1,238
Views
141
CrossRef citations to date
0
Altmetric
Reviews

GLUT1 as a therapeutic target in hepatocellular carcinoma

&
Pages 1411-1427 | Published online: 30 Oct 2009

Bibliography

  • Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006;6:674-87
  • Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002;31:339-46
  • Jemal A, Siegel R, Ward E, Cancer statistics, 2008. CA Cancer J Clin 2008;58:71-96
  • El Serag HB. Hepatocellular carcinoma: Recent trends in the United States. Gastroenterology 2004;127:S27-34
  • Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular carcinoma in cirrhosis: Incidence and risk factors. Gastroenterology 2004;127:S35-50
  • Bruix J, Boix L, Sala M, Llovet JM. Focus on hepatocellular carcinoma. Cancer Cell 2004;5:215-19
  • Kassahun WT, Fangmann J, Harms J, Liver resection and transplantation in the management of hepatocellular carcinoma: a review. Exp Clin Transplant 2006;4:549-58
  • Llovet JM, Ricci S, Mazzaferro V, Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-90
  • Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008;48:1312-27
  • Abou-Alfa GK. Commentary: Sorafenib – the end of a long journey in search of systemic therapy for hepatocellular carcinoma, or the beginning? Oncologist 2009;14:92-4
  • Amann T, Maegdefrau U, Hartmann A, GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am J Pathol 2009;174:1544-52
  • Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 2001;18:247-56
  • Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 2004;447:480-9
  • Manolescu AR, Witkowska K, Kinnaird A, Facilitated hexose transporters: new perspectives on form and function. Physiology (Bethesda) 2007;22:234-40
  • Doege H, Bocianski A, Joost HG, Schurmann A. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem J 2000;350 Pt 3:771-6
  • Keembiyehetty C, Augustin R, Carayannopoulos MO, Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes. Mol Endocrinol 2006;20:686-97
  • Lane RH, Flozak AS, Simmons RA. Measurement of GLUT mRNA in liver of fetal and neonatal rats using a novel method of quantitative polymerase chain reaction. Biochem Mol Med 1996;59:192-9
  • Wu X, Freeze HH. GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics 2002;80:553-7
  • Dawson PA, Mychaleckyj JC, Fossey SC, Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1. Mol Genet Metab 2001;74:186-99
  • Scheepers A, Schmidt S, Manolescu A, Characterization of the human SLC2A11 (GLUT11) gene: alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue. Mol Membr Biol 2005;22:339-51
  • Wu X, Li W, Sharma V, Cloning and characterization of glucose transporter 11, a novel sugar transporter that is alternatively spliced in various tissues. Mol Genet Metab 2002;76:37-45
  • Uldry M, Ibberson M, Horisberger JD, Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain. EMBO J 2001;20:4467-77
  • Maher F, Vannucci SJ, Simpson IA. Glucose transporter proteins in brain. FASEB J 1994;8:1003-11
  • Guo X, Geng M, Du G. Glucose transporter 1, distribution in the brain and in neural disorders: its relationship with transport of neuroactive drugs through the blood-brain barrier. Biochem Genet 2005;43:175-87
  • Zeller K, Rahner-Welsch S, Kuschinsky W. Distribution of Glut1 glucose transporters in different brain structures compared to glucose utilization and capillary density of adult rat brains. J Cereb Blood Flow Metab 1997;17:204-9
  • Uldry M, Ibberson M, Hosokawa M, Thorens B. GLUT2 is a high affinity glucosamine transporter. FEBS Lett 2002;524:199-203
  • Cohen NR, Knecht DA, Lodish HF. Functional expression of rat GLUT 1 glucose transporter in Dictyostelium discoideum. Biochem J 1996;315 (Pt 3):971-5
  • Fukumoto H, Seino S, Imura H, Characterization and expression of human HepG2/erythrocyte glucose-transporter gene. Diabetes 1988;37:657-61
  • Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 1997;21:2-21
  • Levine KB, Cloherty EK, Hamill S, Carruthers A. Molecular determinants of sugar transport regulation by ATP. Biochemistry 2002;41:12629-38
