604
Views
78
CrossRef citations to date
0
Altmetric
Reviews

Targeting Pyk2 for therapeutic intervention

&
Pages 95-108 | Published online: 09 Dec 2009

Bibliography

  • Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Ann Rev Cell Dev Biol 1995;11:549-99
  • Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009;10:21-33
  • Berrier AL, Yamada KM. Cell–matrix adhesion. J Cell Physiol 2007;213:565-73
  • Tilghman RW, Parsons JT. Focal adhesion kinase as a regulator of cell tension in the progression of cancer. Semin Cancer Biol 2008;18:45-52
  • Schaller MD, Borgman CA, Cobb BS, pp125FAK: a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA 1992;89:5192-6
  • Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 2005;6:56-68
  • Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci 2003;116:1409-16
  • Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. Prog Biophys Mol Biol 1999;71:435-78
  • Schlaepfer DD, Mitra SK. Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 2004;14:92-101
  • Ceccarelli DFJ, Song HK, Poy F, Crystal structure of the FERM domain of focal adhesion kinase. J Biol Chem 2006;281:252-9
  • Lietha D, Cai X, Ceccarelli DF, Structural basis for the autoinhibition of focal adhesion kinase. Cell 2007;129:1177-87
  • Cai X, Lietha D, Ceccarelli DF, Spatial and temporal regulation of focal adhesion kinase activity in living cells. Mol Cell Biol 2008;28:201-14
  • Hayashi I, Vuori K, Liddington RC. The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nat Struct Biol 2002;9:101-6
  • Liu G, Guibao CD, Zheng J. Structural insight into the mechanisms of targeting and signaling of focal adhesion kinase. Mol Cell Biol 2002;22:2751-60
  • Cance WG, Harris JE, Iacocca MV, Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res 2000;6:2417-23
  • Judson PL, He X, Cance WG, Cancer 1999;86:1551-6
  • Lark AL, Livasy CA, Calvo B, Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses. Clin Cancer Res 2003;9:215-22
  • Lark AL, Livasy CA, Dressler L, High focal adhesion kinase expression in invasive breast carcinomas is associated with an aggressive phenotype. Mod Pathol 2005;18:1289-94
  • Owens L, Xu L, Dent G, Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer. Ann Surg Oncol 1996;3:100-5
  • Owens LV, Xu L, Craven RJ, Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 1995;55:2752-5
  • Tremblay L, Hauck W, Aprikian AG, Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer 1996;68:164-71
  • McLean GW, Carragher NO, Avizienyte E, The role of focal-adhesion kinase in cancer – a new therapeutic opportunity. Nat Rev Cancer 2005;5:505-15
  • Chatzizacharias NA, Kouraklis GP, Theocharis SE. Focal adhesion kinase: a promising target for anticancer therapy. Expert Opinion Ther Targets 2007;11:1315-28
  • Chatzizacharias NA, Kouraklis GP, Theocharis SE. Clinical significance of FAK expression in human neoplasia. Histol Histopathol 2008;23:629-50
  • Parsons JT, Slack-Davis J, Tilghman R, Roberts WG. Focal adhesion kinase: targeting adhesion signaling pathways for therapeutic intervention. Clin Cancer Res 2008;14:627-32
  • Avraham S, London R, Fu Y, Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J Biol Chem 1995;270:27742-51
  • Herzog H, Nicholl J, Hort YJ, Molecular cloning and assignment of FAK2, a novel human focal adhesion kinase, to 8p11.2-p22 by nonisotopic in situ hybridization. Genomics 1996;32:484-6
  • Lev S, Moreno H, Martinez R, Protein tyrosine kinase PYK2 involved in Ca2+-induced regulation of ion channel and MAP kinase functions. Nature 1995;376:737-45
  • Sasaki H, Nagura K, Ishino M, Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem 1995;270:21206-19
  • Yu H, Li X, Marchetto GS, Activation of a novel calcium-dependent protein-tyrosine kinase. Correlation with c-Jun N-terminal kinase but not mitogen-activated protein kinase activation. J Biol Chem 1996;271:29993-8
