262
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Targeting AAC-11 in cancer therapy

&
Pages 57-65 | Published online: 09 Dec 2009

Bibliography

  • Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004;116(2):205-19
  • Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000;10(9):369-77
  • Song Z, Steller H. Death by design: mechanism and control of apoptosis. Trends Cell Biol 1999;9(12):M49-52
  • Creagh EM, Conroy H, Martin SJ. Caspase-activation pathways in apoptosis and immunity. Immunol Rev 2003;193:10-21
  • Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008;9(3):231-41
  • Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002;108(2):153-64
  • Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev 2009;9(7):501-7
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57-70
  • Sellers WR, Fisher DE. Apoptosis and cancer drug targeting. J Clin Invest 1999;104(12):1655-61
  • Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev 2002;2(4):277-88
  • Blagosklonny MV. Prospective strategies to enforce selectively cell death in cancer cells. Oncogene 2004;23(16):2967-75
  • Houghton JA. Apoptosis and drug response. Curr Opin Oncol 1999;11(6):475-81
  • Spierings DC, de Vries EG, Vellenga E, de Jong S. Loss of drug-induced activation of the CD95 apoptotic pathway in a cisplatin-resistant testicular germ cell tumor cell line. Cell Death Differ 2003;10(7):808-22
  • Zhivotovsky B, Orrenius S. Defects in the apoptotic machinery of cancer cells: role in drug resistance. Semin Cancer Biol 2003;13(2):125-34
  • Alnemri ES, Livingston DJ, Nicholson DW, Human ICE/CED-3 protease nomenclature. Cell 1996;87(2):171
  • Barinaga M. Death by dozens of cuts. Science (New York), NY 1998;280(5360):32-4
  • Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene 2008;27(48):6194-206
  • Salvesen GS, Riedl SJ. Caspase mechanisms. Adv Exp Med Biol 2008;615:13-23
  • Kamb A, Wee S, Lengauer C. Why is cancer drug discovery so difficult? Nat Rev Drug Discov 2007;6(2):115-20
  • Letai AG. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nat Rev 2008;8(2):121-32
  • Ledgerwood EC, Morison IM. Targeting the apoptosome for cancer therapy. Clin Cancer Res 2009;15(2):420-4
  • Fischer U, Janssen K, Schulze-Osthoff K. Cutting-edge apoptosis-based therapeutics: a panacea for cancer? BioDrugs 2007;21(5):273-97
  • Garrido C, Schmitt E, Cande C, HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell cycle 2003;2(6):579-84
  • Morris EJ, Michaud WA, Ji JY, Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet 2006;2(11):e196. Published online 17 November 2006, doi:10.1371/journal.pgen.0020196
  • Tewari M, Yu M, Ross B, AAC-11, a novel cDNA that inhibits apoptosis after growth factor withdrawal. Cancer Res 1997;57(18):4063-9
  • Van den Berghe L, Laurell H, Huez L, . FIF fibroblast growth factor-2 (FGF-2)-interacting-factor., a nuclear putatively antiapoptotic factor, interacts specifically with FGF-2. Mol Endocrinol 2000;14(11):1709-24
  • Kim JW, Cho HS, Kim JH, AAC-11 overexpression induces invasion and protects cervical cancer cells from apoptosis. Lab Invest 2000;80(4):587-94
  • Sasaki H, Moriyama S, Yukiue H, Expression of the antiapoptosis gene, AAC-11, as a prognosis marker in non-small cell lung cancer. Lung Cancer 2001;34(1):53-7
  • Krejci P, Pejchalova K, Rosenbloom BE, The antiapoptotic protein Api5 and its partner, high molecular weight FGF2, are up-regulated in B cell chronic lymphoid leukemia. J Leukoc Biol 2007;82(6):1363-4
  • Rigou P, Piddubnyak V, Faye A, The antiapoptotic protein AAC-11 interacts with and regulates acinus-mediated DNA fragmentation. EMBO J 2009;28(11):1576-88
  • Wang Y, Lee AT, Ma JZ, Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem 2008;283(19):13205-15
