483
Views
56
CrossRef citations to date
0
Altmetric
Reviews

Targeting FtsZ for antibacterial therapy: a promising avenue

&
Pages 1037-1051 | Published online: 07 Aug 2009

Bibliography

  • Martinez JL, Fajardo A, Garmendia L, et al. A global view of antibiotic resistance. FEMS Microbiol Rev 2009;33:44-65
  • Margolin W. Themes and variations in prokaryotic cell division. FEMS Microbiol Rev 2000;24:531-48
  • Bi E, Lutkenhaus J. FtsZ-ring structure associated with division in Escherichia coli. Nature 1991;354:161-4
  • Harry E, Monahan L, Thompson L. Bacterial cell division: the mechanism and its precison. Int Rev Cytol 2006;253:27-94
  • Lutkenhaus J. The regulation of bacterial cell division: a time and place for it. Curr Opin Microbiol 1998;1:210-5
  • Lutkenhaus J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z Ring. Annu Rev Biochem 2007;76:539-62
  • Vollmer W. The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics? Appl Microbiol Biotechnol 2006;73:37-47
  • Huang Q, Tonge PJ, Slayden RA, et al. FtsZ: a novel target for tuberculosis drug discovery. Curr Top Med Chem 2007;7:527-43
  • Lock RL, Harry EJ. Cell-division inhibitors: new insights for future antibiotics. Nat Rev Drug Discov 2008;7:324-38
  • Lu C, Stricker J, Erickson HP. FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritime: quantitation, GTP hydrolysis, and assembly. Cell Motil Cytoskeleton 1998;40:71-86
  • Rueda S, Vicente M, Mingorance J. Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the Escherichia coli cell cycle. J Bacteriol 2003;185:3344-51
  • Den Blaauwen T, Buddelmeijer N, Aarsman ME, et al. Timing of FtsZ assembly in Escherichia coli. J Bacteriol 1999;181:5167-75
  • Romberg L, Levin PA. Assembly d ynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annu Rev Microbiol 2003;57:125-54
  • Stricker J, Maddox P, Salmon ED, Erickson HP. Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci USA 2002;99:3171-5
  • Surovtsev IV, Morgan JJ, Lindahl PA. Kinetic modeling of the assembly, dynamic steady state, and contraction of the FtsZ ring in prokaryotic cytokinesis. PLoS Comput Biol 2008;4:e1000102, published online 4 July 2008, doi:10.1371/journal.pcbi.1000102
  • Popp D, Iwasa M, Narita A, et al. FtsZ condensates: an in vitro electron microscopy study. Biopolymers 2009;91:340-50
  • Sun Q, Margolin W. FtsZ dynamics during the division cycle of live Escherichia coli cells. J Bacteriol 1998;180:2050-6
  • Addinall SG, Cao C, Lutkenhaus J. Temperature shift experiments with an ftsZ84(Ts) strain reveal rapid dynamics of FtsZ localization and indicate that the Z ring is required throughout septation and cannot reoccupy division sites once constriction has initiated. J Bacteriol 1997;179:4277-84
  • Lutkenhaus J. FtsZ in bacterial cytokinesis. Mol Microbiol 1993;9:403-9
  • Nogales E, Downing KH, Amos LA, Löwe J. Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol 1998;5:451-8
  • RayChaudhuri D, Park JT. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 1992;359:251-4
  • de Boer P, Crossley R, Rothfield L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature 1992;359:254-6
  • Wang X, Lutkenhaus J. The FtsZ protein of Bacillus subtilis is localized at the division site and has GTPase activity that is dependent upon FtsZ concentration. J Mol Microbiol 1993;9:435-42
  • Sossong TM Jr, Brigham-Burke MR, Hensley P, Pearce KH Jr. Self-activation of guanosine triphosphatase activity by oligomerization of the bacterial cell division protein FtsZ. Biochemistry 1999;38:14843-50
  • Bramhill D, Thompson CM. GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc Natl Acad Sci USA 1994;91:5813-7