  • Liu Q, Vera JC, Peng H, Golde DW. The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity. Biochemistry 2001;40:7874-81
  • Behrooz A, Ismail-Beigi F. Stimulation of glucose transport by hypoxia: signals and mechanisms. News Physiol Sci 1999;14:105-10
  • Grobholz R, Hacker HJ, Thorens B, Bannasch P. Reduction in the expression of glucose transporter protein GLUT 2 in preneoplastic and neoplastic hepatic lesions and reexpression of GLUT 1 in late stages of hepatocarcinogenesis. Cancer Res 1993;53:4204-11
  • Su TS, Tsai TF, Chi CW, Elevation of facilitated glucose-transporter messenger RNA in human hepatocellular carcinoma. Hepatology 1990;11:118-22
  • Yamamoto T, Seino Y, Fukumoto H, Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 1990;170:223-30
  • Roh MS, Jeong JS, Kim YH, Diagnostic utility of GLUT1 in the differential diagnosis of liver carcinomas. Hepatogastroenterology 2004;51:1315-18
  • Younes M, Lechago LV, Somoano JR, Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res 1996;56:1164-7
  • Zimmerman RL, Fogt F, Burke M, Murakata LA. Assessment of Glut-1 expression in cholangiocarcinoma, benign biliary lesions and hepatocellular carcinoma. Oncol Rep 2002;9:689-92
  • Zimmerman RL, Burke M, Young NA, Diagnostic utility of Glut-1 and CA 15-3 in discriminating adenocarcinoma from hepatocellular carcinoma in liver tumors biopsied by fine-needle aspiration. Cancer 2002;96:53-7
  • Cao X, Fang L, Gibbs S, Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother Pharmacol 2007;59:495-505
  • Shibata T, Isoda H, Hirokawa Y, Small hepatocellular carcinoma: is radiofrequency ablation combined with transcatheter arterial chemoembolization more effective than radiofrequency ablation alone for treatment? Radiology 2009;252:905-13
  • Evans A, Bates V, Troy H, Glut-1 as a therapeutic target: increased chemoresistance and HIF-1-independent link with cell turnover is revealed through COMPARE analysis and metabolomic studies. Cancer Chemother Pharmacol 2008;61:377-93
  • Tanaka H, Yamamoto M, Hashimoto N, Hypoxia-independent overexpression of hypoxia-inducible factor 1α as an early change in mouse hepatocarcinogenesis. Cancer Res 2006;66:11263-70
  • Hamaguchi T, Iizuka N, Tsunedomi R, Glycolysis module activated by hypoxia-inducible factor 1α is related to the aggressive phenotype of hepatocellular carcinoma. Int J Oncol 2008;33:725-31
  • Kim JW, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res 2006;66:8927-30
  • Brahimi-Horn MC, Chiche J, Pouyssegur J. Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 2007;19:223-9
  • Stern R, Shuster S, Neudecker BA, Formby B. Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res 2002;276:24-31
  • Walenta S, Wetterling M, Lehrke M, High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 2000;60:916-21
  • Ruch RJ, Klaunig JE, Kerckaert GA, LeBoeuf RA. Modification of gap junctional intercellular communication by changes in extracellular pH in Syrian hamster embryo cells. Carcinogenesis 1990;11:909-13
  • Rozhin J, Sameni M, Ziegler G, Sloane BF. Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res 1994;54:6517-25
  • Montcourrier P, Silver I, Farnoud R, Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism. Clin Exp Metastasis 1997;15:382-92
  • Raghunand N, Gatenby RA, Gillies RJ. Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 2003;76 Spec No 1:S11-22
  • Fischer K, Hoffmann P, Voelkl S, Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007;109:3812-19
  • Hatanaka M. Transport of sugars in tumor cell membranes. Biochim Biophys Acta 1974;355:77-104
  • Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 2009;121:29-40
  • Osthus RC, Shim H, Kim S, Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000;275:21797-800
  • Manel N, Kim FJ, Kinet S, The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 2003;115:449-59
  • Kong YH, Han CJ, Lee SD, Positron emission tomography with fluorine-18-fluorodeoxyglucose is useful for predicting the prognosis of patients with hepatocellular carcinoma. Korean J Hepatol 2004;10:279-87
