361
Views
18
CrossRef citations to date
0
Altmetric
Reviews

New therapeutic targets in immune disorders: ItpkB, Orai1 and UNC93B

, PhD, , PhD & , PhD
Pages 391-413 | Published online: 18 Mar 2008

Bibliography

  • Liu EH, Siegel RM, Harlan DM, et al. T cell-directed therapies: lessons learned and future prospects. Nat Immunol 2007;8(1):25-30
  • Simmons DL. What makes a good anti-inflammatory drug target? Drug Discov Today 2006;11(5-6):210-9
  • McDonald JC. In search of the Holy Grail (actively acquired immunologic tolerance). Ann surg 1995;221(5):439-45
  • Goodnow CC. Multistep pathogenesis of autoimmune disease. Cell 2007;130(1):25-35
  • Orth AP, Batalov S, Perrone M, et al. The promise of genomics to identify novel therapeutic targets. Expert Opin Ther Targets 2004;8(6):587-96
  • Paddison PJ, Silva JM, Conklin DS, et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 2004;428(6981):427-31
  • Chang K, Elledge SJ, Hannon GJ. Lessons from Nature: microRNA-based shRNA libraries. Nat Methods 2006;3(9):707-14
  • Root DE, Hacohen N, Hahn WC, et al. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods 2006;3(9):715-9
  • Moffat J, Grueneberg DA, Yang X, et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006;124(6):1283-98
  • Huang YH, Barouch-Bentov R, Herman A, et al. Integrating traditional and postgenomic approaches to investigate lymphocyte development and function. Adv Exp Med Biol 2006;584:245-76
  • Bowcock AM. Genomics: guilt by association. Nature 2007;447(7145):645-6
  • Ridgway WM, Healy B, Smink LJ, et al. New tools for defining the ‘genetic background’ of inbred mouse strains. Nat Immunol 2007;8(7):669-73
  • Beutler B, Du X, Xia Y. Precis on forward genetics in mice. Nat Immunol 2007;8(7):659-64
  • Flint J, Valdar W, Shifman S, et al. Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 2005;6(4):271-86
  • Peters LL, Robledo RF, Bult CJ, et al. The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 2007;8(1):58-69
  • Clark AG, Li J. Conjuring SNPs to detect associations. Nat Genet 2007;39(7):815-6
  • Manolio TA, Rodriguez LL, Brooks L, et al. New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nat Genet 2007;39(9):1045-51
  • Romagne F. Current and future drugs targeting one class of innate immunity receptors: the Toll-like receptors. Drug Discov Today 2007;12(1-2):80-7
  • Kanzler H, Barrat FJ, Hessel EM, et al. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007;13(5):552-9
  • Choe JY, Crain B, Wu SR, et al. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J Exp Med 2003;197(4):537-42
  • Kim HS, Han MS, Chung KW, et al. Toll-like Receptor 2 Senses β-Cell Death and Contributes to the Initiation of Autoimmune Diabetes. Immunity 2007;27(2):321-33
  • Baccala R, Hoebe K, Kono DH, et al. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 2007;13(5):543-51
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 2006;5(6):471-84
  • Lin T, Zhou W, Sacks SH. The role of complement and Toll-like receptors in organ transplantation. Transpl Int 2007;20(6):481-9
  • Le Moine A, Goldman M, Abramowicz D. Multiple pathways to allograft rejection. Transplantation 2002;73(9):1373-81
  • Rosenberg AS, Singer A. Cellular basis of skin allograft rejection: an in vivo model of immune-mediated tissue destruction. Ann Rev Immunol 1992;10:333-58
  • Wen BG, Pletcher MT, Warashina M, et al. Inositol (1,4,5) trisphosphate 3 kinase B controls positive selection of T cells and modulates Erk activity. Proc Natl Acad Sci USA 2004;101(15):5604-9
  • Pouillon V, Hascakova-Bartova R, Pajak B, et al. Inositol 1,3,4,5-tetrakisphosphate is essential for T lymphocyte development. Nat Immunol 2003;4(11):1136-43
  • Irvine RF, Schell MJ. Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2001;2(5):327-38
  • Pattni K, Banting G. Ins(1,4,5)P3 metabolism and the family of IP3-Kinases. Cell Signal 2004;16(6):643-54
  • Communi D, Vanweyenberg V, Erneux C. Molecular study and regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase. Cell Signal 1995;7(7):643-50