  • Vinson C, Acharya A, Taparowsky EJ. Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochim Biophys Acta 2006;1759(1-2):4-12
  • Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev 1998;12(15):2245-62
  • Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995;81(3):323-30
  • Stevaux O, Dyson NJ. A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 2002;14(6):684-91
  • Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 2002;3(1):11-20
  • Muller H, Helin K. The E2F transcription factors: key regulators of cell proliferation. Biochim Biophys Acta 2000;1470(1):M1-12
  • Ohtani K, DeGregori J, Nevins JR. Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA 1995;92(26):12146-50
  • Lazzerini Denchi E, Helin K. E2F1 is crucial for E2F-dependent apoptosis. EMBO Rep 2005;6(7):661-8
  • Nahle Z, Polakoff J, Davuluri RV, Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 2002;4(11):859-64
  • Vigo E, Muller H, Prosperini E, CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol Cell Biol 1999;19(9):6379-95
  • Iaquinta PJ, Lees JA. Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol 2007;19(6):649-57
  • Phillips AC, Vousden KH. E2F-1 induced apoptosis. Apoptosis 2001;6(3):173-82
  • Berkovich E, Ginsberg D. ATM is a target for positive regulation by E2F-1. Oncogene 2003;22(2):161-7
  • Bates S, Phillips AC, Clark PA, p14ARF links the tumour suppressors RB and p53. Nature 1998;395(6698):124-5
  • Guo Z, Yikang S, Yoshida H, Inactivation of the retinoblastoma tumor suppressor induces apoptosis protease-activating factor-1 dependent and independent apoptotic pathways during embryogenesis. Cancer Res 2001;61(23):8395-400
  • Hiebert SW, Packham G, Strom DK, E2F-1:DP-1 induces p53 and overrides survival factors to trigger apoptosis. Mol Cell Biol 1995;15(12):6864-74
  • Ho AT, Li QH, Hakem R, Coupling of caspase-9 to Apaf1 in response to loss of pRb or cytotoxic drugs is cell-type-specific. EMBO J 2004;23(2):460-72
  • Holmberg C, Helin K, Sehested M, Karlstrom O. E2F-1-induced p53-independent apoptosis in transgenic mice. Oncogene 1998;17(2):143-55
  • Irwin M, Marin MC, Phillips AC, Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 2000;407(6804):645-8
  • Macleod KF, Hu Y, Jacks T. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J 1996;15(22):6178-88
  • Wu X, Levine AJ. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA 1994;91(9):3602-6
  • Putzer BM. E2F1 death pathways as targets for cancer therapy. J Cell Mol Med 2007;11(2):239-51
  • Banerjee D, Schnieders B, Fu JZ, Role of E2F-1 in chemosensitivity. Cancer Res 1998;58(19):4292-6
  • Dong YB, Yang HL, Elliott MJ, McMasters KM. Adenovirus-mediated E2F-1 gene transfer sensitizes melanoma cells to apoptosis induced by topoisomerase II inhibitors. Cancer Res 2002;62(6):1776-83
  • Hofland K, Petersen BO, Falck J, Differential cytotoxic pathways of topoisomerase I and II anticancer agents after overexpression of the E2F-1/DP-1 transcription factor complex. Clin Cancer Res 2000;6(4):1488-97
  • Nip J, Hiebert SW. Topoisomerase IIalpha mediates E2F-1-induced chemosensitivity and is a target for p53-mediated transcriptional repression. Cell Biochem Biophys 2000;33(2):199-207
  • Obama K, Kanai M, Kawai Y, Role of retinoblastoma protein and E2F-1 transcription factor in the acquisition of 5-fluorouracil resistance by colon cancer cells. Int J Oncol 2002;21(2):309-14
  • Yang HL, Dong YB, Elliott MJ, Additive effect of adenovirus-mediated E2F-1 gene transfer and topoisomerase II inhibitors on apoptosis in human osteosarcoma cells. Cancer Gene Ther 2001;8(4):241-51
  • Lu C, Zhu F, Cho YY, Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell 2006;23(1):121-32
  • Chan CB, Liu X, Tang X, Akt phosphorylation of zyxin mediates its interaction with acinus-S and prevents acinus-triggered chromatin condensation. Cell Death Differ 2007;14(9):1688-99