  • Inazawa J, Sasaki H, Nagura K, Precise localization of the human gene encoding cell adhesion kinase beta (CAKbeta/PYK2) to chromosome 8 at p21.1 by fluorescence in situ hybridization. Hum Gene 1996;98:508-10
  • Avraham H, Park SY, Schinkmann K, Avraham S. RAFTK/Pyk2-mediated cellular signalling. Cell Signal 2000;12:123-33
  • Lim Y, Lim S-T, Tomar A, PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J Cell Biol 2008;180:187-203
  • Sieg DJ, Ilic D, Jones KC, Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK– cell migration. EMBO J 1998;17:5933-47
  • Weis SM, Lim S-T, Lutu-Fuga KM, Compensatory role for Pyk2 during angiogenesis in adult mice lacking endothelial cell FAK. J Cell Biol 2008;181:43-50
  • Astier A, Avraham H, Manie SN, The related adhesion focal tyrosine kinase is tyrosine-phosphorylated after beta1-integrin stimulation in B cells and binds to p130cas. J Biol Chem 1997;272:228-32
  • Tokiwa G, Dikic I, Lev S, Schlessinger J. Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science 1996;273:792-4
  • Klingbeil CK, Hauck CR, Hsia DA, Targeting Pyk2 to beta1-integrin-containing focal contacts rescues fibronectin-stimulated signaling and haptotactic motility defects of focal adhesion kinase-null Cells. J Cell Biol 2001;152:97-110
  • Schaller MD, Sasaki T. Differential signaling by the focal adhesion kinase and cell adhesion kinase beta. J Biol Chem 1997;272:25319-25
  • Gutenberg A, Bruck W, Buchfelder M, Ludwig HC. Expression of tyrosine kinases FAK and Pyk2 in 331 human astrocytomas. Acta Neuropathol (Berl) 2004;108:224-30
  • Sun CK, Man K, Ng KT, Proline-rich tyrosine kinase 2 (Pyk2) promotes proliferation and invasiveness of hepatocellular carcinoma cells through c-Src/ERK activation. Carcinogenesis 2008;29:2096-105
  • Sun CK, Ng KT, Sun BS, The significance of proline-rich tyrosine kinase2 (Pyk2) on hepatocellular carcinoma progression and recurrence. Br J Cancer 2007;97:50-7
  • Zhang S, Qiu X, Gu Y, Wang E. Up-regulation of proline-rich tyrosine kinase 2 in non-small cell lung cancer. Lung Cancer 2008;62:295-301
  • Roelle S, Grosse R, Buech T, Essential role of Pyk2 and Src kinase activation in neuropeptide-induced proliferation of small cell lung cancer cells. Oncogene 2007;27:1737-48
  • Behmoaram E, Bijian K, Jie S, Focal adhesion kinase-related proline-rich tyrosine kinase 2 and focal adhesion kinase are co-overexpressed in early-stage and invasive ErbB-2-positive breast cancer and cooperate for breast cancer cell tumorigenesis and invasiveness. Am J Pathol 2008;173:1540-50
  • Girault JA, Labesse G, Mornon JP, Callebaut I. The N-termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem Sci 1999;24:54-7
  • Edwards SD, Keep NH. The 2.7 Å crystal structure of the activated FERM domain of moesin: an analysis of structural changes on activation. Biochemistry 2001;40:7061-8
  • Pearson MA, Reczek D, Bretscher A, Karplus PA. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 2000;101:259-70
  • Hamada K, Shimizu T, Matsui T, Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J 2000;19:4449-62
  • Hirao M, Sato N, Kondo T, Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 1996;135:37-51
  • Hamada K, Shimizu T, Yonemura S, Structural basis of adhesion-molecule recognition by ERM proteins revealed by the crystal structure of the radixin-ICAM-2 complex. EMBO J 2003;22:502-14
  • Dunty JM, Schaller MD. The N termini of focal adhesion kinase family members regulate substrate phosphorylation, localization, and cell morphology. J Biol Chem 2002;277:45644-54
  • Kohno T, Matsuda E, Sasaki H, Sasaki T. Protein-tyrosine kinase CAKbeta/PYK2 is activated by binding Ca2+/calmodulin to FERM F2 alpha2 helix and thus forming its dimer. Biochem J 2008;410:513-23
