385
Views
50
CrossRef citations to date
0
Altmetric
Reviews

Targeting MAPK (Ras/ERK) and PI3K/Akt pathways in pituitary tumorigenesis

, MD & , BA BSc MD FRCP FMedSci
Pages 1121-1134 | Published online: 28 Jul 2009

Bibliography

  • Spada A, Lania A, Mantovani G. Hormonal signaling and pituitary adenomas. Neuroendocrinology 2007;85:101-9
  • McKay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. Oncogene 2007;26:3113-21
  • Avruch J. Hormone signaling via tyrosine kinase receptors. In: DeGroot LJ, Jameson JL, editors, Endocrinology. Philadelphia, PA: Elsevier Saunders, 2006; pp 125-52
  • Turjanski AG, Vaqué JP, Gutkind JS. MAP kinases and the control of nuclear events. Oncogene 2007;26:3240-53
  • Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene 2007;26:3100-12
  • Kyriakis JM. MAP kinase and growth factor signaling pathways. In: DeGroot LJ, Jameson JL, editors, Endocrinology. Philadelphia, PA: Elsevier Saunders, 2006;237-75
  • Watson CS, Lange CA. Steadying the boat: integrating mechanisms of membrane and nuclear-steroid-receptor signalling. EMBO Rep 2005;6:116-19
  • Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007;26:3291-310
  • Clapéron A, Therrien M. KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Oncogene 2007;26:3143-58
  • Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumor cell growth. Nature 2006;441:424-30
  • Dhillon AS, Hagan S, Rath O, et al. MAP kinase signalling pathways in cancer. Oncogene 2007;26:3279-90
  • Rushworth LK, Hindley AD, O'Neill E, et al. Regulation and role of Raf-1/B-Raf heterodimerization. Mol Cell Biol 2006;26:2262-72
  • Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 2006;24:21-44
  • Yamamoto T, Ebisuya M, Ashida F, et al. Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr Biol 2006;16:1171-82
  • Meloche S, Pouysségur J. The ERK 1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007;26:3227-39
  • Jones SM, Kazlauskas A. Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat Cell Biol 2001;3:165-72
  • Carracedo A, Pandolfi PP. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 2008;27:5527-41
  • Burke P, Schooler K, Wiley HS. Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell 2001;12:1897-910
  • Chiu VK, Bivona T, Hach A, et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 2002;4:343-50
  • Jiang X, Sorkin A. Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells. Mol Biol Cell 2002;13:1522-35
  • Sorkin A, Von Zastrow M. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 2002;3:600-14
  • Plowman SJ, Hancock JF. Ras signaling from plasma membrane and endomembrane microdomains. Biochim Biophys Acta 2005;1746:274-83
  • Mor A, Philips MR. Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 2006;24:771-800
  • Dhanasekaran DN, Kashef K, Lee CM, et al. Scaffold proteins of MAP kinase modules. Oncogene 2007;26:3185-202
  • Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 2005;6:827-37
  • Morrison DK, Davis RJ. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 2003;19:91-118
  • Van Der Hoeven PC, Van Der Wal JC, Ruurs P, et al. 14-3-3 isotypes facilitate coupling of protein kinase C-ζ to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem J 2000;345:297-306
  • Bumeister R, Rosse C, Anselmo A, et al. CNK2 couples NGF signal propagation to multiple regulatory cascades driving cell differentiation. Curr Biol 2004;14:439-45
  • Roy M, Li Z, Sacks DB. IQGAP1 binds ERK2 and modulates its activity. J Biol Chem 2004;279:17329-37
  • Ziogas A, Moelling K, Radziwill G. CNK1 is a scaffold protein that regulates Src-mediated Raf-1 activation. J Biol Chem 2005;280:24205-11
  • Li W, Han M, Guan K-L. The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev 2000;14:895-900