  • Choi KY, Kim HK, Lee SY, et al. Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase. Science 1990;248(4951):64-6
  • Connolly TM, Bansal VS, Bross TE, et al. The metabolism of tris- and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. J Biol Chem 1987;262(5):2146-9
  • Nalaskowski MM, Mayr GW. The families of kinases removing the Ca2+ releasing second messenger Ins(1,4,5)P3. Curr Mol Med 2004;4(3):277-90
  • Xia HJ, Yang G. Inositol 1,4,5-trisphosphate 3-kinases: functions and regulations. Cell Res 2005;15(2):83-91
  • Irvine R. Inositol phosphates: does IP4;run a protection racket? Curr Biol 2001;11(5):R172-4
  • DiNitto JP, Lambright DG. Membrane and juxtamembrane targeting by PH and PTB domains. Biochim Biophys Acta 2006;1761(8):850-67
  • Cozier GE, Carlton J, Bouyoucef D, et al. Membrane targeting by pleckstrin homology domains. Curr Top Microbiol Immunol 2004;282:49-88
  • Cullen PJ, Hsuan JJ, Truong O, et al. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature 1995;376(6540):527-30
  • Bottomley JR, Reynolds JS, Lockyer PJ, et al. Structural and functional analysis of the putative inositol 1,3,4, 5-tetrakisphosphate receptors GAP1(IP4BP) and GAP1(m). Biochem Biophys Res Commun 1998;250(1):143-9
  • Fukuda M, Mikoshiba K. Structure-function relationships of the mouse Gap1m. Determination of the inositol 1,3,4,5-tetrakisphosphate-binding domain. J Biol Chem 1996;271(31):18838-42
  • Fukuda M, Kojima T, Kabayama H, et al. Mutation of the pleckstrin homology domain of Bruton's tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-tetrakisphosphate binding capacity. J Biol Chem 1996;271(48):30303-6
  • Rameh LE, Arvidsson A, Carraway KL, et al. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem 1997;272(35):22059-66
  • Baraldi E, Carugo KD, Hyvonen M, et al. Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure Fold Des 1999;7(4):449-60
  • Kojima T, Fukuda M, Watanabe Y, et al. Characterization of the pleckstrin homology domain of Btk as an inositol polyphosphate and phosphoinositide binding domain. Biochem Biophys Res Commun 1997;236(2):333-9
  • Huang YH, Grasis JA, Miller AT, et al. Positive regulation of Itk PH domain function by soluble IP4. Science 2007;316(5826):886-9
  • Miller AT, Sandberg M, Huang YH, et al. Production of Ins(1,3,4,5)P4;mediated by the kinase Itpkb inhibits store-operated calcium channels and regulates B cell selection and activation. Nat Immunol 2007;8(5):514-21
  • Marechal Y, Pesesse X, Jia Y, et al. Inositol 1,3,4,5-tetrakisphosphate controls proapoptotic Bim gene expression and survival in B cells. Proc Natl Acad Sci USA 2007;104(35):13978-83
  • Culton DA, O'Conner BP, Conway KL, et al. Early preplasma cells define a tolerance checkpoint for autoreactive B cells. J Immunol 2006;176(2):790-802
  • Merrell KT, Benschop RJ, Gauld SB, et al. Identification of Anergic B Cells within a Wild-Type Repertoire. Immunity 2006;25(6):953-62
  • Feske S, Giltnane J, Dolmetsch R, et al. Gene regulation mediated by calcium signals in T lymphocytes. Nat Immunol 2001;2(4):316-24
  • Chamberlain PP, Sandberg ML, Sauer K, et al. Structural insights into enzyme regulation for inositol 1,4,5-trisphosphate 3-kinase B. Biochem 2005;44(44):14486-93
  • Gonzalez B, Schell MJ, Letcher AJ, et al. Structure of a human inositol 1,4,5-trisphosphate 3-kinase: substrate binding reveals why it is not a phosphoinositide 3-kinase. Mol Cell 2004;15(5):689-701
  • Irvine RF, Lloyd-Burton SM, Yu JC, et al. The regulation and function of inositol 1,4,5-trisphosphate 3-kinases. Adv Enzyme Regul 2006;46:314-23
  • Chang YT, Choi G, Bae YS, et al. Purine-based inhibitors of inositol-1,4,5-trisphosphate-3-kinase. Chembiochem 2002;3(9):897-901
  • Mayr GW, Windhorst S, Hillemeier K. Antiproliferative plant and synthetic polyphenolics are specific inhibitors of vertebrate inositol-1,4,5-trisphosphate 3-kinases and inositol polyphosphate multikinase. J Biol Chem 2005;280(14):13229-40
  • Stokes AJ, Shimoda LM, Lee JW, et al. Fcepsilon RI control of Ras via inositol (1,4,5) trisphosphate 3-kinase and inositol tetrakisphosphate. Cell Signal 2006;18(5):640-51