  • Khan MA, Combs CS, Brunt EM, Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 2000;32:792-7
  • Ma WW, Jacene H, Song D, [18F]fluorodeoxyglucose positron emission tomography correlates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy. J Clin Oncol 2009;27:2697-704
  • Riedl CC, Akhurst T, Larson S, 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastases. J Nucl Med 2007;48:771-5
  • Gu J, Yamamoto H, Fukunaga H, Correlation of GLUT-1 overexpression, tumor size, and depth of invasion with 18F-2-fluoro-2-deoxy-D-glucose uptake by positron emission tomography in colorectal cancer. Dig Dis Sci 2006;51:2198-205
  • Seo S, Hatano E, Higashi T, P-glycoprotein expression affects 18F-fluorodeoxyglucose accumulation in hepatocellular carcinoma in vivo and in vitro. Int J Oncol 2009;34:1303-12
  • Kanzler S, Meyer E, Lohse AW, Hepatocellular expression of a dominant-negative mutant TGF-α type II receptor accelerates chemically induced hepatocarcinogenesis. Oncogene 2001;20:5015-24
  • Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 2006;66:632-7
  • Koukourakis MI, Giatromanolaki A, Bougioukas G, Sivridis E. Lung cancer: a comparative study of metabolism related protein expression in cancer cells and tumor associated stroma. Cancer Biol Ther 2007;6:1476-9
  • Stern R, Shuster S, Neudecker BA, Formby B. Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res 2002;276:24-31
  • Amann T, Bataille F, Spruss T, Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 2009;100:646-53
  • Morris DI, Robbins JD, Ruoho AE, Forskolin photoaffinity labels with specificity for adenylyl cyclase the glucose transporter, J Biol. Chem 1991;266:13377-84
  • Martin HJ, Kornmann F, Fuhrmann GF. The inhibitory effects of flavonoids and antiestrogens on the Glut1 glucose transporter in human erythrocytes. Chem Biol Interact 2003;146:225-35
  • Vera JC, Reyes AM, Velasquez FV, Direct inhibition of the hexose transporter GLUT1 by tyrosine kinase inhibitors. Biochemistry 2001;40:777-90
  • Zhang JZ, Gao L, Widness M, Captopril inhibits glucose accumulation in retinal cells in diabetes. Invest Ophthalmol Vis Sci 2003;44:4001-5
  • Klepper J, Florcken A, Fischbarg J, Voit T. Effects of anticonvulsants on GLUT1-mediated glucose transport in GLUT1 deficiency syndrome in vitro. Eur J Pediatr 2003;162:84-9
  • Klepper J, Fischbarg J, Vera JC, Wang D, De Vivo DC. GLUT1-deficiency: barbiturates potentiate haploinsufficiency in vitro. Pediatr Res 1999;46:677-83
  • Weindruch R, Keenan KP, Carney JM, Caloric restriction mimetics: metabolic interventions. J Gerontol A Biol Sci Med Sci 2001;56 Spec No 1:20-33
  • Aft RL, Zhang FW, Gius D. Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br J Cancer 2002;87:805-12
  • Yeh CS, Wang JY, Chung FY, Significance of the glycolytic pathway and glycolysis related-genes in tumorigenesis of human colorectal cancers. Oncol Rep 2008;19:81-91
  • Ko YH, Pedersen PL, Geschwind JF. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett 2001;173:83-91
  • Maschek G, Savaraj N, Priebe W, 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 2004;64:31-4
  • Subbarayan PR, Wang PG, Lampidis TJ, Differential expression of Glut 1 mRNA and protein levels correlates with increased sensitivity to the glyco-conjugated nitric oxide donor (2-glu-SNAP) in different tumor cell types. J Chemother 2008;20:106-11
  • Glufosfamide: beta-D-Glc-IPM, D 19575. Drugs RD 2005;6:49-52
  • Al Khalili L, Cartee GD, Krook A. RNA interference-mediated reduction in GLUT1 inhibits serum-induced glucose transport in primary human skeletal muscle cells. Biochem Biophys Res Commun 2003;307:127-32
  • Noguchi Y, Saito A, Miyagi Y, Suppression of facilitative glucose transporter 1 mRNA can suppress tumor growth. Cancer Lett 2000;154:175-82
  • Zhou SH, Fan J, Chen XM, Inhibition of cell proliferation and glucose uptake in human laryngeal carcinoma cells by antisense oligonucleotides against glucose transporter-1. Head Neck 2009: Published online 13 May 2009, doi: 10.1002/hed.21137.
