140
Views
9
CrossRef citations to date
0
Altmetric
Review

Nm23-H1/nucleoside diphosphate kinase as a key molecule in breast tumor angiogenesis

, PhD, , PhD & , PhD
Pages 1419-1430 | Published online: 14 Oct 2008

Bibliography

  • Cancer Fact & Figures 2008. Available from: http://www.cancer.org/downloads/STT/2008CAFFfinalsecured.pdf [Last accessed 26 September 2008]
  • Wiechmann L, Kuerer HM. The molecular journey from ductal carcinoma in situ. to invasive breast cancer. Cancer 2008;112(10):2130-42
  • Parkin DM, Bray FI, Devesa SS, et al. Cancer burden in the year 2000. The global picture. Eur J Cancer 2001;37(Suppl 8):S4-66
  • Stanford JL, Herrinton LJ, Schwartz SM, et al. Breast cancer incidence in Asian migrants to the United States and their descendants. Epidemiology 1995;6(2):181-3
  • Dupont WD, Parl FF, Hartmann WH, et al. Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Cancer 1993;71(4):1258-65
  • Carter CL, Corle DK, Micozzi MS, et al. A prospective study of the development of breast cancer in 16,692 women with benign breast disease. Am J Epidemiol 1988;128(3):467-77
  • Lakhani SR, Chaggar R, Davies S, et al. Genetic alterations in normal luminal and myoepithelial cells of the breast. J Pathol 1999;189(4):496-503
  • O'Connell P, Pekkel V, Fuqua SA, et al. Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 1998;90(9):697-703
  • Hwang ES, DeVries S, Chew KL, et al. Patterns of chromosomal alterations in breast ductal carcinoma in situ. Clin Cancer Res 2004;10(15):5160-7
  • Buerger H, Simon R, Schafer KL, et al. Genetic relation of lobular carcinoma in situ, ductal carcinoma in situ, and associated invasive carcinoma of the breast. Mol Pathol 2000;53(3):118-21
  • Simpson JF, Quan DE, O'Malley F, et al. Amplification of CCND1 and expression of its protein product, cyclin D1, in ductal carcinoma in situ of the breast. Am J Pathol 1997;151(1):161-8
  • Buerger H, Mommers EC, Littmann R, et al. Ductal invasive G2 and G3 carcinomas of the breast are the end stages of at least two different lines of genetic evolution. J Pathol 2001;194(2):165-70
  • Boecker W, Buerger H, Schmitz K, et al. Ductal epithelial proliferations of the breast: a biological continuum Comparative genomic hybridization and high-molecular-weight cytokeratin expression patterns. J Pathol 2001;195(4):415-21
  • Banerjee S, Dowsett M, Ashworth A, et al. Mechanisms of disease: angiogenesis and the management of breast cancer. Nat Clin Pract Oncol 2007;4(9):536-50
  • Hanahan D, Christofori G, Naik P, et al. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 1996;32A14:2386-93
  • Skobe M, Rockwell P, Goldstein N, et al. Halting angiogenesis suppresses carcinoma cell invasion. Nat Med 1997;3(11):1222-7
  • Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285(21):1182-6
  • von Tell D, Armulik A, Betsholtz C, et al. Pericytes and vascular stability. Exp Cell Res 2006;312(5):623-9
  • Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005;23(5):1011-27
  • Rafii S, Lyden D, Benezra R, et al. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy Nat Rev Cancer 2002;2(11):826-35
  • Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3(6):401-10
  • Mandriota SJ, Seghezzi G, Vassalli JD, et al. Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J Biol Chem 1995;270(17):9709-16
  • Pepper MS, Ferrara N, Orci L, et al. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 1991;181(2):902-6
  • Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998;273(46):30336-43
  • Harmey JH, Bouchier-Hayes D. Vascular endothelial growth factor (VEGF), a survival factor for tumour cells: implications for anti-angiogenic therapy. Bioessays 2002;24(3):280-3
  • Tran J, Master Z, Yu JL, et al. A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci USA 2002;99(7):4349-54
  • Gerber HP, Kowalski J, Sherman D, et al. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 2000;60(22):6253-8
  • Rak J, Mitsuhashi Y, Sheehan C, et al. Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Res 2000;60(2):490-8
  • Grugel S, Finkenzeller G, Weindel K, et al. Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J Biol Chem 1995;270(43):25915-9
  • Mazure NM, Chen EY, Laderoute KR, et al. Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 1997;90(9):3322-31
  • Volpert OV, Dameron KM, Bouck N, et al. Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 1997;14(12):1495-502