  • Dewaste V, Roymans D, Moreau C, et al. Cloning and expression of a full-length cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase B. Biochem Biophys Res Commun 2002;291(2):400-5
  • Dewaste V, Pouillon V, Moreau C, et al. Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C. Biochem J 2000;352(Pt 2):343-51
  • Jun K, Choi G, Yang SG, et al. Enhanced hippocampal CA1 LTP but normal spatial learning in inositol 1,4,5-trisphosphate 3-kinase(A)-deficient mice. Learn Mem 1998;5(4-5):317-30
  • Onouchi Y, Gunji T, Burns JC, et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 2008;40(1):35-42
  • Leyman A, Pouillon V, Bostan A, et al. The absence of expression of the three isoenzymes of the inositol 1,4,5-trisphosphate 3-kinase does not prevent the formation of inositol pentakisphosphate and hexakisphosphate in mouse embryonic fibroblasts. Cell Signal 2007;19(7):1497-504
  • Frederick JP, Mattiske D, Wofford JA, et al. An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production. Proc Natl Acad Sci USA 2005;102(24):8454-9
  • Cunha-Melo JR, Dean NM, Moyer JD, et al. The kinetics of phosphoinositide hydrolysis in rat basophilic leukemia (RBL-2H3) cells varies with the type of IgE receptor cross-linking agent used. J Biol Chem 1987;262(24):11455-63
  • Leslie M. Mast cells show their might. Science 2007;317(5838):614-6
  • Jia Y, Subramanian KK, Erneux C, et al. Inositol 1,3,4,5-tetrakisphosphate negatively regulates phosphatidylinositol-3,4,5- trisphosphate signaling in neutrophils. Immunity 2007;27(3):453-67
  • Liu H, Pope RM. Phagocytes: mechanisms of inflammation and tissue destruction. Rheum Dis Clin North Am 2004;30(1):19-39
  • Kosaka Y, Felices M, Berg LJ. Itk and Th2 responses: action but no reaction. Trends Immunol 2006;27(10):453-60
  • Heissmeyer V, Macian F, Im SH, et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol 2004;5(3):255-65
  • Gauld SB, Benschop RJ, Merrell KT, et al. Maintenance of B cell anergy requires constant antigen receptor occupancy and signaling. Nat Immunol 2005;6(11):1160-7
  • Kiani A, Rao A, Aramburu J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 2000;12(4):359-72
  • Feske S. Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 2007;7(9):690-702
  • Lewis RS. Calcium signaling mechanisms in T lymphocytes. Ann Rev Immunol 2001;19:497-521
  • Prakriya M, Lewis RS. CRAC channels: activation, permeation, and the search for a molecular identity. Cell Calcium 2003;33(5-6):311-21
  • Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev 2005;85(2):757-810
  • Winslow MM, Crabtree GR. Immunology. Decoding calcium signaling. Science 2005;307(5706):56-7
  • Beeton C, Wulff H, Standifer NE, et al. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 2006;103(46):17414-9
  • Desir GV. Kv1.3 potassium channel blockade as an approach to insulin resistance. Expert Opin Ther Targets 2005;9(3):571-9
  • Wulff H, Pennington M. Targeting effector memory T-cells with Kv1.3 blockers. Curr opin drug discov devel 2007;10(4):438-45
  • Wulff H, Kolski-Andreaco A, Sankaranarayanan A, et al. Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 2007;14(13):1437-57
  • Le Deist F, Hivroz C, Partiseti M, et al. A primary T-cell immunodeficiency associated with defective transmembrane calcium influx. Blood 1995;85(4):1053-62
  • Partiseti M, Le Deist F, Hivroz C, et al. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J Biol Chem 1994;269(51):32327-35
  • Feske S, Prakriya M, Rao A, et al. A severe defect in CRAC Ca2+ channel activation and altered K+ channel gating in T cells from immunodeficient patients. J Exp Med 2005;202(5):651-62
  • Feske S, Gwack Y, Prakriya M, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006;441(7090):179-85
  • Fanger CM, Hoth M, Crabtree GR, et al. Characterization of T cell mutants with defects in capacitative calcium entry: genetic evidence for the physiological roles of CRAC channels. J Cell Biol 1995;131(3):655-67