  • Song E, Lee SK, Wang J, RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003;9:347-51
  • Shen J, Samul R, Silva RL, Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther 2006;13:225-34
  • Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009;457:426-33
  • Hruz PW, Mueckler MM. Structural analysis of the GLUT1 facilitative glucose transporter (review). Mol Membr Biol 2001;18:183-93
  • Zuniga FA, Shi G, Haller JF, A three-dimensional model of the human facilitative glucose transporter Glut1. J Biol Chem 2001;276:44970-5
  • Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004;70:309-19
  • Seyfried TN, Mukherjee P. Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab (Lond) 2005;2:30: published online 21 October 2005, doi:10.1186/1743-7075-2-30
  • Mukherjee P, Sotnikov AV, Mangian HJ, Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. J Natl Cancer Inst 1999;91:512-23
  • Zhou W, Mukherjee P, Kiebish MA, The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond) 2007;4:5: published online 21 February 2007, doi:10.1186/1743-7075-4-5
  • Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J Am Coll Nutr 1995;14:202-8
  • Otto C, Kaemmerer U, Illert B, Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 2008;8:122: published online 30 April 2008, doi:10.1186/1471-2407-8-122
  • Klepper J, Leiendecker B. GLUT1 deficiency syndrome–2007 update. Dev Med Child Neurol 2007;49:707-16
  • Klepper J, Scheffer H, Leiendecker B, Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics 2005;36:302-8
  • Laszlo J, Humphreys SR, Goldin A. Effects of glucose analogues (2-deoxy-D-glucose, 2-deoxy-D-galactose) on experimental tumors. J Natl Cancer Inst 1960;24:267-81
  • Laszlo J, Landau B, Wight K, Burk D. The effect of glucose analogues on the metabolism of human leukemic cells. J Natl Cancer Inst 1958;21:475-83
  • Landau Br, Laszlo J, Stengle J, Burk D. Certain metabolic and pharmacologic effects in cancer patients given infusions of 2-deoxy-D-glucose. J Natl Cancer Inst 1958;21:485-94
  • Singh D, Banerji AK, Dwarakanath BS, Optimizing cancer radiotherapy with 2-deoxy-D-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol 2005;181:507-14
  • Moadel RM, Nguyen AV, Lin EY, Positron emission tomography agent 2-deoxy-2-[18F]fluoro-D-glucose has a therapeutic potential in breast cancer. Breast Cancer Res 2003;5:R199-205
  • Hamill S, Cloherty EK, Carruthers A. The human erythrocyte sugar transporter presents two sugar import sites. Biochemistry 1999;38:16974-83
  • Johnson JH, Newgard CB, Milburn JL, The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem 1990;265:6548-51
  • Lachaal M, Rampal AL, Ryu J, Characterization and partial purification of liver glucose transporter GLUT2. Biochim Biophys Acta 2000;1466:379-89
  • Thorens B, Cheng ZQ, Brown D, Lodish HF. Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. Am J Physiol 1990;259:C279-85
  • Haber RS, Weinstein SP, O'Boyle E, Morgello S. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology 1993;132:2538-43
  • Nelson JA, Falk RE. Phloridzin and phloretin inhibition of 2-deoxy-D-glucose uptake by tumor cells in vitro and in vivo. Anticancer Res 1993;13:2293-9
  • Stuart CA, Wen G, Jiang J. GLUT3 protein and mRNA in autopsy muscle specimens. Metabolism 1999;48:876-80
  • Abe H, Morimatsu M, Nikami H, Molecular cloning and mRNA expression of the bovine insulin-responsive glucose transporter (GLUT4). J Anim Sci 1997;75:182-8