  • Enholm B, Paavonen K, Ristimaki A, et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 1997;14(20):2475-83
  • Ogiso Y, Hwang YW, Shih TY, et al. Biological activity of a K-ras mutant that contains the 12R/59T/116Y mutations. Cancer Lett 1993;75(1):19-26
  • Larcher F, Robles AI, Duran H, et al. Up-regulation of vascular endothelial growth factor/vascular permeability factor in mouse skin carcinogenesis correlates with malignant progression state and activated H-ras expression levels. Cancer Res 1996;56(23):5391-6
  • Kimbro KS, Simons JW. Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer 2006;13(3):739-49
  • Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235(4785):177-82
  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005;353(16):1659-72
  • Wen XF, Yang G, Mao W, et al. HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy. Oncogene 2006;25(52):6986-96
  • Klos KS, Wyszomierski SL, Sun M, et al. ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells. Cancer Res 2006;66(4):2028-37
  • Ciardiello F, Caputo R, Bianco R, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 2001;7(5):1459-65
  • Sini P, Wyder L, Schnell C, et al. The antitumor and antiangiogenic activity of vascular endothelial growth factor receptor inhibition is potentiated by ErbB1 blockade. Clin Cancer Res 2005;11(12):4521-32
  • Izumi Y, Xu L, di Tomaso E, et al. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 2002;416(6878):279-80
  • Sweeney CJ, Miller KD, Sissons SE, et al. The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Res 2001;61(8):3369-72
  • Browder T, Butterfield CE, Kraling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000;60(7):1878-86
  • Klement G, Baruchel S, Rak J, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 2000;105(8):R15-24
  • Man S, Bocci G, Francia G, et al. Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res 2002;62(10):2731-5
  • Bocci G, Nicolaou KC, Kerbel RS, et al. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 2002;62(23):6938-43
  • Hamano Y, Sugimoto H, Soubasakos MA, et al. Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res 2004;64(5):1570-4
  • Bocci G, Francia G, Man S, et al. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA 2003;100(22):12917-22
  • Kerr DJ. Targeting angiogenesis in cancer: clinical development of bevacizumab. Nat Clin Pract Oncol 2004;1(1):39-43
  • van der Geer P, Hunter T, Lindberg RA, et al. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 1994;10:251-337
  • Mustonen T, Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 1995;129(4):895-8
  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307(5706):58-62
  • Tozer GM, Kanthou C, Baguley BC, et al. Disrupting tumour blood vessels. Nat Rev Cancer 2005;5(6):423-35
  • Indraccolo S, Gola E, Rosato A, et al. Differential effects of angiostatin, endostatin and interferon-α1 gene transfer on in vivo growth of human breast cancer cells. Gene Ther 2002;9(13):867-78
  • Gasparini G, Longo R, Toi M, et al. Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol 2005;2(11):562-77
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57-70
  • Steeg PS. Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 2003;3(1):55-63
  • Fidler IJ. Critical determinants of metastasis. Semin Cancer Biol 2002;12(2):89-96
  • Steeg PS, Bevilacqua G, Kopper L, et al. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 1988;80(3):200-4
  • Lacombe ML, Wallet V, Troll H, et al. Functional cloning of a nucleoside diphosphate kinase from Dictyostelium discoideum. J Biol Chem 1990;265(17):10012-8
  • Wallet V, Mutzel R, Troll H, et al. Dictyostelium nucleoside diphosphate kinase highly homologous to Nm23 and Awd proteins involved in mammalian tumor metastasis and Drosophila development. J Natl Cancer Inst 1990;82(14):1199-202
  • Lacombe ML, Milon L, Munier A, et al. The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr 2000;32(3):247-58
  • Agarwal RP, Robison B, Parks RE Jr, et al. Nucleoside diphosphokinase from human erythrocytes. Methods Enzymol 1978;51:376-386
  • de la Rosa A, Williams RL, Steeg PS, et al. Nm23/nucleoside diphosphate kinase: toward a structural and biochemical understanding of its biological functions. Bioessays 1995;17(1):53-62
  • Gilles AM, Presecan E, Vonica A, et al. Nucleoside diphosphate kinase from human erythrocytes. Structural characterization of the two polypeptide chains responsible for heterogeneity of the hexameric enzyme. J Biol Chem 1991;266(14):8784-9