  • Serafini AT, Lewis RS, Clipstone NA, et al. Isolation of mutant T lymphocytes with defects in capacitative calcium entry. Immunity 1995;3(2):239-50
  • Parekh AB. Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J Physiol 2003;547(Pt 2):333-48
  • Hoth M, Penner R. Calcium release-activated calcium current in rat mast cells. J Physiol 1993;465:359-86
  • Zweifach A, Lewis RS. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 1993;90(13):6295-9
  • Kerschbaum HH, Cahalan MD. Monovalent permeability, rectification, and ionic block of store-operated calcium channels in Jurkat T lymphocytes. J Gen Physiol 1998;111(4):521-37
  • Prakriya M, Lewis RS. Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J Gen Physiol 2002;119(5):487-507
  • Li S, Gosling M, Poll CT, et al. Therapeutic scope of modulation of non-voltage-gated cation channels. Drug Discov Today 2005;10(2):129-37
  • Li SW, Westwick J, Poll CT. Receptor-operated Ca2+ influx channels in leukocytes: a therapeutic target? Trends Pharmacol Sci 2002;23(2):63-70
  • Ishikawa J, Ohga K, Yoshino T, et al. A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T lymphocytes. J Immunol 2003;170(9):4441-9
  • Zitt C, Strauss B, Schwarz EC, et al. Potent inhibition of Ca2+ release-activated Ca2+ channels and T-lymphocyte activation by the pyrazole derivative BTP2. J Biol Chem 2004;279(13):12427-37
  • He LP, Hewavitharana T, Soboloff J, et al. A functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2. J Biol Chem 2005;280(12):10997-1006
  • Takezawa R, Cheng H, Beck A, et al. A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol Pharmacol 2006;69(4):1413-20
  • Birsan T, Dambrin C, Marsh KC, et al. Preliminary in vivo pharmacokinetic and pharmacodynamic evaluation of a novel calcineurin-independent inhibitor of NFAT. Transpl Int 2004;17(3):145-50
  • Trevillyan JM, Chiou XG, Chen YW, et al. Potent inhibition of NFAT activation and T cell cytokine production by novel low molecular weight pyrazole compounds. J Biol Chem 2001;276(51):48118-26
  • Djuric SW, BaMaung NY, Basha A, et al. 3,5-Bis(trifluoromethyl)pyrazoles: a novel class of NFAT transcription factor regulator. J Med Chem 2000;43(16):2975-81
  • Chen Y, Smith ML, Chiou GX, et al. TH1 and TH2 cytokine inhibition by 3,5-bis(trifluoromethyl)pyrazoles, a novel class of immunomodulators. Cell Immunol 2002;220(2):134-42
  • Vig M, Peinelt C, Beck A, et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006;312(5777):1220-3
  • Zhang SL, Yeromin AV, Zhang XH, et al. Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 2006;103(24):9357-62
  • Soboloff J, Spassova MA, Dziadek MA, et al. Calcium signals mediated by STIM and Orai proteins – a new paradigm in inter-organelle communication. Biochim Biophys Acta 2006;1763(11):1161-8
  • Gwack Y, Srikanth S, Feske S, et al. Biochemical and functional characterization of Orai proteins. J Biol Chem 2007;282(22):16232-43
  • Yeromin AV, Zhang SL, Jiang W, et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 2006;443(7108):226-9
  • Prakriya M, Feske S, Gwack Y, et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 2006;443(7108):230-3
  • Vig M, Beck A, Billingsley JM, et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 2006;16(20):2073-9
  • Roos J, DiGregorio PJ, Yeromin AV, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 2005;169(3):435-45
  • Putney JW Jr. Capacitative calcium entry: sensing the calcium stores. J Cell Biol 2005;169(3):381-2
  • Williams RT, Manji SS, Parker NJ, et al. Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 2001;357(Pt 3):673-85
  • Zhang SL, Yu Y, Roos J, et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 2005;437(7060):902-5
  • Liou J, Kim ML, Heo WD, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005;15(13):1235-41
  • Mercer JC, Dehaven WI, Smyth JT, et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 2006;281(34):24979-90
  • Peinelt C, Vig M, Koomoa DL, et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 2006;8(7):771-3
  • Baba Y, Nishida K, Fujii Y, et al. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat Immunol 2008;9(1):81-8