  • Kasahara T, Kasahara M. Characterization of rat Glut4 glucose transporter expressed in the yeast Saccharomyces cerevisiae: comparison with Glut1 glucose transporter. Biochim Biophys Acta 1997;1324:111-19
  • Kayano T, Burant CF, Fukumoto H, Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem 1990;265:13276-82
  • Mate A, de la Hermosa MA, Barfull A, Characterization of D-fructose transport by rat kidney brush-border membrane vesicles: changes in hypertensive rats. Cell Mol Life Sci 2001;58:1961-7
  • Mantych GJ, James DE, Devaskar SU. Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in the human blood-brain barrier. Endocrinology 1993;132:35-40
  • Rand EB, Depaoli AM, Davidson NO, Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. Am J Physiol 1993;264:G1169-76
  • Li Q, Manolescu A, Ritzel M, Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. Am J Physiol Gastrointest Liver Physiol 2004;287:G236-42
  • Cheeseman C. GLUT7: a new intestinal facilitated hexose transporter. Am J Physiol Endocrinol Metab 2008;295:E238-41
  • Doege H, Schurmann A, Bahrenberg G, GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J Biol Chem 2000;275:16275-80
  • Ibberson M, Riederer BM, Uldry M, Immunolocalization of GLUTX1 in the testis and to specific brain areas and vasopressin-containing neurons. Endocrinology 2002;143:276-84
  • Ibberson M, Uldry M, Thorens B. GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. J Biol Chem 2000;275:4607-12
  • Doege H, Bocianski A, Scheepers A, Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle. Biochem J 2001;359:443-9
  • Macheda ML, Williams ED, Best JD, Expression and localisation of GLUT1 and GLUT12 glucose transporters in the pregnant and lactating rat mammary gland. Cell Tissue Res 2003;311:91-7
  • Rogers S, Chandler JD, Clarke AL, Glucose transporter GLUT12-functional characterization in Xenopus laevis oocytes. Biochem Biophys Res Commun 2003;308:422-6
  • Wood IS, Hunter L, Trayhurn P. Expression of Class III facilitative glucose transporter genes (GLUT-10 and GLUT-12) in mouse and human adipose tissues. Biochem Biophys Res Commun 2003;308:43-9
  • Rogers S, Macheda ML, Docherty SE, Identification of a novel glucose transporter-like protein-GLUT-12. Am J Physiol Endocrinol Metab 2002;282:E733-8
  • Fenske W, Voelker HU, Adam P, Glucose transporter GLUT1 expression is a stage-independent predictor of clinical outcome in adrenocortical carcinoma. Endocr Relat Cancer 2009;16:919-28
  • Paudyal B, Oriuchi N, Paudyal P, Expression of glucose transporters and hexokinase II in cholangiocellular carcinoma compared using [18F]-2-fluro-2-deoxy-D-glucose positron emission tomography. Cancer Sci 2008;99:260-6
  • Younes M, Juarez D, Lechago LV, Lerner SP. Glut 1 expression in transitional cell carcinoma of the urinary bladder is associated with poor patient survival. Anticancer Res 2001;21:575-8
  • Hoskin PJ, Sibtain A, Daley FM, Wilson GD. GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON. Br J Cancer 2003;89:1290-7
  • Prata C, Maraldi T, Fiorentini D, Nox-generated ROS modulate glucose uptake in a leukaemic cell line. Free Radic Res 2008;42:405-14
  • Boado RJ, Black KL, Pardridge WM. Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. Brain Res Mol Brain Res 1994;27:51-7
  • Alo PL, Visca P, Botti C, Immunohistochemical expression of human erythrocyte glucose transporter and fatty acid synthase in infiltrating breast carcinomas and adjacent typical/atypical hyperplastic or normal breast tissue. Am J Clin Pathol 2001;116:129-34