  • Mukherjee A, Lutkenhaus J. Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations. J Bacteriol 1999;181:823-32
  • Mukherjee A, Lutkenhaus J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 1994;176:2754-8
  • Erickson HP, Taylor DW, Taylor KA, Bramhill D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci USA 1996;93:519-23
  • Yu XC, Margolin W. Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J 1997;16:5455-63
  • Kuchibhatla A, Rasheed AS, Narayanan J, et al. An analysis of FtsZ assembly using small angle X-ray scattering and electron microscopy. Langmuir 2009;25:3775-85
  • Beuria TK, Krishnakumar SS, Sahar S, et al. Glutamate-induced assembly of bacterial cell division protein FtsZ. J Biol Chem 2003;278:3735-41
  • Beuria TK, Shah JH, Santra MK, et al. Effects of pH and ionic strength on the assembly and bundling of FtsZ protofilaments: a possible role of electrostatic interactions in the bundling of protofilaments. Int J Biol Macromol 2006;40:30-9
  • Gonzalez JM, Jiménez M, Vélez M, et al. Essential cell division protein FtsZ assembles into one monomer-thick ribbons under conditions resembling the crowded intracellular environment. J Biol Chem 2003;278:37664-7
  • Raychaudhuri D. ZipA is a MAP–Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J 1999;18:2372-83
  • Singh JK, Makde RD, Kumar V, Panda D. SepF increases the assembly and bundling of FtsZ polymers and stabilizes FtsZ protofilaments by binding along its length. J Biol Chem 2008;283:31116-24
  • Mingorance J, Rueda S, Gómez-Puertas P, et al. Escherichia coli FtsZ polymers contain mostly GTP and have a high nucleotide turnover. Mol Microbiol 2001;41:83-91
  • Chen Y, Erickson HP. FtsZ filament dynamics at steady state subunit exchange with and without nucleotide hydrolysis. Biochemistry 2009;48:6664-73
  • Scheffers DJ, den Blaauwen T, Driessen AJ. Non-hydrolysable GTP-gamma-S stabilizes the FtsZ polymer in a GDP-bound state. Mol Microbiol 2000;35:1211-9
  • Huecas S, Schaffner-Barbero C, Garcia W, et al. The interactions of cell division protein FtsZ with guanine nucleotides. J Biol Chem 2007;282:37515-28
  • Lu C, Reedy M, Erickson HP. Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 2000;182:164-70
  • Li Z, Trimble MJ, Brun YV, Jensen GJ. The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J 2007;26:4694-708
  • Chan PF, Holmes DJ, Payne DJ. Finding the gems using genomic discovery: antibacterial drug discovery strategies – the successes and the challenges. Drug Discov Today 2004;1:519-27
  • Barker JJ. Antibacterial drug discovery and structure based design. Drug Discov Today 2006;11:391-404
  • Dai K, Lutkenhaus J. ftsZ is an essential cell division gene in Escherichia coli. J Bacteriol 1991;173:3500-6
  • Rothfield L, Taghbalout A, Shih YL. Spatial control of bacterial division-site placement. Nat Rev Microbiol 2005;3:959-68
  • Bernhardt TG, de Boer PA. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol Cell 2005;18:555-64
  • Wu LJ, Errington J. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 2004;117:915-25
  • Carballido-López R, Formstone A. Shape determination in Bacillus subtilis. Curr Opin Microbiol 2007;10:611-6
  • Pichoff S, Lutkenhaus J. Overview of cell shape: cytoskeletons shape bacterial cells. Curr Opin Microbiol 2007;10:601-5
  • Allard JF, Cytrynbaum EN. Force generation by a dynamic Z-ring in Escherichia coli cell division. Proc Natl Acad Sci USA 2009;106:145-50
  • Erickson HP. Modeling the physics of FtsZ assembly and force generation. Proc Natl Acad Sci USA 2009;106:9238-43