  • Garces E, Cleland WW. Kinetic studies of yeast nucleoside diphosphate kinase. Biochem 1969;8(2):633-40
  • Palmieri D, Halverson DO, Ouatas T, et al. Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J Natl Cancer Inst 2005;97(9):632-42
  • Ouatas T, Halverson D, Steeg PS, et al. Dexamethasone and medroxyprogesterone acetate elevate Nm23-H1 metastasis suppressor gene expression in metastatic human breast carcinoma cells: new uses for old compounds. Clin Cancer Res 2003;9(10 Pt 1):3763-72
  • Freije JM, Blay P, MacDonald NJ, et al. Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine dependent protein phosphotransferase pathways in vitro. J Biol Chem 1997;272(9):5525-32
  • Pozzatti R, Muschel R, Williams J, et al. Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science 1986;232(4747):223-7
  • Giehl K. Oncogenic Ras in tumour progression and metastasis. Biol Chem 2005;386(3):193-205
  • Morrison DK. KSR: a MAPK scaffold of the Ras pathway J Cell Sci 2001;114(Pt 9):1609-12
  • Salerno M, Palmieri D, Bouadis A, et al. Nm23-H1 metastasis suppressor expression level influences the binding properties, stability, and function of the kinase suppressor of Ras1 (KSR1) Erk scaffold in breast carcinoma cells. Mol Cell Biol 2005;25(4):1379-88
  • Otero AS. NM23/nucleoside diphosphate kinase and signal transduction. J Bioenerg Biomembr 2000;32(3):269-75
  • Biggs J, Hersperger E, Steeg PS, et al. A Drosophila gene that is homologous to a mammalian gene associated with tumor metastasis codes for a nucleoside diphosphate kinase. Cell 1990;63(5):933-40
  • Pinon VP, Millot G, Munier A et al. Cytoskeletal association of the A and B nucleoside diphosphate kinases of interphasic but not mitotic human carcinoma cell lines: specific nuclear localization of the B subunit. Exp Cell Res 1999;246(2):355-67
  • Eckes B, Dogic D, Colucci-Guyon E, et al. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 1998;111( Pt 13):1897-1907
  • Gilles C, Polette M, Zahm JM, et al. Vimentin contributes to human mammary epithelial cell migration. J Cell Sci 1999;112( Pt 24):4615-25
  • Ouatas T, Salerno M, Palmieri D, et al. Basic and translational advances in cancer metastasis: Nm23. J Bioenerg Biomembr 2003;35(1):73-79
  • Sirotkovic-Skerlev M, Krizanac S, Kapitanovic S, et al. Expression of c-myc, erbB-2, p53 and nm23-H1 gene product in benign and malignant breast lesions: coexpression and correlation with clinicopathologic parameters. Exp Mol Pathol 2005;79(1):42-50
  • Muller W, Schneiders A, Hommel G, et al. Expression of nm23 in gastric carcinoma: association with tumor progression and poor prognosis. Cancer 1998;83(12):2481-7
  • Lee CS, Pirdas A, Lee MW, et al. Immunohistochemical demonstration of the nm23-H1 gene product in human malignant melanoma and Spitz nevi. Pathology 1996;28(3):220-224
  • Kapitanovic S, Cacev T, Berkovic M, et al. nm23-H1 expression and loss of heterozygosity in colon adenocarcinoma. J Clin Pathol 2004;57(12):1312-8
  • Zou M, Shi Y, al-Sedairy S, et al. High levels of Nm23 gene expression in advanced stage of thyroid carcinomas. Br J Cancer 1993;68(2):385-8
  • Ferenc T, Lewinski A, Lange D, et al. Analysis of nm23-H1 protein immunoreactivity in follicular thyroid tumors. Pol J Pathol 2004;55(4):149-53
  • Leone A, Seeger RC, Hong CM, et al. Evidence for nm23 RNA overexpression, DNA amplification and mutation in aggressive childhood neuroblastomas. Oncogene 1993;8(4):855-65
  • Oda Y, Naka T, Takeshita M, et al. Comparison of histological changes and hanges in nm23 and c-MET expression between primary and metastatic sites in osteosarcoma: a clinicopathologic and immunohistochemical study. Hum Pathol 2000;31(6):709-16
  • Szumilo J, Skomra D, Chibowski D, et al. Immunoexpression of nm23 in advanced esophageal squamous cell carcinoma. Folia Histochem Cytobiol 2002;40(4):377-80
  • Steeg PS, Palmieri D, Ouatas T, et al. Histidine kinases and histidine phosphorylated proteins in mammalian cell biology, signal transduction and cancer. Cancer Lett 2003;190(1):1-12
  • Besant PG, Attwood PV. Mammalian histidine kinases. Biochim Biophys Acta 2005;1754(1-2):281-90
  • Hartsough MT, Morrison DK, Salerno M, et al. Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway. J Biol Chem 2002;277(35):32389-99
