350
Views
19
CrossRef citations to date
0
Altmetric
Reviews

TGF-β signalling and immunity in prostate tumourigenesis

, , &
Pages 179-192 | Published online: 08 Jan 2010

Bibliography

  • American Cancer Society. Cancer Facts & Figures 2009. Atlanta: American Cancer Society; 2009
  • Kelly RW, Critchley HO. Immunomodulation by human seminal plasma: a benefit for spermatozoon and pathogen? Hum Reprod 1997;12:2200-7
  • Robertson SA, Ingman WV, O'Leary S, Transforming growth factor beta–a mediator of immune deviation in seminal plasma. J Reprod Immunol 2002;57:109-28
  • Isaacs JT. Control of cell proliferation and death in normal and neoplastic prostate: a stem cell model. In: Rogers CH, Coffey DS, Cunha G, ., editors, Benign prostate hyperplasia. Department of Health and Human Services. Volume 2. Washington, DC, USA. NIH. Bethesda, Maryland, USA; 1985. p. 85-94
  • Russell PJ, Bennett S, Stricker P. Growth factor involvement in progression of prostate cancer. Clin Chem 1998;44:705-23
  • Danielpour D. Functions and regulation of transforming growth factor-beta (TGF-beta) in the prostate. Eur J Cancer 2005;41:846-57
  • Li MO, Wan YY, Sanjabi S, Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006;24:99-146
  • Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000;342:1350-8
  • Massague J. TGFbeta in cancer. Cell 2008;134:215-30
  • Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 2007;98:1512-20
  • Salm SN, Burger PE, Coetzee S, TGF-beta maintains dormancy of prostatic stem cells in the proximal region of ducts. J Cell Biol 2005;170:81-90
  • Stravodimos K, Constantinides C, Manousakas T, Immunohistochemical expression of transforming growth factor beta 1 and nm-23 H1 antioncogene in prostate cancer: divergent correlation with clinicopathological parameters. Anticancer Res 2000;20:3823-8
  • Shariat SF, Kattan MW, Traxel E, Association of pre- and postoperative plasma levels of transforming growth factor beta1 and interleukin 6 and its soluble receptor with prostate cancer progression. Clin Cancer Res 2004;10:1992-9
  • Wikstrom P, Damber J, Bergh A. Role of transforming growth factor-beta1 in prostate cancer. Microsc Res Tech 2001;52:411-9
  • Kim IY, Ahn HJ, Lang S, Loss of expression of transforming growth factor-beta receptors is associated with poor prognosis in prostate cancer patients. Clin Cancer Res 1998;4:1625-30
  • Lee HM, Timme TL, Thompson TC. Resistance to lysis by cytotoxic T cells: a dominant effect in metastatic mouse prostate cancer cells. Cancer Res 2000;60:1927-33
  • Matthews E, Yang T, Janulis L, Down-regulation of TGF-beta1 production restores immunogenicity in prostate cancer cells. Br J Cancer 2000;83:519-25
  • Abate-Shen C, Shen MM. Molecular genetics of prostate cancer. Genes Dev 2000;14:2410-34
  • Wang W, Bergh A, Damber JE. Morphological transition of proliferative inflammatory atrophy to high-grade intraepithelial neoplasia and cancer in human prostate. Prostate 2009;69:1378-86
  • De Marzo AM, Platz EA, Sutcliffe S, Inflammation in prostate carcinogenesis. Nat Rev Cancer 2007;7:256-69
  • Franks LM. Atrophy and hyperplasia in the prostate proper. J Pathol Bacteriol 1954;68:617-21
  • Rich AR. Classics in oncology. On the frequency of occurrence of occult carcinoma of the prostate: Arnold Rice Rich, M.D., Journal of Urology 33:3, 1935. CA Cancer J Clin 1979;29:115-9
  • van Leenders GJ, Gage WR, Hicks JL, Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am J Pathol 2003;162:1529-37
  • Meiers I, Shanks JH, Bostwick DG. Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: review 2007. Pathology 2007;39:299-304
  • Meeker AK. Telomeres and telomerase in prostatic intraepithelial neoplasia and prostate cancer biology. Urol Oncol 2006;24:122-30
  • De Marzo AM, DeWeese TL, Platz EA, Pathological and molecular mechanisms of prostate carcinogenesis: implications for diagnosis, detection, prevention, and treatment. J Cell Biochem 2004;91:459-77
  • Chen CR, Kang Y, Siegel PM, Massague J. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 2002;110:19-32
  • Gomis RR, Alarcon C, Nadal C, C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 2006;10:203-14
  • Assinder SJ, Dong Q, Kovacevic Z, Richardson DR. The TGF-beta, PI3K/Akt and PTEN pathways: established and proposed biochemical integration in prostate cancer. Biochem J 2009;417:411-21
  • Chmelar R, Buchanan G, Need EF, Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 2007;120:719-33
  • Scher HI, Buchanan G, Gerald W, Targeting the androgen receptor: improving outcomes for castration-resistant prostate cancer. Endocr Relat Cancer 2004;11:459-76
  • Cunha GR, Lung B. The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zoolog 1978;205:181-93