  • Cacace AM, Michaud NR, Therrien M, et al. Identification of constitutive and Ras inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol Cell Biol 1999;19:229-40
  • Anjum R, Blenis J. The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 2008;9:747-58
  • Hornberg JJ, Binder B, Bruggeman FJ, et al. Control of MAPK signalling: from complexity to what really matters. Oncogene 2005;24:5533-42
  • Hornberg JJ, Bruggeman FJ, Binder B, et al. Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control. FEBS J 2005;272:244-58
  • Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 2008;22:954-65
  • Owens DM, Keyse SM. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 2007;26:3203-13
  • Abraham D, Podar K, Pacher M, et al. Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem 2000;275:22300-04
  • Rodriguez-Viciana P, Oses-Prieto J, Burlingame A, et al. A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity. Mol Cell 2006;22:217-30
  • Franke TF. PI3K/Akt: getting it right matters. Oncogene 2008;27:6473-88
  • Sondermann H, Soisson SM, Boykevisch S, et al. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 2004;119:393-405
  • Freedman TS, Sondermann H, Friedland GD, et al. A Ras-induced conformational switch in the Ras activator son of sevenless. Proc Natl Acad Sci USA 2006;103:16692-97
  • Boykevisch S, Zhao C, Sondermann H, et al. Regulation of Ras signaling dynamics by sos-mediated positive feedback. Curr Biol 2006;16:2173-79
  • Shin SY, Rath O, Choo SM, et al. Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. J Cell Sci 2009;122:425-35
  • Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 2008;40:2707-19
  • Dong C, Waters SB, Holt KH. SOS phosphorylation and disassociation of the Grb2–SOS complex by the ERK and JNK signaling pathways. J Biol Chem 1996;271:6328-32
  • Eblen ST, Slack-Davis JK, Tarcsafalvi A, et al. Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol Cell Biol 2004;24:2308-17
  • Harrington LS, Findlay GM, Gray A, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 2004;166:213-23
  • Lee JT, Steelman LS, Chappell WH, et al. Akt inactivates ERK causing decreased response to chemotherapeutic drugs in advanced CaP cells. Cell Cycle 2008;7:631-36
  • Sato S, Fujita N, Tsuruo T. Involvement of 3-phosphoinositide-dependent protein kinase-1 in the MEK/MAPK signal transduction pathway. J Biol Chem 2004;279:33759-67
  • Wang Q, Zhou Y, Wang X, et al. Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene 2006;25:43-50
  • Vlotides G, Siegel E, Donangelo I, et al. Rat prolactinoma cell growth regulation by epidermal growth factor receptor ligands. Cancer Res 2008;68:6377-86
  • Lee Y, Kim JM, Lee EJ. Functional expression of CXCR4 in somatotrophs: CXCL12 activates GH gene, GH production and secretion, and cellular proliferation. J Endocrinol 2008;199:191-99
  • Lewis MD, Ham J, Rees DA, et al. Mitogen-activated protein kinase mediates epidermal growth factor-induced morphogenesis in pituitary GH3 cells. J Neuroendocrinol 2002;14:361-67
  • Gong FY, Shi YF, Deng JY. The regulatory mechanism by which interleukin-6 stimulates GH-gene expression in rat GH3 cells. J Endocrinol 2006;190:397-406
  • Gong FY, Deng JY, Shi YF. Effect of interleukin-1 beta on growth hormone gene expression and its possible molecular mechanism in rat MtT/S somatotroph cells. Chin Med Sci J 2008;23:193-201
  • Kovalovsky D, Refojo D, Liberman AC, et al. Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: involvement of calcium, protein kinase A, and MAPK pathways. Mol Endocrinol 2002;16:1638-51
  • Lu C, Willingham MC, Furuya F, et al. Activation of phosphatidylinositol 3-kinase signaling promotes aberrant pituitary growth in a mouse model of thyroid-stimulating hormone-secreting pituitary tumors. Endocrinology 2008;149:3339-45