  • Osawa M, Anderson DE, Erickson HP. Reconstitution of contractile FtsZ rings in liposomes. Science 2008;320:792-4
  • Stricker J, Erickson HP. In vivo characterization of Escherichia coli ftsZ mutants: effects on Z-ring structure and function. J Bacteriol 2003;185:4796-805
  • Feucht A, Errington J. ftsZ mutations affecting cell division frequency, placement and morphology in Bacillus subtilis. Microbiology 2005;151:2053-64
  • Redick SD, Stricker J, Briscoe G, Erickson HP. Mutants of FtsZ targeting the protofilament interface: effects on cell division and GTPase activity. J Bacteriol 2005;187:2727-36
  • Addinall SG, Small E, Whitaker D, et al. New temperature-sensitive alleles of ftsZ in Escherichia coli. J Bacteriol 2005;187:358-65
  • Rothfield L, Justice S, García-Lara J. Bacterial cell division. Annu Rev Genet 1999;33:423-48
  • Available from: http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
  • Chalker AF, Lunsford RD. Rational identification of new antibacterial drug targets that are essential for viability using a genomics-based approach. Pharmacol Ther 2002;5:1-20
  • Erickson HP. FtsZ, a prokaryotic homolog of tubulin? Cell 1995;80:367-70
  • Amos LA, van den Ent F, Löwe J. Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr Opin Cell Biol 2004;16:24-31
  • Addinall SG, Holland B. The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J Mol Biol 2002;318:219-36
  • Löwe J, van den Ent F, Amos LA. Molecules of the bacterial cytoskeleton. Annu Rev Biophys Biomol Struct 2004;33:177-98
  • Michie KA, Löwe J. Dynamic filaments of the bacterial cytoskeleton. Annu Rev Biochem 2006;75:467-92
  • Jaiswal R, Beuria TK, Mohan R, et al. Totarol inhibits bacterial cytokinesis by perturbing the assembly dynamics of FtsZ. Biochemistry 2007;46:4211-20
  • Nogales E, Wang HW. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr Opin Struct Biol 2006;16:221-9
  • Bumann D. Has nature already identified all useful anttheibacterial targets? Curr Opin Microbiol 2008;11:387-92
  • Wang J, Galgoci A, Kodali S, et al. Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J Biol Chem 2003;278:44424-8
  • White EL, Suling WJ, Ross LJ, et al. 2-Alkoxycarbonylamino pyridines: inhibitors of Mycobacterium tuberculosis FtsZ. J Antimicrob Chemother 2002;50:111-4
  • Haydon DJ, Stokes NR, Ure R, et al. An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 2008;321:1673-5
  • Stokes NR, Sievers J, Barker S, et al. Novel inhibitors of bacterial cytokinesis identified by a cell-based antibiotic screening assay. J Biol Chem 2005;280:39709-15
  • Löwe J, Amos LA. Crystal structure of the bacterial cell-division protein FtsZ. Nature 1998;391:203-6
  • Löwe J. Crystal structure determination of FtsZ from Methanococcus jannaschii. J Struct Biol 1998;124:235-43
  • Leung AK, White EL, Ross LJ, Borhani DW. Crystallization of the Mycobacterium tuberculosis cell-division protein FtsZ. Acta Crystallogr D Biol Crystallogr 2000;56:1634-7
  • Cordell SC, Robinson EJ, Lowe J. Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc Natl Acad Sci USA 2003;100:7889-94
  • Oliva MA, Trambaiolo D, Löwe J. Structural insights into the conformational variability of FtsZ. J Mol Biol 2007;373:1229-42
  • Schnecke V, Boström J. Computational chemistry-driven decision making in lead generation. Drug Discov Today 2006;11:43-50
  • Mauser H, Guba W. Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discov Devel 2008;11:365-74
  • Hemaiswarya S, Kruthiventi AK, Doble M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008;15:639-52
  • Beuria TK, Santra MK, Panda D. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry 2005;44:16584-93