  • Hu Y, Liu Z, Yang SJ, Ye K. Acinus-provoked protein kinase C δ isoform activation is essential for apoptotic chromatin condensation. Cell Death Differ 2007;14(12):2035-46
  • Hu Y, Yao J, Liu Z, Akt phosphorylates acinus and inhibits its proteolytic cleavage, preventing chromatin condensation. EMBO J 2005;24(20):3543-54
  • Sahara S, Aoto M, Eguchi Y, Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 1999;401(6749):168-73
  • Follis AV, Hammoudeh DI, Wang H, Structural rationale for the coupled binding and unfolding of the c-Myc oncoprotein by small molecules. Chem & Biol 2008;15(11):1149-55
  • Joselin AP, Schulze-Osthoff K, Schwerk C. Loss of Acinus inhibits oligonucleosomal DNA fragmentation but not chromatin condensation during apoptosis. J Biol Chem 2006;281(18):12475-84
  • Forozan F, Veldman R, Ammerman CA, Molecular cytogenetic analysis of 11 new breast cancer cell lines. Br J Cancer 1999;81(8):1328-34
  • Janka M, Fischer U, Tonn JC, Comparative amplification analysis of human glioma tissue and glioma derived fragment spheroids using reverse chromosome painting (RCP). Anticancer Res 1996;16(5A):2601-6
  • Su DM, Zhang Q, Wang X, Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy. Mol Cancer Ther 2009;8(5):1292-304
  • Cao Y, Cao R, Hedlund EM. R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med 2008;86(7):785-9
  • Ishihara M, Fujita M, Obara K, Controlled releases of FGF-2 and paclitaxel from chitosan hydrogels and their subsequent effects on wound repair, angiogenesis, and tumor growth. Curr Drug Deliv 2006;3(4):351-8
  • Presta M, Dell'Era P, Mitola S, Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005;16(2):159-78
  • Yu PJ, Ferrari G, Galloway AC, Basic fibroblast growth factor (FGF-2): the high molecular weight forms come of age. J Cell Biochem 2007;100(5):1100-8
  • Delrieu I. The high molecular weight isoforms of basic fibroblast growth factor (FGF-2): an insight into an intracrine mechanism. FEBS Lett 2000;468(1):6-10
  • Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit 2009;15(2):RA32-40
  • Kikuchi A, Yamamoto H. Tumor formation due to abnormalities in the beta-catenin-independent pathway of Wnt signaling. Cancer Sci 2008;99(2):202-8
  • Mitra A, Chakrabarti J, Chattopadhyay N, Chatterjee A. Membrane-associated MMP-2 in human cervical cancer. J Environ Pathol Toxicol Oncol 2003;22(2):93-100
  • Nagase H. Cell surface activation of progelatinase A (proMMP-2) and cell migration. Cell Res 1998;8(3):179-86
  • Yoshizaki T, Sato H, Furukawa M. Recent advances in the regulation of matrix metalloproteinase 2 activation: from basic research to clinical implication [review]. Oncol Rep 2002;9(3):607-11
  • Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006;127(3):469-80
  • Huang H, He X. Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 2008;20(2):119-25
  • Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004;20:781-810
  • Neth P, Ries C, Karow M, The Wnt signal transduction pathway in stem cells and cancer cells: influence on cellular invasion. Stem Cell Rev 2007;3(1):18-29
  • Cheung HH, LaCasse EC, Korneluk RG. X-linked inhibitor of apoptosis antagonism: strategies in cancer treatment. Clin Cancer Res 2006;12(11 Pt 1):3238-42
  • Lacasse EC, Kandimalla ER, Winocour P, Application of XIAP antisense to cancer and other proliferative disorders: development of AEG35156/ GEM640. Ann NY Acad Sci 2005;1058:215-34
  • Tamm I. AEG-35156, an antisense oligonucleotide against X-linked inhibitor of apoptosis for the potential treatment of cancer. Curr Opin Investig Drugs 2008;9(6):638-46
  • Taylor K, Micha D, Ranson M, Dive C. Recent advances in targeting regulators of apoptosis in cancer cells for therapeutic gain. Expert Opin Investig Drugs 2006 15(6):669-90

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.