  • Brown RS, Wahl RL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 1993;72:2979-85
  • Hao LS, Ni Q, Jia GQ, Expression of glucose transporter 1 in human breast carcinoma and its clinical significance. Sichuan Da Xue Xue Bao Yi Xue Ban 2009;40:44-7
  • Younes M, Brown RW, Mody DR, GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res 1995;15:2895-98
  • Rudlowski C, Becker AJ, Schroder W, GLUT1 messenger RNA and protein induction relates to the malignant transformation of cervical cancer. Am J Clin Pathol 2003;120:691-8
  • Goldman NA, Katz EB, Glenn AS, GLUT1 and GLUT8 in endometrium and endometrial adenocarcinoma. Mod Pathol 2006;19:1429-36
  • Mu DB, Wang SP, Yang WF, Correlation between FDG PET /CT and the expression of glutl and ki-67 antigen in esophageal cancer. Zhonghua Zhong Liu Za Zhi 2007;29:30-3
  • Kim YW, Park YK, Yoon TY, Lee SM. Expression of the GLUT1 glucose transporter in gallbladder carcinomas. Hepatogastroenterology 2002;49:907-11
  • Winter SC, Buffa FM, Silva P, Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res 2007;67:3441-9
  • Mineta H, Miura K, Takebayashi S, Prognostic value of glucose transporter 1 expression in patients with hypopharyngeal carcinoma. Anticancer Res 2002;22:3489-94
  • Suganuma N, Segade F, Matsuzu K, Bowden DW. Differential expression of facilitative glucose transporters in normal and tumour kidney tissues. BJU Int 2007;99:1143-9
  • Noguchi Y, Okamoto T, Marat D, Expression of facilitative glucose transporter 1 mRNA in colon cancer was not regulated by k-ras. Cancer Lett 2000;154:137-42
  • Younes M, Lechago LV, Lechago J. Overexpression of the human erythrocyte glucose transporter occurs as a late event in human colorectal carcinogenesis and is associated with an increased incidence of lymph node metastases. Clin Cancer Res 1996;2:1151-4
  • Ito T, Noguchi Y, Udaka N, Glucose transporter expression in developing fetal lungs and lung neoplasms. Histol Histopathol 1999;14:895-904
  • Kang doY, Lee HW, Choi PJ, Sodium/iodide symporter expression in primary lung cancer and comparison with glucose transporter 1 expression. Pathol Int 2009;59:73-9
  • Kurata T, Oguri T, Isobe T, Differential expression of facilitative glucose transporter (GLUT) genes in primary lung cancers and their liver metastases. Jpn J Cancer Res 1999;90:1238-43
  • Ogawa J, Inoue H, Koide S. Glucose-transporter-type-I-gene amplification correlates with sialyl-Lewis-X synthesis and proliferation in lung cancer. Int J Cancer 1997;74:189-92
  • Kunkel M, Reichert TE, Benz P, Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 2003;97:1015-24
  • Oliver RJ, Woodwards RT, Sloan P, Prognostic value of facilitative glucose transporter Glut-1 in oral squamous cell carcinomas treated by surgical resection; results of EORTC Translational Research Fund studies. Eur J Cancer 2004;40:503-7
  • Cantuaria G, Fagotti A, Ferrandina G, GLUT-1 expression in ovarian carcinoma: association with survival and response to chemotherapy. Cancer 2001;92:1144-50
  • Rudlowski C, Moser M, Becker AJ, GLUT1 mRNA and protein expression in ovarian borderline tumors and cancer. Oncology 2004;66:404-10
  • Chandler JD, Williams ED, Slavin JL, Expression and localization of GLUT1 and GLUT12 in prostate carcinoma. Cancer 2003;97:2035-42
  • Kim WS, Kim YY, Jang SJ, Glucose transporter 1 (GLUT1) expression is associated with intestinal type of gastric carcinoma. J Korean Med Sci 2000;15:420-4