  • Lopus M, Panda D. The benzophenanthridine alkaloid sanguinarine perturbs microtubule assembly dynamics through tubulin binding. A possible mechanism for its anti proliferative activity. FEBS J 2006;273:2139-50
  • Urgaonkar S, La Pierre HS, Meir I, et al. Synthesis of antimicrobial natural products targeting FtsZ: (±)-dichamanetin and (±)-2′ ″-hydroxy-5′ ″-benzylisouvarinol-B. Org Lett 2005;7:5609-12
  • Domadia P, Swarup S, Bhunia A, et al. Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochem Pharmacol 2007;74:831-40
  • Domadia PN, Bhunia A, Sivaraman J, et al. Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry 2008;47:3225-34
  • Rai D, Singh JK, Roy N, Panda D. Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J 2008;410:147-55
  • Ohashi Y, Chijiiwa Y, Suzuki K, et al. The lethal effect of a benzamide derivative, 3-methoxybenzamide, can be suppressed by mutations within a cell division gene, ftsZ, in Bacillus subtilis. J Bacteriol 1999;181:1348-51
  • Czaplewski LG, Collins I, Boyd EA, et al. Antibacterial alkoxybenzamide inhibitors of the essential bacterial cell division protein FtsZ. Bioorg Med Chem Lett 2009;19:524-7
  • Reynolds RC, Srivastava S, Ross LJ, et al. A new 2-carbamoyl pteridine that inhibits mycobacterial FtsZ. Bioorg Med Chem Lett 2004;14:3161-4
  • Läppchen T, Hartog AF, Pinas VA, et al. GTP analogue inhibits polymerization and GTPase activity of the bacterial protein FtsZ without affecting its eukaryotic homologue tubulin. Biochemistry 2005;44:7879-84
  • Läppchen T, Pinas VA, Hartog AF, et al. Probing FtsZ and tubulin with C8-substituted GTP analogs reveals differences in their nucleotide binding sites. Chem Biol 2008;15:189-99
  • Ito H, Ura A, Oyamada Y, et al. A 4-aminofurazan derivative–A189–inhibits assembly of bacterial cell division protein FtsZ in vitro and in vivo. Microbiol Immunol 2006;50:759-64
  • Paradis-Bleau C, Beaumont M, Sanschagrin F, et al. Parallel solid synthesis of inhibitors of the essential cell division FtsZ enzyme as a new potential class of antibacterials. Bioorg Med Chem 2007;15:1330-40
  • Margalit DN, Romberg L, Mets RB, et al. Targeting cell division: small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality. Proc Natl Acad Sci USA 2004;101:11821-6
  • Mukherjee S, Robinson CA, Howe AG, et al. N-Benzyl-3-sulfonamidopyrrolidines as novel inhibitors of cell division in E. coli. Bioorg Med Chem Lett 2007;17:6651-5
  • Huang Q, Kirikae F, Kirikae T, et al. Targeting FtsZ for antituberculosis drug discovery: noncytotoxic taxanes as novel antituberculosis agents. J Med Chem 2006;49:463-6
  • Possoz C, Newmark J, Sorto N, et al. Sublethal concentrations of the aminoglycoside amikacin interfere with cell division without affecting chromosome dynamics. Antimicrob Agents Chemother 2007;51:252-6
  • Eichler J. Peptides as protein binding site mimetics. Curr Opin Chem Biol 2008;12:707-13
  • Zhao L, Chmielewski J. Inhibiting protein–protein interactions using designed molecules. Curr Opin Struct Biol 2005;15:31-4
  • Maggi S, Massidda O, Luzi G, et al. Division protein interaction web: identification of a phylogenetically conserved common interactome between Streptococcus pneumoniae and Escherichia coli. Microbiology 2008;154:3042-52
  • Noirot P, Noirot-Gros MF. Protein interaction networks in bacteria. Curr Opin Microbiol 2004;7:505-12
  • Margolin W. FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 2005;6:862-71
  • Weart RB, Lee AH, Chien AC, et al. A metabolic sensor governing cell size in bacteria. Cell 2007;130:335-47
  • Pichoff S, Lutkenhaus J. Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J 2002;21:685-93