  • Vender JR, Laird MD, Dhandapani KM. Inhibition of NFκB reduces cellular viability in GH3 pituitary adenoma cells. Neurosurgery 2008;62:1122-27
  • Vlotides G, Cooper O, Chen YH, et al. Heregulin regulates prolactinoma gene expression. Cancer Res 2009;69:4209-16
  • Sarkar DK. Genesis of prolactinomas: studies using estrogen-treated animals. Front Horm Res 2006;35:32-49
  • Banerjee S, Saxena N, Sengupta K, et al. 17α-estradiol-induced VEGF-A expression in rat pituitary tumor cells is mediated through ER independent but PI3K-Akt dependent signaling pathway. Biochem Biophys Res Commun 2003;300:209-15
  • Fernández M, Sánchez-Franco F, Palacios N, et al. Involvement of vasoactive intestinal peptide on insulin-like growth factor I-induced proliferation of rat pituitary lactotropes in primary culture: evidence for an autocrine and/or paracrine regulatory system. Neuroendocrinology 2003;77:341-52
  • Fernández M, Sánchez-Franco F, Palacios N, et al. IGF-I inhibits apoptosis through the activation of the phosphatidylinositol 3-kinase/Akt pathway in pituitary cells. J Mol Endocrinol 2004;33:155-63
  • Romano D, Pertuit M, Rasolonjanahary R, et al. Regulation of the RAP1/RAF-1/extracellularly regulated kinase-1/2 cascade and prolactin release by the phosphoinositide 3-kinase/AKT pathway in pituitary cells. Endocrinology 2006;147:6036-45
  • Romano D, Magalon K, Pertuit M, et al. Conditional overexpression of the wild-type Gsα as the gsp oncogene initiates chronic extracellularly regulated kinase 1/2 activation and hormone hypersecretion in pituitary cell lines. Endocrinology 2007;148:2973-83
  • Cañibano C, Rodriguez NL, Saez C, et al. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth. EMBO J 2007;26:2015-28
  • Karga HJ, Alexander JM, Hedley-Whyte ET, et al. Ras mutations in human pituitary tumors. J Clin Endocrinol Metab 1992;74:914-19
  • Cai WY, Alexander JM, Hedley-Whyte ET, et al. Ras mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 1994;78:89-93
  • Pei L, Melmed S, Scheithauer B, et al. H-ras mutations in human pituitary carcinoma metastases. J Clin Endocrinol Metab 1994;78:842-46
  • Lin Y, Jiang X, Shen Y, et al. Frequent mutations and amplifications of the PIK3CA gene in pituitary tumors. Endocr Relat Cancer 2009;16:301-10
  • Ewing I, Pedder-Smith S, Franchi G, et al. A mutation and expression analysis of the oncogene BRAF in pituitary adenomas. Clin Endocrinol (Oxf) 2007;66:348-52
  • De Martino I, Fedele M, Palmieri D, et al. B-RAF mutations are a rare event in pituitary adenomas. J Endocrinol Invest 2007;30:RC1-3
  • Musat M, Korbonits M, Kola B, et al. Enhanced protein kinase B/Akt signalling in pituitary tumors. Endocr Relat Cancer 2005;12:423-33
  • Jordan S, Lidhar K, Korbonits M, et al. Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinol 2000;143:R1-6
  • Saeger W, Schreiber S, Lüdecke DK. Cyclins D1 and D3 and topoisomerase IIα in inactive pituitary adenomas. Endocr Pathol 2001;12:39-47
  • Simpson DJ, Frost SJ, Bicknell JE, et al. Aberrant expression of G1/S regulators is a frequent event in sporadic pituitary adenomas. Carcinogenesis 2001;22:1149-54
  • Elston MS, Gill AJ, Conaglen JV, et al. Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 2008;149:1235-42
  • Hibberts NA, Simpson DJ, Bicknell JE, et al. Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res 1999;5:2133-39
  • Turner HE, Nagy Z, Sullivan N, et al. Expression analysis of cyclins in pituitary adenomas and the normal pituitary gland. Clin Endocrinol (Oxf) 2000;53:337-44
  • Robinson-White A, Hundley TR, Shiferaw M, et al. Protein kinase-A activity in PRKAR1A-mutant cells, and regulation of mitogen-activated protein kinases ERK1/2. Hum Mol Genet 2003;12:1475-84
  • Lania A, Filopanti M, Corbetta S, et al. Effects of hypothalamic neuropeptides on extracellular signal-regulated kinase (ERK1 and ERK2) cascade in human tumoral pituitary cells. J Clin Endocrinol Metab 2003;88:1692-96
