181
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Dickkopf-1 as a potential therapeutic target in Paget's disease of bone

&
Pages 221-230 | Published online: 08 Jan 2010

Bibliography

  • van Staa TP, Selby P, Leufkens HG, Incidence and natural history of Paget's disease of bone in England and Wales. J Bone Miner Res 2002;17:465-71
  • Helfrich MH, Hocking LJ. Genetics and aetiology of Pagetic disorders of bone. Arch Biochem Biophys 2008;473:172-82
  • Reid IR, Nicholson GC, Weinstein RS, Biochemical and radiologic improvement in Paget's disease of bone treated with alendronate: a randomized, placebo-controlled trial. Am J Med 1996;101:341-8
  • Hamadouche M, Mathieu M, Topouchian V, Transfer of Paget's disease from one part of the skeleton to another as a result of autogenous bone-grafting: a case report. J Bone Joint Surg Am 2002;84-A:2056-61
  • Mangham DC, Davie MW, Grimer RJ. Sarcoma arising in Paget's disease of bone: declining incidence and increasing age at presentation. Bone 2009;44:431-6
  • Brandolini F, Bacchini P, Moscato M, Chondrosarcoma as a complicating factor in Paget's disease of bone. Skeletal Radiol 1997;26:497-500
  • Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology 2001;142:5050-5
  • Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in bone cell biology. J Mol Med 2001;79:243-53
  • Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene 2004;341:19-39
  • Grotewold L, Ruther U. The Wnt antagonist Dickkopf-1 is regulated by Bmp signaling and c-Jun and modulates programmed cell death. EMBO J 2002;21:966-75
  • Glass DA, Bialek P, Ahn JD, Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005;8:751-64
  • Gong Y, Slee RB, Fukai N, LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107:513-23
  • Boyden LM, Mao J, Belsky J, High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346:1513-21
  • Etheridge SL, Spencer GJ, Heath DJ, Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 2004;22:849-60
  • Yavropoulou MP, Yovos JG. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones (Athens) 2007;6:279-94
  • Hall CL, Keller ET. The role of Wnts in bone metastases. Cancer Met Rev 2006;25:551-8
  • Nakashima A, Katagiri T, Tamura M. Cross-talk between Wnt and bone morphogenetic protein 2 (BMP-2) signaling in differentiation pathway of C2C12 myoblasts. J Biol Chem 2005;280:37660-8
  • Li F, Chong ZZ, Maiese K. Vital elements of the Wnt-Frizzled signaling pathway in the nervous system. Curr Neurovasc Res 2005;2:331-40
  • Carmon KS, Loose DS. Wnt7a interaction with Fzd5 and detection of signaling activation using a split eGFP. Biochem Biophys Res Commun 2008;368:285-91
  • Deutscher E, Hung-Chang YH. Essential roles of mesenchyme-derived beta-catenin in mouse Müllerian duct morphogenesis. Dev Biol 2007;307:227-36
  • Kubota T, Michigami T, Sakaguchi N, Lrp6 hypomorphic mutation affects bone mass through bone resorption in mice and impairs interaction with Mesd. J Bone Miner Res 2008;23:1661-71
  • Pinson KI, Brennan J, Monkley S, An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 2000;407:535-8
  • Wang HY, Malbon CC. Wnt signaling, Ca2+, and cyclic GMP: visualizing Frizzled functions. Science 2003;300:1529-30
  • Habas R, Dawid IB, He X. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev 2003;17:295-309
  • Yadav VK, Ryu JH, Suda N, Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 2008;135:825-37
  • Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci 2003;116:2627-34
  • Bodine PV, Zhao W, Kharode YP, The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol 2004;18:1222-37
  • Hausler KD, Horwood NJ, Chuman Y, Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res 2004;19:1873-81
  • Oshima T, Abe M, Asano J, Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 2005;106:3160-5
  • Sathi GA, Inoue M, Harada H, Secreted frizzled related protein (sFRP)-2 inhibits bone formation and promotes cell proliferation in ameloblastoma. Oral Oncol 2009;45:856-60
  • Hoang B, Moos M Jr, Vukicevic S, Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J Biol Chem 1996;271:26131-7
  • Loughlin J, Dowling B, Chapman K, Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Nat Acad Sci USA 2004;101:9757-62
  • Mandal D, Srivastava A, Mahlum E, Severe suppression of Frzb/sFRP3 transcription in osteogenic sarcoma. Gene 2007;386:131-8
  • Nakanishi R, Akiyama H, Kimura H, Osteoblast-targeted expression of Sfrp4 in mice results in low bone mass. J Bone Miner Res 2008;23:271-7
  • Witte F, Dokas J, Neuendorf F, Comprehensive expression analysis of all Wnt genes and their major secreted antagonists during mouse limb development and cartilage differentiation. Gene Expr Patterns 2009;9:215-23
  • Cho SW, Yang JY, Sun HJ, Wnt inhibitory factor (WIF)-1 inhibits osteoblastic differentiation in mouse embryonic mesenchymal cells. Bone 2009;44:1069-77
  • Hsieh JC, Kodjabachian L, Rebbert ML, A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 1999;398:431-6