  • Chowdhury D, Beresford PJ, Zhu P, et al. The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol Cell 2006;23(1):133-42
  • Fan Z, Beresford PJ, Oh DY, et al. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 2003;112(5):659-72
  • Lieberman J, Fan Z. Nuclear war: the granzyme A-bomb. Curr Opin Immunol 2003;15(5):553-9
  • Jackson AL, Loeb LA. The mutation rate and cancer. Genetics 1998;148(4):1483-90
  • Otsuki Y, Tanaka M, Yoshii S, et al. Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci USA 2001;98(8):4385-90
  • Uchida C, Gee E, Ispanovic E, et al. JNK as a positive regulator of angiogenic potential in endothelial cells. Cell Biol Int 2008;32(7):769-776
  • Boyd PJ, Doyle J, Gee E, et al. MAPK signaling regulates endothelial cell assembly into networks and expression of MT1-MMP and MMP-2. Am J Physiol Cell Physiol 2005;288(3):C659-68
  • Ispanovic E, Haas TL. JNK and PI3K differentially regulate MMP-2 and MT1-MMP mRNA and protein in response to actin cytoskeleton reorganization in endothelial cells. Am J Physiol Cell Physiol 2006;291(4):C579-88
  • Rumjahn SM, Javed MA, Wong N, et al. Purinergic regulation of angiogenesis by human breast carcinoma-secreted nucleoside diphosphate kinase. Br J Cancer 2007;97(10):1372-80
  • Moser TL, Kenan DJ, Ashley TA, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci USA 2001;98(12):6656-61
  • Subramanian C, Cotter MA, 2nd, Robertson ES, et al. Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis. Nat Med 2001;7(3):350-5
  • Choudhuri T, Verma SC, Lan K, et al. Expression of alpha V integrin is modulated by Epstein-Barr virus nuclear antigen 3C and the metastasis suppressor Nm23-H1 through interaction with the GATA-1 and Sp1 transcription factors. Virology 2006;351(1):58-72
  • Elkin M, Orgel A, Kleinman HK, et al. An angiogenic switch in breast cancer involves estrogen and soluble vascular endothelial growth factor receptor 1. J Natl Cancer Inst 2004;96(11):875-8
  • Fox SB, Leek RD, Smith K, et al. Tumor angiogenesis in node-negative breast carcinomas – relationship with epidermal growth factor receptor, estrogen receptor, and survival. Breast Cancer Res Treat 1994;29(1):109-16
  • Curtis CD, Likhite VS, McLeod IX, et al. Interaction of the tumor metastasis suppressor nonmetastatic protein 23 homologue H1 and estrogen receptor α alters estrogen-responsive gene expression. Cancer Res 2007;67(21):10600-7
  • Jung H, Seong HA, Ha H, et al. NM23-H1 tumor suppressor and its interacting partner STRAP activate p53 function. J Biol Chem 2007;282(48):35293-307
  • Buck MB, Fritz P, Dippon J, et al. Prognostic significance of transforming growth factor β receptor II in estrogen receptor-negative breast cancer patients. Clin Cancer Res 2004;10(2):491-8
  • Dumont N, Bakin AV, Arteaga CL, et al. Autocrine transforming growth factor-β signaling mediates Smad-independent motility in human cancer cells. J Biol Chem 2003;278(5):3275-85
  • Zhu J, Tseng YH, Kantor JD, et al. Interaction of the Ras-related protein associated with diabetes rad and the putative tumor metastasis suppressor NM23 provides a novel mechanism of GTPase regulation. Proc Natl Acad Sci USA 1999;96(26):14911-8
  • Kim SH, Kim J. Reduction of invasion in human fibrosarcoma cells by ribosomal protein S3 in conjunction with Nm23-H1 and ERK. Biochim Biophys Acta 2006;1763(8):823-32
  • Garzia L, D'Angelo A, Amoresano A, et al. Phosphorylation of nm23-H1 by CKI induces its complex formation with h-prune and promotes cell motility. Oncogene 2008;27(13):1853-64
  • Du J, Hannon GJ. The centrosomal kinase Aurora-A/STK15 interacts with a putative tumor suppressor NM23-H1. Nucleic Acids Res 2002;30(24):5465-75
  • Murakami M, Lan K, Subramanian C, et al. Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. J Virol 2005;79(3):1559-68
  • Seong HA, Jung H, Ha H, et al. NM23-H1 tumor suppressor physically interacts with serine-threonine kinase receptor-associated protein, a transforming growth factor-β (TGF-β) receptor-interacting protein, and negatively regulates TGF-β signaling. J Biol Chem 2007;282(16):12075-96
  • D'Angelo A, Garzia L, Andre A, et al. Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell 2004;5(2):137-49
  • Garzia L, Roma C, Tata N, et al. H-prune-nm23-H1 protein complex and correlation to pathways in cancer metastasis. J Bioenerg Biomembr 2006;38(3-4):205-13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.