  • Mantovani G, Bondioni S, Ferrero S, et al. Effect of cyclic adenosine 3′, 5′-monophosphate/protein kinase a pathway on markers of cell proliferation in nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 2005;90:6721-24
  • Barbieri F, Bajetto A, Stumm R, et al. Overexpression of stromal cell-derived factor 1 and its receptor CXCR4 induces autocrine/paracrine cell proliferation in human pituitary adenomas. Clin Cancer Res 2008;14:5022-32
  • Dworakowska D, Wlodek E, Leontiou CA, et al. Activation of Raf/MEK/ERK and PI3K/Akt/mTOR pathways in pituitary adenomas and their effects on downstream effectors. Endocr Relat Cancer 2009 (In Press)
  • Xu M, Shorts-Cary L, Knox AJ, et al. Epidermal growth factor receptor pathway substrate 8 (eps8) is overexpressed in human pituitary tumors: role in proliferation and survival. Endocrinology 2009;150:2064-71
  • Chesnokova V, Zonis S, Kovacs K, et al. p21(Cip1) restrains pituitary tumor growth. Proc Natl Acad Sci USA 2008;105:17498-503
  • Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 2009;9:28-39
  • González-García A, Pritchard CA, Paterson HF, et al. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 2005;7:219-26
  • Bai Y, Edamatsu H, Maeda S, et al. Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development. Cancer Res 2004;64:8808-10
  • Malliri A, van der Kammen RA, Clark K, et al. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumors. Nature 2002;417:867-71
  • Kortum RL, Lewis RE. The molecular scaffold KSR1 regulates the proliferative and oncogenic potential of cells. Mol Cell Biol 2004;24:4407-16
  • Nguyen A, Burack WR, Stock JL, et al. Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 2002;22:3035-45
  • Chaturvedi K, Sarkar DK. Mediation of basic fibroblast growth factor-induced lactotropic cell proliferation by Src-Ras-mitogen-activated protein kinase p44/42 signaling. Endocrinology 2005;146:1948-55
  • Ren Y, Sun YP, Shah GV. Calcitonin inhibits prolactin promoter activity in rat pituitary GGH3 cells: evidence for involvement of p42/44 mitogen-activated protein kinase in calcitonin action. Endocrine 2003;20:13-22
  • Denef C. Paracrinity: The story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol 2008;20:1-70
  • Burdman JA, Pauni M, Heredia Sereno GM, et al. Estrogen receptors in human pituitary tumors. Horm Metab Res 2008;40:524-27
  • Console GM, Herenu CB, Camihort GA, et al. Insulin-like growth factor-I gene therapy reverses morphologic changes and reduces hyperprolactinemia in experimental rat prolactinomas. Mol Cancer 2008;7:13
  • Lee EJ, Duan WR, Jakacka M, et al. Dominant negative ER induces apoptosis in GH4 pituitary lactotrope cells and inhibits tumor growth in nude mice. Endocrinology 2001;142:3756-63
  • Lim KH, Counter CM. Reduction in the requirement of oncogenic Ras signaling to activation of PI3K/AKT pathway during tumor maintenance. Cancer Cell 2005;8:381-92
  • Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006;103:2257-61
  • Talotta F, Cimmino A, Matarazzo MR, et al. An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 2009;28:73-84
  • Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell 2005;120:635-47
  • Hubina E, Nanzer AM, Hanson MR, et al. Somatostatin analogues stimulate p27 expression and inhibit the MAP kinase pathway in pituitary tumors. Eur J Endocrinol 2006;155:371-79
  • Theodoropoulou M, Zhang J, Laupheimer S, et al. Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Res 2006;66:1576-82
  • Ohori M, Kinoshita T, Okubo M, et al. Identification of a selective ERK inhibitor and structural determination of the inhibitor-ERK2 complex. Biochem Biophys Res Commun 2005;336:357-63

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.