  • Donjacour AA, Cunha GR. Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology 1993;132:2342-50
  • Cunha GR, Young P. Inability of Tfm (testicular feminization) epithelial cells to express androgen-dependent seminal vesicle secretory proteins in chimeric tissue recombinants. Endocrinology 1991;128:3293-8
  • Bhowmick NA, Chytil A, Plieth D, TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004;303:848-51
  • Niu YN, Xia SJ. Stroma-epithelium crosstalk in prostate cancer. Asian J Androl 2009;11:28-35
  • Sutkowski DM, Fong CJ, Sensibar JA, Interaction of epidermal growth factor and transforming growth factor beta in human prostatic epithelial cells in culture. Prostate 1992;21:133-43
  • Martikainen P, Kyprianou N, Isaacs JT. Effect of transforming growth factor-beta1 on proliferation and death of rat prostatic cells. Endocrinology 1990;127:2963-8
  • Gerdes MJ, Larsen M, Dang TD, Regulation of rat prostate stromal cell myodifferentiation by androgen and TGF-beta1. Prostate 2004;58:299-307
  • Cancilla B, Jarred RA, Wang H, Regulation of prostate branching morphogenesis by activin A and follistatin. Dev Biol 2001;237:145-58
  • Ricciardelli C, Choong CS, Buchanan G, Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate 2005;63:19-28
  • Tuxhorn JA, Ayala GE, Smith MJ, Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 2002;8:2912-23
  • Song K, Wang H, Krebs TL, Androgenic control of transforming growth factor-beta signaling in prostate epithelial cells through transcriptional suppression of transforming growth factor-beta receptor II. Cancer Res 2008;68:8173-82
  • Tu WH, Thomas TZ, Masumori N, The loss of TGF-beta signaling promotes prostate cancer metastasis. Neoplasia 2003;5:267-77
  • Zhao H, Shiina H, Greene KL, CpG methylation at promoter site -140 inactivates TGFbeta2 receptor gene in prostate cancer. Cancer 2005;104:44-52
  • Hayes SA, Zarnegar M, Sharma M, SMAD3 represses androgen receptor-mediated transcription. Cancer Res 2001;61:2112-8
  • Kang HY, Huang KE, Chang SY, Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4. J Biol Chem 2002;277:43749-56
  • Zhu ML, Partin JV, Bruckheimer EM, TGF-beta signaling and androgen receptor status determine apoptotic cross-talk in human prostate cancer cells. Prostate 2008;68:287-95
  • Chipuk JE, Cornelius SC, Pultz NJ, The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3. J Biol Chem 2002;277:1240-8
  • Wang H, Song K, Krebs TL, Smad7 is inactivated through a direct physical interaction with the LIM protein Hic-5/ARA55. Oncogene 2008;27:6791-805
  • Heitzer MD, DeFranco DB. Hic-5/ARA55: a prostate stroma-specific AR coactivator. Steroids 2007;72:218-20
  • Heitzer MD, DeFranco DB. Hic-5/ARA55, a LIM domain-containing nuclear receptor coactivator expressed in prostate stromal cells. Cancer Res 2006;66:7326-33
  • Wikstrom P, Marusic J, Stattin P, Bergh A. Low stroma androgen receptor level in normal and tumor prostate tissue is related to poor outcome in prostate cancer patients. Prostate 2009;69:799-809
  • Kyprianou N, Isaacs JT. Expression of transforming growth factor-beta in the rat ventral prostate during castration-induced programmed cell death. Mol Endocrinol 1989;3:1515-22
  • Wikstrom P, Westin P, Stattin P, Early castration-induced upregulation of transforming growth factor beta1 and its receptors is associated with tumor cell apoptosis and a major decline in serum prostate-specific antigen in prostate cancer patients. Prostate 1999;38:268-77
  • Denmeade SR, Lin XS, Isaacs JT. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 1996;28:251-65
  • Placencio VR, Sharif-Afshar AR, Li X, Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity. Cancer Res 2008;68:4709-18
  • Cunha GR, Ricke W, Thomson A, Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. J Steroid Biochem Mol Biol 2004;92:221-36
  • Chen CD, Welsbie DS, Tran C, Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004;10:33-9
  • Waltering KK, Helenius MA, Sahu B, Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res 2009;69:8141-9
  • Terry S, Yang X, Chen MW, Multifaceted interaction between the androgen and Wnt signaling pathways and the implication for prostate cancer. J Cell Biochem 2006;99:402-10
  • English HF, Santen RJ, Isaacs JT. Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 1987;11:229-42
  • Tsujimura A, Koikawa Y, Salm S, Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 2002;157:1257-65
  • Lawson DA, Xin L, Lukacs RU, Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 2007;104:181-6
  • Leong KG, Wang BE, Johnson L, Gao WQ. Generation of a prostate from a single adult stem cell. Nature 2008;456:804-8
  • Wang X, Kruithof-de Julio M, Economides KD, A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 2009;461:495-500