  • Hale CA, de Boer PA. ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli. J Bacteriol 2002;184:2552-6
  • Gueiros-Filho FJ, Losick R. A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev 2002;16:2544-56
  • Singh JK, Makde RD, Kumar V, Panda D. A membrane protein, EzrA, regulates assembly dynamics of FtsZ by interacting with the C-terminal tail of FtsZ. Biochemistry 2007;46:11013-22
  • Weart RB, Nakano S, Lane BE, et al. The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol Microbiol 2005;57:238-49
  • Bi E, Lutkenhaus J. Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J Bacteriol 1993;175:1118-25
  • de Boer PA, Crossley RE, Rothfield LI. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 1989;56:641-9
  • Hu Z, Mukherjee A, Pichoff S, Lutkenhaus J. The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA 1999;96:14819-24
  • Buddelmeijer N, Beckwith J. Assembly of cell division proteins at the E.coli cell center. Curr Opin Microbiol 2002;5:553-7
  • Goehring NW, Beckwith J. Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol 2005;15:R514-26
  • Haney SA, Glasfeld E, Hale C, et al. Genetic analysis of the Escherichia coli FtsZ/ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J Biol Chem 2001;276:11980-7
  • Hale CA, de Boer PA. Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. Cell 1997;88:175-85
  • Mosyak L, Zhang Y, Glasfeld E, et al. The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 2000;19:3179-91
  • Moy FJ, Glasfeld E, Mosyak L, Powers R. Solution structure of ZipA, a crucial component of Escherichia coli cell division. Biochemistry 2000;39:9146-56
  • Kenny CH, Ding W, Kelleher K, et al. Development of a fluorescence polarization assay to screen for inhibitors of the FtsZ/ZipA interaction. Anal Biochem 2003;32:224-33
  • Sutherland AG, Alvarez J, Ding W, et al. Structure-based design of carboxybiphenyl indole inhibitors of the ZipA–FtsZ interaction. Org Biomol Chem 2003;1:4138-40
  • Jennings LD, Foreman KW, Rush TS 3rd, et al. Design and synthesis of indolo[2,3-a]quinolizin-7-one inhibitors of the ZipA–FtsZ interaction. Bioorg Med Chem Lett 2004;14:1427-31
  • Jennings LD, Foreman KW, Rush TS 3rd, et al. Combinatorial synthesis of substituted 3-(2-indolyl)piperidines and 2-phenyl indoles as inhibitors of ZipA-FtsZ interaction. Bioorg Med Chem 2004;12:5115-31
  • Rush TS 3rd, Grant JA, Mosyak L, Nicholls A. A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J Med Chem 2005;48:1489-95
  • Tsao DH, Sutherland AG, Jennings LD, et al. Discovery of novel inhibitors of the ZipA/FtsZ complex by NMR fragment screening coupled with structure-based design. Bioorg Med Chem 2006;14:7953-61
  • Singh P, Rathinasamy K, Mohan R, Panda D. Microtubule assembly dynamics: an attractive target for anticancer drugs. IUBMB Life 2008;60:368-75
  • Marra A. Can virulence factors be viable antibacterial targets? Expert Rev Anti Infect Ther 2004;2:61-72
  • Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 2009;1794:808-16
  • Schmid MB. Crystallizing new approaches for antimicrobial drug discovery. Biochem pharmacol 2006;71:1048-56
  • Geissler B, Margolin W. Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK. Mol Microbiol 2005;58:596-612
  • Bernard CS, Sadasivam M, Shiomi D, Margolin W. An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli. Mol Microbiol 2007;64:1289-305
  • Shiomi D, Margolin W. Compensation for the loss of the conserved membrane targeting sequence of FtsA provides new insights into its function. Mol Microbiol 2008;67:558-69

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.