  • Lipinski CA, Tran NL, Menashi E, The tyrosine kinase pyk2 promotes migration and invasion of glioma cells. Neoplasia 2005;7:435-45
  • Lipinski CA, Tran NL, Dooley A, Critical role of the FERM domain in Pyk2 stimulated glioma cell migration. Biochem Biophys Res Commun 2006;349:939-47
  • Chen R, Kim O, Li M, Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain. Nat Cell Biol 2001;3:439-44
  • Medley QG, Buchbinder EG, Tachibana K, Signaling between focal adhesion kinase and Trio. J Biol Chem 2003;278:13265-70
  • Poullet P, Gautreau A, Kadare G, Ezrin interacts with focal adhesion kinase and induces Its activation independently of cell-matrix adhesion. J Biol Chem 2001;276:37686-91
  • Serrels B, Serrels A, Brunton VG, Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex. Nature Cell Biology 2007;9:1046-56
  • Lev S, Hernandez J, Martinez R, Identification of a novel family of targets of PYK2 related to Drosophila retinal degeneration B (rdgB) protein. Mol Cell Biol 1999;19:2278-88
  • Han S, Mistry A, Chang JS, Structural characterization of proline-rich tyrosine kinase 2 (PYK2) reveals a unique (DFG-out) conformation and enables inhibitor design. J Biol Chem 2009;284:13193-201
  • Ueda H, Abbi S, Zheng C, Guan JL. Suppression of Pyk2 kinase and cellular activities by FIP200. J Cell Biol 2000;149:423-30
  • Kruljac-Letunic A, Moelleken J, Kallin A, The tyrosine kinase Pyk2 regulates Arf1 activity by phosphorylation and inhibition of the Arf-GTPase-activating protein ASAP1. J Biol Chem 2003;278:29560-70
  • Ren XR, Du QS, Huang YZ, Regulation of CDC42 GTPase by proline-rich tyrosine kinase 2 interacting with PSGAP, a novel pleckstrin homology and Src homology 3 domain containing rhoGAP protein. J Cell Biol 2001;152:971-84
  • Takahashi T, Yamashita H, Nagano Y, Identification and characterization of a novel Pyk2/related adhesion focal tyrosine kinase-associated protein that inhibits alpha-synuclein phosphorylation. J Biol Chem 2003;278:42225-33
  • Xiong WC, Macklem M, Parsons JT. Expression and characterization of splice variants of PYK2, a focal adhesion kinase-related protein. J Cell Sci 1998;111:1981-91
  • Andreev J, Simon JP, Sabatini DD, Identification of a new Pyk2 target protein with Arf-GAP activity. Mol Cell Biol 1999;19:2338-50
  • Aoto H, Sasaki H, Ishino M, Sasaki T. Nuclear translocation of cell adhesion kinase beta/proline-rich tyrosine kinase 2. Cell Struct Funct 2002;27:47-61
  • Hildebrand JD, Schaller MD, Parsons JT. Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J Cell Biol 1993;123:993-1005
  • Shen Y, Schaller MD. Focal adhesion targeting: the critical determinant of FAK regulation and substrate phosphorylation. Mol Biol Cell 1999;10:2507-18
  • Zheng C, Xing Z, Bian ZC, Differential regulation of Pyk2 and focal adhesion kinase (FAK). The C-terminal domain of FAK confers response to cell adhesion. J Biol Chem 1998;273:2384-9
  • Lulo J, Yuzawa S, Schlessinger J. Crystal structures of free and ligand-bound focal adhesion targeting domain of Pyk2. Biochem Biophys Res Commun 2009;383:347-52
  • Matsuya M, Sasaki H, Aoto H, Cell adhesion kinase beta forms a complex with a new member, Hic-5, of proteins localized at focal adhesions. J Biol Chem 1998;273:1003-14
  • Wang Q, Xie Y, Du Q-S, Regulation of the formation of osteoclastic actin rings by proline-rich tyrosine kinase 2 interacting with gelsolin. J Cell Biol 2003;160:565-75
  • Blaukat A, Ivankovic-Dikic I, Gronroos E, Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem 1999;274:14893-901
  • Dikic I, Schlessinger J. Identification of a new Pyk2 isoform implicated in chemokine and antigen receptor signaling. J Biol Chem 1998;273:14301-8