  • Feske S, Muller JM, Graf D, et al. Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur J Immunol 1996;26(9):2119-26
  • Soboloff J, Spassova MA, Tang XD, et al. Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 2006;281(30):20661-5
  • Roehrl MH, Kang S, Aramburu J, et al. Selective inhibition of calcineurin-NFAT signaling by blocking protein-protein interaction with small organic molecules. Proc Natl Acad Sci USA 2004;101(20):7554-9
  • Arkin MR, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004;3(4):301-17
  • Berg T. Modulation of protein-protein interactions with small organic molecules. Angew Chem Int ed 2003;42(22):2462-81
  • Ong HL, Cheng KT, Liu X, et al. Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 2007;282(12):9105-16
  • Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Ann Rev Immunol 1997;15:707-47
  • Aramburu J, Rao A, Klee CB. Calcineurin: from structure to function. Curr Top Cell Regul 2000;36:237-95
  • Tokumitsu H, Enslen H, Soderling TR. Characterization of a Ca2+/calmodulin-dependent protein kinase cascade. Molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase. J Biol Chem 1995;270(33):19320-4
  • Freedman BD. Mechanisms of calcium signaling and function in lymphocytes. Crit Rev Immunol 2006;26(2):97-111
  • Winslow MM, Neilson JR, Crabtree GR. Calcium signalling in lymphocytes. Curr Opin Immunol 2003;15(3):299-307
  • Feske S, Okamura H, Hogan PG, et al. Ca2+/calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun 2003;311(4):1117-32
  • Schlesier M, Niemeyer C, Duffner U, et al. Primary severe immunodeficiency due to impaired signal transduction in T cells. Immunodeficiency 1993;4(1-4):133-6
  • Feske S, Draeger R, Peter HH, et al. The duration of nuclear residence of NFAT determines the pattern of cytokine expression in human SCID T cells. J Immunol 2000;165(1):297-305
  • Vig M, Dehaven WI, Bird GS, et al. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 2008;9(1):89-96
  • Huang GN, Zeng W, Kim JY, et al. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 2006;8(9):1003-10
  • Lopez JJ, Salido GM, Pariente JA, et al. Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 2006;281(38):28254-64
  • Mori Y, Wakamori M, Miyakawa T, et al. Transient receptor potential 1 regulates capacitative Ca(2+) entry and Ca(2+) release from endoplasmic reticulum in B lymphocytes. J Exp Med 2002;195(6):673-81
  • Philipp S, Strauss B, Hirnet D, et al. TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J Biol Chem 2003;278(29):26629-38
  • Okuhara DY, Hsia AY, Xie M. Transient receptor potential channels as drug targets. Expert Opin Ther Targets 2007;11(3):391-401
  • Li S, Westwick J, Cox B, et al. TRP channels as drug targets. Novartis Found Symp 2004;258:204-13; discussion 13-21, 63-6
  • Tabeta K, Hoebe K, Janssen EM, et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol 2006;7(2):156-64
  • Janssen E, Tabeta K, Barnes MJ, et al. Efficient T cell activation via a Toll-Interleukin 1 Receptor-independent pathway. Immunity 2006;24(6):787-99
  • Casrouge A, Zhang SY, Eidenschenk C, et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 2006;314(5797):308-12
  • Boule MW, Broughton C, Mackay F, et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 2004;199(12):1631-40
  • Lau CM, Broughton C, Tabor AS, et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 2005;202(9):1171-7
  • Martin DA, Elkon KB. Autoantibodies make a U-turn: the toll hypothesis for autoantibody specificity. J Exp Med 2005;202(11):1465-9
  • Vollmer J, Tluk S, Schmitz C, et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med 2005;202(11):1575-85
  • Leadbetter EA, Rifkin IR, Hohlbaum AM, et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002;416(6881):603-7
  • Barrat FJ, Meeker T, Gregorio J, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 2005;202(8):1131-9
  • Bave U, Magnusson M, Eloranta ML, et al. FcγRIIa is expressed on natural IFN-α-producing cells (plasmacytoid dendritic cells) and is required for the IFN-α production induced by apoptotic cells combined with lupus IgG. J Immunol 2003;171(6):3296-302