  • Vaes BL, Dechering KJ, Feijen A, Comprehensive microarray analysis of bone morphogenetic protein 2-induced osteoblast differentiation resulting in the identification of novel markers for bone development. J Bone Miner Res 2002;17:2106-18
  • Semenov MV, Tamai K, Brott BK, Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 2001;11:951-61
  • Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 2001;1:423-34
  • MacDonald BT, Joiner DM, Oyserman SM, Bone mass is inversely proportional to Dkk1 levels in mice. Bone 2007;41:331-9
  • Morvan F, Boulukos K, Clement-Lacroix P, Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 2006;21:934-45
  • Wang J, Shou J, Chen X. Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. Oncogene 2000;19:1843-8
  • Shou J, Ali-Osman F, Multani AS, Human Dkk-1, a gene encoding a Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA. Oncogene 2002;21:878-89
  • van der Horst G, van der Werf SM, Farih-Sips H, Downregulation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J Bone Miner Res 2005;20:1867-77
  • Bajada S, Marshall MJ, Wright KT, Decreased osteogenesis, increased cell senescence and elevated Dickkopf-1 secretion in human fracture non union stromal cells. Bone 2009;45:726-35
  • Knobloch J, Shaughnessy JD Jr, Ruther U. Thalidomide induces limb deformities by perturbing the Bmp/Dkk1/Wnt signaling pathway. FASEB J 2007;21:1410-21
  • Tian E, Zhan F, Walker R, The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003;349:2483-94
  • Terpos E, Heath DJ, Rahemtulla A, Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-κB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 2006;135:688-92
  • Diarra D, Stolina M, Polzer K, Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007;13:156-63
  • Lee N, Smolarz AJ, Olson S, A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts novel diagnostic and treatment strategies. Br J Cancer 2007;97:1552-9
  • Robling AG, Niziolek PJ, Baldridge LA, Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 2008;283:5866-75
  • Lin C, Jiang X, Dai Z, Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res 2009;24:1651-61
  • Li X, Zhang Y, Kang H, Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 2005;280:19883-7
  • Balemans W, Ebeling M, Patel N, Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 2001;10:537-43
  • Loots GG, Kneissel M, Keller H, Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 2005;15:928-35
  • Sutherland MK, Geoghegan JC, Yu C, Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone 2004;35:828-35
  • Li X, Ominsky MS, Warmington KS, Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 2009;24:578-88
  • Schilling AF, Priemel M, Timo BF, Transgenic and knock out mice in skeletal research. Towards a molecular understanding of the mammalian skeleton. J Musculoskelet Neuronal Interact 2001;1:275-89
  • Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 1994;55:273-86
  • Costelloe CM, Eftekhari F, Petropoulos D. Radiography of successful bone marrow transplantation for osteopetrosis. Skeletal Radiol 2007;36 (Suppl 1):S34-S37
  • Kukita A, Chenu C, McManus LM, Atypical multinucleated cells form in long-term marrow cultures from patients with Paget's disease. J Clin Invest 1990;85:1280-6
  • Menaa C, Reddy SV, Kurihara N, Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget's disease of bone. J Clin Invest 2000;105:1833-8
  • Bianco P, Silvestrini G, Ballanti P, Paramyxovirus-like nuclear inclusions identical to those of Paget's disease of bone detected in giant cells of primary oxalosis. Virchows Arch A Pathol Anat Histopathol 1992;421:427-33
  • Mills BG, Yabe H, Singer FR. Osteoclasts in human osteopetrosis contain viral-nucleocapsid-like nuclear inclusions. J Bone Miner Res 1988;3:101-6
  • Layfield R, Alban A, Mayer RJ, The ubiquitin protein catabolic disorders. Neuropathol Appl Neurobiol 2001;27:171-9
  • Birch MA, Taylor W, Fraser WD, Absence of paramyxovirus RNA in cultures of pagetic bone cells and in pagetic bone. J Bone Miner Res 1994;9:11-6
  • Matthews BG, Afzal MA, Minor PD, Failure to detect measles virus ribonucleic acid in bone cells from patients with Paget's disease. J Clin Endocrinol Metab 2008;93:1398-401
  • Kurihara N, Zhou H, Reddy SV, Expression of measles virus nucleocapsid protein in osteoclasts induces Paget's disease-like bone lesions in mice. J Bone Miner Res 2006;21:446-55
  • Rea SL, Walsh JP, Ward L, Sequestosome 1 mutations in Paget's disease of bone in Australia: prevalence, genotype/phenotype correlation, and a novel non-UBA domain mutation (P364S) associated with increased NF-κB signaling without loss of ubiquitin binding. J Bone Miner Res 2009;24:1216-23
  • Cavey JR, Ralston SH, Sheppard PW, Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget's disease of bone. Calcif Tissue Int 2006;78:271-7
  • Good DA, Busfield F, Fletcher BH, Identification of SQSTM1 mutations in familial Paget's disease in Australian pedigrees. Bone 2004;35:277-82