  • Li X, Hunter D, Morris J, A calcium-dependent tyrosine kinase splice variant in human monocytes. Activation by a two-stage process involving adherence and a subsequent intracellular signal. J Biol Chem 1998;273:9361-4
  • Richardson A, Parsons T. A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK. Nature 1996;380:538-40
  • Schaller MD, Borgman CA, Parsons JT. Autonomous expression of a noncatalytic domain of the focal adhesion-associated protein tyrosine kinase pp125FAK. Mol Cell Biol 1993;13:785-91
  • Suen PW, Ilic D, Caveggion E, Impaired integrin-mediated signal transduction, altered cytoskeletal structure and reduced motility in Hck/Fgr deficient macrophages. J Cell Sci 1999;112:4067-78
  • Duong LT, Lakkakorpi PT, Nakamura I, PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alphavbeta3 integrin, and phosphorylated by Src kinase. J Clin Invest 1998;102:881-92
  • Lakkakorpi PT, Bett AJ, Lipfert L, PYK2 autophosphorylation, but not kinase activity, is necessary for adhesion-induced association with c-Src, osteoclast spreading, and bone resorption. J Biol Chem 2003; 278:11502-12
  • Lakkakorpi PT, Nakamura I, Nagy RM, Stable association of PYK2 and p130Cas in their co-localization in the sealing zone. J Biol Chem 1999;274:4900-7
  • Ilic D, Furuta Y, Kanazawa S, Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995;377:539-44
  • Okigaki M, Davis C, Falasca M, Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration. Proc Natl Acad Sci USA 2003;100:10740-5
  • Guinamard R, Okigaki M, Schlessinger J, Ravetch JV. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat Immunol 2000;1:31-6
  • Buckbinder L, Crawford DT, Qi H, Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc Natl Acad Sci USA 2007;104:10619-24
  • Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2006;2:358-64
  • Burke JR, Pattoli MA, Gregor KR, BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J Biol Chem 2003;278:1450-6
  • Ohren JF, Chen H, Pavlovsky A, Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 2004;11:1192-7
  • Liu TJ, LaFortune T, Honda T, Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo. Mol Cancer Ther 2007;6:1357-67
  • Lietha D, Eck MJ. Crystal structures of the FAK kinase in complex with TAE226 and related bis-anilino pyrimidine inhibitors reveal a helical DFG conformation. PLoS One 2008; 3:e3800, published online 24 November 2008, doi:10.1371/journal.pone.0003800
  • Shi Q, Hjelmeland AB, Keir ST, A novel low-molecular weight inhibitor of focal adhesion kinase, TAE226, inhibits glioma growth. Mol Carcinogenesis 2007;46:488-96
  • Halder J, Lin YG, Merritt WM, Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma. Cancer Res 2007;67:10976-83
  • Roberts WG, Ung E, Whalen P, Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 2008;68:1935-44
  • Siu LL, Burris HA, Mileshkin L, Phase I study of a focal adhesion kinase (FAK) inhibitor PF-562,271 in patients with advanced solid tumors. J Clin Oncol 2007; 25 18S ASCO meeting abstracts: abstract 3527
  • Sperandio O, Miteva M, Segers K, Screening outside the catalytic site: Inhibition of macromolecular interactions through structure-based virtual ligand screening experiments. Open Biochem J 2008;2:29-37
  • Wells JA, McClendon CL. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 2007;450:1001-9
  • Domling A. Small molecular weight protein-protein interaction antagonists–an insurmountable challenge? Curr Opin Chem Biol 2008;12:281-91
  • Ruffner H, Bauer A, Bouwmeester T. Human protein–protein interaction networks and the value for drug discovery. Drug DiscovToday 2007;12:709-16
  • Lewis JA, Lebois EP, Lindsley CW. Allosteric modulation of kinases and GPCRs: design principles and structural diversity. Curr OpinChem Biol 2008;12:269-80
  • Zhao Z, Robinson RG, Barnett SF, Development of potent, allosteric dual Akt1 and Akt2 inhibitors with improved physical properties and cell activity. Bioorg Med Chem Letts 2008;18:49-53