  • Nemeth JA, Sensibar JA, White RR, Prostatic ductal system in rats: tissue-specific expression and regional variation in stromal distribution of transforming growth factor-beta1. Prostate 1997;33:64-71
  • Niessen CM, Hogervorst F, Jaspars LH, The alpha6beta4 integrin is a receptor for both laminin and kalinin. Exp Cell Res 1994;211:360-7
  • Juliano RL. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 2002;42:283-323
  • Wang D, Sun L, Zborowska E, Control of type II transforming growth factor-beta receptor expression by integrin ligation. J Biol Chem 1999;274:12840-7
  • Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007;7:834-46
  • Ellis WJ, Pfitzenmaier J, Colli J, Detection and isolation of prostate cancer cells from peripheral blood and bone marrow. Urology 2003;61:277-81
  • Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002;2:563-72
  • Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006;127:679-95
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730-7
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983-8
  • O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106-10
  • Singh SK, Hawkins C, Clarke ID, Identification of human brain tumour initiating cells. Nature 2004;432:396-401
  • Gu G, Yuan J, Wills M, Kasper S. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 2007;67:4807-15
  • Collins AT, Berry PA, Hyde C, Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65:10946-51
  • Patrawala L, Calhoun T, Schneider-Broussard R, Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006;25:1696-708
  • van Leenders GJ, Schalken JA. Stem cell differentiation within the human prostate epithelium: implications for prostate carcinogenesis. BJU Int 2001;88(Suppl 2):35-42; discussion 49-50
  • Blum R, Gupta R, Burger PE, Molecular signatures of prostate stem cells reveal novel signaling pathways and provide insights into prostate cancer. PLoS One 2009;4:e5722. Published online 29 May 2009, doi: 10.1371/journal.pone.0005722
  • Santamaria-Martinez A, Barquinero J, Barbosa-Desongles A, Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Exp Cell Res 2009;315:3004-13
  • Mani SA, Guo W, Liao MJ, The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704-15
  • Morel AP, Lievre M, Thomas C, Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS One 2008;3:e2888. Published online 6 August 2008, doi: 10.1371/journal.pone.0002888
  • Kabashima A, Higuchi H, Takaishi H, Side population of pancreatic cancer cells predominates in TGF-beta-mediated epithelial to mesenchymal transition and invasion. Int J Cancer 2009;124:2771-9
  • Basler M, Groettrup M. Advances in prostate cancer immunotherapies. Drugs Aging 2007;24:197-221
  • Klyushnenkova EN, Ponniah S, Rodriguez A, CD4 and CD8 T-lymphocyte recognition of prostate specific antigen in granulomatous prostatitis. J Immunother 2004;27:136-46
  • Fong L, Ruegg CL, Brockstedt D, Induction of tissue-specific autoimmune prostatitis with prostatic acid phosphatase immunization: implications for immunotherapy of prostate cancer. J Immunol 1997;159:3113-7
  • Liu KJ, Chatta GS, Twardzik DR, Identification of rat prostatic steroid-binding protein as a target antigen of experimental autoimmune prostatitis: implications for prostate cancer therapy. J Immunol 1997;159:472-80
  • Maccioni M, Rivero VE, Riera CM. Prostatein (or rat prostatic steroid binding protein) is a major autoantigen in experimental autoimmune prostatitis. Clin Exp Immunol 1998;112:159-65
  • Ahmad M, Rees RC, Ali SA. Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 2004;53:844-54
  • Nagaraj S, Gupta K, Pisarev V, Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 2007;13:828-35
  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006;6:295-307
  • Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006;6:836-48
  • Lees JR, Charbonneau B, Hayball JD, T-cell recognition of a prostate specific antigen is not sufficient to induce prostate tissue destruction. Prostate 2006;66:578-90
  • Mihalyo MA, Hagymasi AT, Slaiby AM, Dendritic cells program non-immunogenic prostate-specific T cell responses beginning at early stages of prostate tumorigenesis. Prostate 2007;67:536-46
  • Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol 2006;6:476-83
  • Probst HC, Lagnel J, Kollias G, van den Broek M. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 2003;18:713-20
  • Kobie JJ, Wu RS, Kurt RA, Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 2003;63:1860-4
  • Kao JY, Gong Y, Chen CM, Tumor-derived TGF-beta reduces the efficacy of dendritic cell/tumor fusion vaccine. J Immunol 2003;170:3806-11
  • Shafer-Weaver KA, Watkins SK, Anderson MJ, Immunity to murine prostatic tumors: continuous provision of T-cell help prevents CD8 T-cell tolerance and activates tumor-infiltrating dendritic cells. Cancer Res 2009;69:6256-64
  • Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004;4:941-52
  • Munn DH, Sharma MD, Hou D, Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 2004;114:280-90
  • Munn DH, Sharma MD, Baban B, GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005;22:633-42
  • Chen W, Jin W, Hardegen N, Conversion of peripheral CD4+CD25– naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198:1875-86
  • Fantini MC, Becker C, Monteleone G, Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25– T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004;172:5149-53
  • Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000;12:171-81
  • Zhang Q, Jang TL, Yang X, Infiltration of tumor-reactive transforming growth factor-beta insensitive CD8+ T cells into the tumor parenchyma is associated with apoptosis and rejection of tumor cells. Prostate 2006;66:235-47
  • Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001;7:1118-22
  • Shah AH, Tabayoyong WB, Kundu SD, Suppression of tumor metastasis by blockade of transforming growth factorbeta signaling in bone marrow cells through a retroviral-mediated gene therapy in mice. Cancer Res 2002;62:7135-8
  • Kulkarni AB, Huh CG, Becker D, Transforming growth factor beta1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993;90:770-4
  • Degl'Innocenti E, Grioni M, Boni A, Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur J Immunol 2005;35:66-75
  • Anderson MJ, Shafer-Weaver K, Greenberg NM, Hurwitz AA. Tolerization of tumor-specific T cells despite efficient initial priming in a primary murine model of prostate cancer. J Immunol 2007;178:1268-76
  • Diener KR, Woods AE, Manavis J, Transforming growth factor-beta-mediated signaling in T lymphocytes impacts on prostate-specific immunity and early prostate tumor progression. Lab Invest 2009;89:142-51
  • Lopez-Casillas F, Wrana JL, Massague J. Betaglycan presents ligand to the TGFbeta signaling receptor. Cell 1993;73:1435-44
  • Compton LA, Potash DA, Brown CB, Barnett JV. Coronary vessel development is dependent on the type III transforming growth factor beta receptor. Circ Res 2007;101:784-91
  • Lopez-Casillas F, Payne HM, Andres JL, Massague J. Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 1994;124:557-68
  • Hempel N, How T, Cooper SJ, Expression of the type III TGF-beta receptor is negatively regulated by TGF-beta. Carcinogenesis 2008;29:905-12
  • Turley RS, Finger EC, Hempel N, The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate cancer. Cancer Res 2007;67:1090-8
  • Mythreye K, Blobe GC. The type III TGF-beta receptor regulates epithelial and cancer cell migration through beta-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci USA 2009;106:8221-6
  • Bandyopadhyay A, Wang L, Lopez-Casillas F, Systemic administration of a soluble betaglycan suppresses tumor growth, angiogenesis, and matrix metalloproteinase-9 expression in a human xenograft model of prostate cancer. Prostate 2005;63:81-90
  • Seoane J. The TGFbeta pathway as a therapeutic target in cancer. Clin Transl Oncol 2008;10:14-9
  • Jones E, Pu H, Kyprianou N. Targeting TGF-beta in prostate cancer: therapeutic possibilities during tumor progression. Expert Opin Ther Targets 2009;13:227-34
  • Denton CP, Merkel PA, Furst DE, Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled Phase I/II trial of CAT-192. Arthritis Rheum 2007;56:323-33
  • Morris JC, Shapiro GI, Tan AR, Phase I/II study of GC1008: A human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody (MAb) in patients with advanced malignant melanoma (MM) or renal cell carcinoma (RCC). J Clin Oncol (Meeting Abstracts) 2008;26:9028
  • Hau P, Jachimczak P, Schlingensiepen R, Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 2007;17:201-12
  • Nemunaitis J, Dillman RO, Schwarzenberger PO, Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 2006;24:4721-30
  • Phase III Lucanix™ vaccine therapy in advanced non-small cell lung cancer (NSCLC) following front-line chemotherapy (STOP). Bethesda, Maryland: US National Institutes of Health, 2008. Available from: http://clinicaltrials.gov/show/NCT00676507 [Last accessed 11 December 2009]
  • Ilaria RL Jr, Simon GR, Sovak M, Phase I study of LY573636-sodium, an acylsulfonamide anti-cancer compound with a novel mechanism of action, administered as 2-hour IV infusion in patients with advanced solid tumors. J Clin Oncol (Meeting Abstracts) 2007;25:2515
  • Yilmaz OH, Valdez R, Theisen BK, Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006;441:475-82
  • Tang Y, Wu X, Lei W, TGF-beta1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 2009;15:757-65

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.