  • Hocking LJ, Lucas GJ, Daroszewska A, Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum Mol Genet 2002;11:2735-9
  • Johnson-Pais TL, Wisdom JH, Weldon KS, Three novel mutations in SQSTM1 identified in familial Paget's disease of bone. J Bone Miner Res 2003;18:1748-53
  • Matthews BG, Naot D, Bava U, Absence of somatic SQSTM1 mutations in Paget's disease of bone. J Clin Endocrinol Metab 2009;94:691-4
  • Kurihara N, Hiruma Y, Zhou H, Mutation of the sequestosome 1 (p62) gene increases osteoclastogenesis but does not induce Paget disease. J Clin Invest 2007;117:133-42
  • Rojas J, Daroszewska A, Helfrich M, Mice with a truncation mutation affecting SQSTM1 exhibit several phenotypic features in common with Paget's disease of bone. Calcif Tiss Int 2007;81:145-51
  • Parfit AM. Bone structure and remodeling in Paget's disease – qualitative and quantitative abnormalities in osteoblast function. Calcif Tiss Int 2005;76:475-6
  • Seitz S, Priemel M, Zustin J, Paget's disease of bone: histologic analysis of 754 patients. J Bone Miner Res 2009;24:62-9
  • Demulder A, Takahashi S, Singer FR, Abnormalities in osteoclast precursors and marrow accessory cells in Paget's disease. Endocrinology 1993;133:1978-82
  • Naot D, Bava U, Matthews B, Differential gene expression in cultured osteoblasts and bone marrow stromal cells from patients with Paget's disease of bone. J Bone Miner Res 2007;22:298-309
  • Gregory CA, Singh H, Perry AS, The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 2003;278:28067-78
  • Matushansky I, Hernando E, Socci ND, Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 2007;117:3248-57
  • Roodman GD, Kurihara N, Ohsaki Y, Interleukin 6. A potential autocrine/paracrine factor in Paget's disease of bone. J Clin Invest 1992;89:46-52
  • Neale SD, Schulze E, Smith R, The influence of serum cytokines and growth factors on osteoclast formation in Paget's disease. QJM 2002;95:233-240
  • Marshall MJ, Evans SF, Sharp CA, Increased circulating Dickkopf-1 in Paget's disease of bone. Clin Biochem 2009;42:965-9
  • Polyzos SA, Anastasilakis AD, Efstathiadou Z, The effect of zoledronic acid on serum dickkopf-1, osteoprotegerin, and RANKL in patients with paget's disease of bone. Horm Metab Res 2009;41(11):846-50
  • Kuku I, Bayraktar MR, Kaya E, Serum proinflammatory mediators at different periods of therapy in patients with multiple myeloma. Mediators Inflamm 2005;3:171-4
  • Kinder M, Chislock E, Bussard KM, Metastatic breast cancer induces an osteoblast inflammatory response. Exp Cell Res 2008;314:173-83
  • Voorzanger-Rousselot N, Goehrig D, Journe F, Increased Dickkopf-1 expression in breast cancer bone metastases. Br J Cancer 2007;97:964-70
  • Hall CL, Daignault SD, Shah RB, Dickkopf-1 expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis. Prostate 2008;68:1396-404
  • Tumminello FM, Badalamenti G, Incorvaia L, Serum interleukin-6 in patients with metastatic bone disease: correlation with cystatin C. Med Oncol 2009;26:10-5
  • Gunn WG, Conley A, Deininger L, A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006;24:986-91
  • Holmen SL, Zylstra CR, Mukherjee A, Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem 2005;280:21162-8
  • Roato I, D'Amelio P, Gorassini E, Osteoclasts are active in bone forming metastases of prostate cancer patients. PLoS One 2008;3:e3627. Published online 3 November 2008, doi: 10.1371/journal.pone.0003627
  • Heider U, Hofbauer LC, Zavrski I, Novel aspects of osteoclast activation and osteoblast inhibition in myeloma bone disease. Biochem Biophys Res Commun 2005;338:687-93
  • Aicher A, Kollet O, Heeschen C, The Wnt antagonist Dickkopf-1 mobilizes vasculogenic progenitor cells via activation of the bone marrow endosteal stem cell niche. Circ Res 2008;103:796-803
  • Fujita K, Janz S. Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF. Mol Cancer 2007;6:71. Published online 30 October 2007, doi: 10.1186/1476-4598-6-71
  • Qiang YW, Chen Y, Stephens O, Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 2008;112:196-207
  • Rogers MJ. From molds and macrophages to mevalonate: a decade of progress in understanding the molecular mode of action of bisphosphonates. Calcif Tissue Int 2004;75:451-61
  • Rogers MJ. New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 2003;9:2643-58
  • Roelofs AJ, Thompson K, Gordon S, Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res 2006;12:6222s-30s
  • Merlotti D, Gennari L, Martini G, Comparison of different intravenous bisphosphonate regimens for Paget's disease of bone. J Bone Miner Res 2007;22:1510-7
  • Langston AL, Campbell MK, Fraser WD, Randomised trial of intensive bisphosphonate treatment versus symptomatic management in Paget's disease of bone. J Bone Miner Res 2009; published online 6 July 2009, doi: 10.1359/JBMR.090709

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.