  • Loftus JC, Yang Z, Tran NL, The Pyk2 FERM domain as a target to inhibit glioma migration. Mol Can Ther 2009;8:1505-14
  • Gadina M, Hilton D, Johnston JA, Signaling by Type I and II cytokine receptors: ten years after. Curr Opin Immunol 2001;13:363-73
  • Macchi P, Villa A, Giliani S, Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995;377:65-8
  • Russell SM, Tayebi N, Nakajima H, Mutation of Jak3 in a patient with SCID:essential role of Jak3 in lymphoid development. Science 1995;270:797-800
  • Thomis DC, Gurniak CB, Tivol E, Defects in B lymphocyte maturation and T cell activation in mice lacking Jak3. Science 1995;270:794-7
  • Zhou YJ, Chen M, Cusack NA, Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases. Mol Cell 2001;8:959-69
  • Baser ME. The distribution of constitutional and somatic mutations in the neurofibromatosis 2 gene. Human Mutation 2006;27:297-306
  • Johnson KC, Kissil JL, Fry JL, Jacks T. Cellular transformation by a FERM domain mutant of the Nf2 tumor suppressor gene. Oncogene 2002;21:5990-7
  • Lau Y-KI, Murray LB, Houshmandi SS, Merlin is a potent inhibitor of glioma growth. Cancer Res 2008;68:5733-42
  • Shaw RJ, Paez JG, Curto M, The Nf2 tumor suppressor, Merlin, functions in Rac-dependent signaling. Develop Cell 2001;1:63-72
  • Rong R, Tang X, Gutmann DH, Ye K. Neurofibromatosis 2 (NF2) tumor suppressor merlin inhibits phosphatidylinositol 3-kinase through binding to PIKE-L. Proc Natl Acad Sci USA 2004;101:18200-5
  • Garcia-Alvarez B, de Pereda JM, Calderwood DA, Structural determinants of integrin recognition by talin. Mol Cell 2003;11:49-58
  • de Pereda JM, Wegener KL, Santelli E, Structural basis for phosphatidylinositol phosphate kinase type Igamma binding to talin at focal adhesions. J Biol Chem 2005;280:8381-6
  • Lipinski CA, Tran NL, Viso C, Extended survival of Pyk2 or FAK deficient orthotopic glioma xenografts. J Neuro-Oncol 2008;90:181-9
  • Cao T, Heng BC. Intracellular antibodies (intrabodies) versus RNA interference for therapeutic applications. Ann Clin Lab Sci 2005;35:227-9
  • Manikandan J, Pushparaj PN, Melendez AJ. Protein i: interference at protein level by intrabodies. Front Biosci 2007;12:1344-52
  • Williams BR, Zhenping Z. Intrabody-based approaches to cancer therapy: Status and prospects. Curr Med Chem 2006;13:1473-80
  • Boldicke T, Weber H, Mueller PP, Novel highly efficient intrabody mediates complete inhibition of cell surface expression of the human vascular endothelial growth factor receptor-2 (VEGFR-2/KDR). J Immunol Methods 2005;300:146-59
  • Wheeler YY, Kute TE, Willingham MC, Intrabody-based strategies for inhibition of vascular endothelial growth factor receptor-2: effects on apoptosis, cell growth, and angiogenesis. FASEB J 2003;17:1733-5
  • Zhu Q, Zeng C, Huhalov A, Extended half-life and elevated steady-state level of a single-chain Fv intrabody are critical for specific intracellular retargeting of its antigen, caspase-7. J Immunol Methods 1999;231:207-22
  • Shin I, Edl J, Biswas S, Proapoptotic activity of cell-permeable anti-Akt single-chain antibodies. Cancer Res 2005;65:2815-24
  • Tanaka T, Rabbitts TH. Intrabodies based on intracellular capture frameworks that bind the RAS protein with high affinity and impair oncogenic transformation. EMBO J 2003;22:1025-35
  • Bolton SJ, Barry ST, Mosley H, Monoclonal antibodies recognizing the N- and C-terminal regions of talin disrupt actin stress fibers when microinjected into human fibroblasts. Cell Motil Cytoskel 1997;36:363-76
  • Xing B, Thuppal S, Jedsadayanmata A, TA205, an anti-talin monoclonal antibody, inhibits integrin-talin interaction. FEBS Lett 2006;580:2027-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.