  • Lovgren T, Eloranta ML, Bave U, et al. Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 2004;50(6):1861-72
  • Brinkmann MM, Spooner E, Hoebe K, et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol 2007;177(2):265-75
  • Vinuesa CG, Goodnow CC. Illuminating autoimmune regulators through controlled variation of the mouse genome sequence. Immunity 2004;20(6):669-79
  • Ziegler SF. FOXP3: of mice and men. Ann Rev Immunol 2006;24:209-26
  • Rivera J, Tessarollo L. Genetic background and the dilemma of translating mouse studies to humans. Immunity 2008;28(1):1-4
  • Schmidt-Supprian M, Rajewsky K. Vagaries of conditional gene targeting. Nat Immunol 2007;8(7):665-8
  • Anderson AC, Kitchens EA, Chan SW, et al. The Notch regulator Numb links the Notch and TCR signaling pathways. J Immunol 2005;174(2):890-7
  • Goodnow CC, Sprent J, de St Groth BF, et al. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005;435(7042):590-7
  • Concepcion D, Seburn KL, Wen G, et al. Mutation rate and predicted phenotypic target sizes in ethylnitrosourea-treated mice. Genetics 2004;168(2):953-9
  • Maas A, Hendriks RW. Role of Bruton's tyrosine kinase in B cell development. Dev immunol 2001;8(3-4):171-81
  • Consortium TWTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447(7145):661-78
  • Munos B. Can open-source R&D reinvigorate drug research? Nat Rev Drug Discov 2006;5(9):723-9
  • Loging W, Harland L, Williams-Jones B. High-throughput electronic biology: mining information for drug discovery. Nat Rev Drug Discov 2007;6(3):220-30
  • Booth B, Zemmel R. Prospects for productivity. Nat Rev Drug Discov 2004;3(5):451-6
  • Roose JP, Mollenauer M, Gupta VA, et al. A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol Cell Biol 2005;25(11):4426-41
  • Priatel JJ, Teh SJ, Dower NA, et al. RasGRP1 transduces low-grade TCR signals which are critical for T cell development, homeostasis, and differentiation. Immunity 2002;17(5):617-27
  • Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Ann Rev Immunol 2003;21:139-76
  • Neilson JR, Winslow MM, Hur EM, et al. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 2004;20(3):255-66
  • Brehm MA, Schreiber I, Bertsch U, et al. Identification of the actin-binding domain of Ins(1,4,5)P3 3-kinase isoform B (IP3K-B). Biochem J 2004;382(Pt 1):353-62
  • Rao VD, Misra S, Boronenkov IV, et al. Structure of type IIβ phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 1998;94(6):829-39
  • Knighton DR, Zheng JH, Ten Eyck LF, et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 1991;253(5018):407-14
  • Miller GJ, Hurley JH. Crystal structure of the catalytic core of inositol 1,4,5-trisphosphate 3-kinase. Mol Cell 2004;15(5):703-11
  • Drennan D, Ryazanov AG. Alpha-kinases: analysis of the family and comparison with conventional protein kinases. Prog Biophys Mol Biol 2004;85(1):1-32
  • Yamaguchi H, Matsushita M, Nairn AC, et al. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 2001;7(5):1047-57
  • Genomics Institute of the Novartis Research Foundation. SymAtlas. Available from: URL: symatlas.gnf.org (last accessed February 19, 2008)
  • Su AI, Wiltshire T, Batalov S, et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004;101(16):6062-7
  • Yonetoku Y, Kubota H, Okamoto Y, et al. Novel potent and selective calcium-release-activated calcium (CRAC) channel inhibitors. Part 2: Synthesis and inhibitory activity of aryl-3-trifluoromethylpyrazoles. Bioorg Med Chem 2006;14(15):5370-83
  • Yonetoku Y, Kubota H, Okamoto Y, et al. Novel potent and selective calcium-release-activated calcium (CRAC) channel inhibitors. Part 1: synthesis and inhibitory activity of 5-(1-methyl-3-trifluoromethyl-1H-pyrazol-5-yl)-2-thiophenecarboxamides. Bioorg Med Chem 2006;14(14):4750-60
  • Venkatesh N, Feng Y, DeDecker B, et al. Chemical genetics to identify NFAT inhibitors: potential of targeting calcium mobilization in immunosuppression. Proc Natl Acad Sci USA 2004;101(24):8969-74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.