Syst Biol (Stevenage) 2006;153:22-33
  • Breen MS, Villeneuve DL, Breen M, et al. Mechanistic computational model of ovarian steroidogenesis to predict biochemical responses to endocrine active compounds. Ann Biomed Eng 2007;35:970-81
  • Foster WR, Chen SJ, He A, et al. A retrospective analysis of toxicogenomics in the safety assessment of drug candidates. Toxicol Pathol 2007;35:621-35
  • Boobis AR, Cohen SM, Dellarco V, et al. IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol 2006;36:781-92
  • Van der Greef J, Martin S, Juhasz P, et al. The art and practice of systems biology in Medicine: Mapping patterns of relationships. J Proteome Res 2007;6:1540-59
  • Agerso H, Koechling W, Knutsson M, et al. The dosing solution influence on the pharmacokinetics of degarelix, a new GnRH antagonist, after s.c. administration to beagle dogs. Eur J Pharm Sci 2003;20:335-40
  • Tornoe CW, Agerso H, Nielsen HA, et al. Population pharmacokinetic modeling of a subcutaneous depot for GnRH antagonist degarelix. Pharm Res 2004;21:574-84
  • Svensson USH, Senderovitz T, Karlsson MO. Population PK/PD modeling of testosterone (T), LH and dihydrotestosterone (DHT) response to single sc degarelix in male volunteers. Clin Pharmacol Ther 2003;73:P87 doi:10.1016/S0009-9236(03)90677-1
  • Tornoe CW, Agerso H, Senderovitz T, et al. Population pharmacokinetic/pharmacodynamic (PK/PD) modelling of the hypothalamic-pituitary-gonadal axis following treatment with GnRH analogues. Br J Clin Pharmacol 2007;63:648-64
  • Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005;106:2329-33
  • Sconce EA, Kamali F. Appraisal of current vitamin K dosing algorithms for the reversal of over-anticoagulation with warfarin: the need for a more tailored dosing regimen. Eur J Haematol 2006;77:457-62
  • Carlquist JF, Horne BD, Muhlestein JB, et al. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis 2006;22:191-7
  • Tham LS, Goh BC, Nafziger A, et al. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther 2006;80:346-55
  • Dickinson GL, Lennard MS, Tucker GT, Rostami-Hodjegan A. The use of mechanistic DM-PK-PD modelling to assess the power of pharmacogenetic studies – CYP2C9 and warfarin as an example. Br J Clin Pharmacol 2007;64:14-26
  • Hamberg AK, Dahl ML, Barban M, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther 2007;81:529-38
  • Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther 2008;83:460-70
  • Ritschel WA, Brady ME, Tan HS. First-pass effect of coumarin in man. Int J Clin Pharmacol Biopharm 1979;17:99-103
  • Ritschel WA, Hussain SA. Transdermal absorption and topical availability of coumarin. Method Find Exp Clin Pharmacol 1988;10:165-9
  • Cohen AJ. Critical review of the toxicology of coumarin with special reference to interspecies differences in metabolism and hepatotoxic response and their significance to man. Food Cosmet Toxicol 1979;17:277-89
  • Brune H. Unpublished report: Toxikologische Prüfung von Cumarin im 30-Monate-Fütterungsversuch an Ratten. Hamburg: Biologisches Laboratorium, 1984, cited by SCF, 1997
  • HRC Unpublished reports RNP 136/82493 and RNP 137/83651. Huntington Research Centre plc, Huntington, England [sponsored by Rhone-Poulenc], 1983, 1984, cited by SCF, 1997
  • Toxicology and carcinogenicity studies of coumarin (CAS no. 91-64-5) in F344/N rats and B6C3F mice. Technical Report Series No. 422, NIH Publication No. 93-3153. National Toxicology Program [NTP], 1993. US Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC
  • Gruzman A, Shamni O, Ben Yakir M, et al. Novel D-xylose derivatives stimulate muscle glucose uptake by activating AMP-activated protein kinase α. J Med Chem 2008;51:8096-108
  • Pelkonen O, Turpeinen M, Hakkola J, et al. Inhibition and induction of human cytochrome P450 enzymes – current status. Arch Toxicol 2008;82:667-715

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.