  • Noguchi Y, Marat D, Saito A, Expression of facilitative glucose transporters in gastric tumors. Hepatogastroenterology 1999;46:2683-9
  • Wei B, Chen L, Li J. Expression of glucose transporter 1 in gastric carcinoma and metastatic lymph nodes and its association with prognosis. Zhonghua Wei Chang Wai Ke Za Zhi 2009;12:277-80
  • Haber RS, Weiser KR, Pritsker A, GLUT1 glucose transporter expression in benign and malignant thyroid nodules. Thyroid 1997;7:363-7
  • Schonberger J, Ruschoff J, Grimm D, Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 2002;12:747-54
  • Naftalin RJ, Afzal I, Cunningham P, Interactions of androgens, green tea catechins and the antiandrogen flutamide with the external glucose-binding site of the human erythrocyte glucose transporter GLUT1. Br J Pharmacol 2003;140:487-99
  • Kardon T, Nagy G, Csala M, Influence of BGP-15, a nicotinic amidoxime derivative, on the vascularization and growth of murine hepatoma xenografts. Anticancer Res 2006;26:1023-8
  • Baldwin SA, Lienhard GE. Purification and reconstitution of glucose transporter from human erythrocytes. Methods Enzymol 1989;174:39-50
  • Blodgett DM, De Zutter JK, Levine KB, Structural basis of GLUT1 inhibition by cytoplasmic ATP. J Gen Physiol 2007;130:157-68
  • Goto Y, Kida K, Kaino Y, Inhibitory effects of diazoxide or polymyxin B on glucose transport by isolated rat erythrocytes or adipocytes. Acta Paediatr Jpn 1994;36:637-41
  • Tonack S, Kind K, Thompson JG, Dioxin affects glucose transport via the arylhydrocarbon receptor signal cascade in pluripotent embryonic carcinoma cells. Endocrinology 2007;148:5902-12
  • Krauss SW, Diamond I, Gordon AS. Selective inhibition by ethanol of the type 1 facilitative glucose transporter (GLUT1). Mol Pharmacol 1994;45:1281-6
  • Wood TE, Dalili S, Simpson CD, A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol Cancer Ther 2008;7:3546-55
  • Perez A, Ojeda P, Valenzuela X, Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol. Am J Physiol Cell Physiol 2009;297:C86-93
  • Kasahara T, Kasahara M. Expression of the rat GLUT1 glucose transporter in the yeast Saccharomyces cerevisiae. Biochem J 1996;315 ( Pt 1):177-82
  • Wardell SE, Ilkayeva OR, Wieman HL, Glucose metabolism as a target of histone deacetylase inhibitors. Mol Endocrinol 2009;23:388-401
  • Vorbrodt AW, Dobrogowska DH, Kozlowski PB, Immunogold study of effects of prenatal exposure to lipopolysaccharide and/or valproic acid on the rat blood-brain barrier vessels. J Neurocytol 2005;34:435-46
  • Ho YY, Yang H, Klepper J, Glucose transporter type 1 deficiency syndrome (Glut1DS): methylxanthines potentiate GLUT1 haploinsufficiency in vitro. Pediatr Res 2001;50:254-60
  • Afzal I, Cunningham P, Naftalin RJ. Interactions of ATP, oestradiol, genistein and the anti-oestrogens, faslodex (ICI 182780) and tamoxifen, with the human erythrocyte glucose transporter, GLUT1. Biochem J 2002;365:707-19
  • Wellner M, Monden I, Keller K. The differential role of Cys-421 and Cys-429 of the Glut1 glucose transporter in transport inhibition by p-chloromercuribenzenesulfonic acid (pCMBS) or cytochalasin B (CB). FEBS Lett 1992;309:293-6
  • Mueckler M, Weng W, Kruse M. Glutamine 161 of Glut1 glucose transporter is critical for transport activity and exofacial ligand binding. J Biol Chem 1994;269:20533-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.