463
Views
26
CrossRef citations to date
0
Altmetric
Review

The yeast two-hybrid system and its role in drug discovery

&
Pages 505-515 | Published online: 18 Mar 2008

Bibliography

  • Imming P, Sinning C, Meyer A. Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 2006;5(10):821-34
  • Brent R, Ptashne M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 1985;43(3 Pt 2):729-36
  • Ma J, Ptashne M. A new class of yeast transcriptional activators. Cell 1987;51(1):113-9
  • Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature 1989;340(6230):245-6
  • Zervos AS, Gyuris J, Brent R. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 1993;72(2):223-32
  • Suter B, Auerbach D, Stagljar I. Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques 2006;40(5):625-44
  • Xenarios I, Fernandez E, Salwinski L, et al. DIP: The Database of Interacting Proteins: 2001 update. Nucleic Acids Res 2001;29(1):239-41
  • Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000;403(6770):623-7
  • Ito T, Chiba T, Ozawa R, et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001;98(8):4569-74
  • Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005;122(6):957-68
  • Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005;437(7062):1173-8
  • Formstecher E, Aresta S, Collura V, et al. Protein interaction mapping: a Drosophila case study. Genome Res 2005;15(3):376-84
  • Hart GT, Ramani AK, Marcotte EM. How complete are current yeast and human protein-interaction networks? Genome Biol 2006;7(11):120. Published online 1 December 2006, doi:10.1186/gb-2006-7-11-120
  • Serebriiskii IG, Golemis EA. Two-hybrid system and false positives. Approaches to detection and elimination. Methods Mol Biol 2001;177:123-34
  • Hakes L, Pinney JW, Robertson DL, Lovell SC. Protein-protein interaction networks and biology-what's the connection? Nat Biotechnol 2008;26(1):69-72
  • Huang H, Jedynak BM, Bader JS. Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comput Biol 2007;3(11):e214. Published online 23 November 2007, doi:10.1371/journal.pcbi.0030214
  • Von Mering C, Krause R, Snel B, et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002;417(6887):399-403
  • Pandey A, Duan H, Di Fiore PP, Dixit VM. The Ret receptor protein tyrosine kinase associates with the SH2-containing adapter protein Grb10. J Biol Chem 1995;270(37):21461-3
  • Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci USA 1994;91(22):10340-4
  • Stagljar I, Korostensky C, Johnsson N, Te Heesen S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA 1998;95(9):5187-92
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006;5(12):993-6
  • Miller JP, Lo RS, Ben-Hur A, et al. Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci USA 2005;102(34):12123-8
  • Aronheim A. Improved efficiency sos recruitment system: expression of the mammalian GAP reduces isolation of Ras GTPase false positives. Nucleic Acids Res 1997;25(16):3373-4
  • Broder YC, Katz S, Aronheim A. The ras recruitment system, a novel approach to the study of protein-protein interactions. Curr Biol 1998;8(20):1121-4
  • Ehrhard KN, Jacoby JJ, Fu XY, et al. Use of G-protein fusions to monitor integral membrane protein-protein interactions in yeast. Nat Biotechnol 2000;18(10):1075-9
  • Urech DM, Lichtlen P, Barberis A. Cell growth selection system to detect extracellular and transmembrane protein interactions. Biochim Biophys Acta 2003;1622(2):117-27
  • Lien S, Lowman HB. Therapeutic peptides. Trends Biotechnol 2003;21(12):556-62
  • Baines IC, Colas P. Peptide aptamers as guides for small-molecule drug discovery. Drug Discov Today 2006;11(7-8):334-41
  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005;23(9):1126-36
  • Colas P, Cohen B, Jessen T, et al. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 1996;380(6574):548-50
  • Nagel-Wolfrum K, Buerger C, Wittig I, et al. The interaction of specific peptide aptamers with the DNA binding domain and the dimerization domain of the transcription factor Stat3 inhibits transactivation and induces apoptosis in tumor cells. Mol Cancer Res 2004;2(3):170-82
  • Kunz C, Borghouts C, Buerger C, Groner B. Peptide aptamers with binding specificity for the intracellular domain of the ErbB2 receptor interfere with AKT signaling and sensitize breast cancer cells to Taxol. Mol Cancer Res 2006;4(12):983-98
  • Hyland S, Beerli RR, Barbas CF, et al. Generation and functional characterization of intracellular antibodies interacting with the kinase domain of human EGF receptor. Oncogene 2003;22(10):1557-67
  • Der Maur AA, Zahnd C, Fischer F, et al. Direct in vivo screening of intrabody libraries constructed on a highly stable single-chain framework. J Biol Chem 2002;277(47):45075-85
  • Visintin M, Tse E, Axelson H, et al. Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc Natl Acad Sci USA 1999;96(21):11723-8
  • Gietz RD, Woods RA. Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol 2005;313:107-20
  • Worn A, Auf Der Maur A, Escher D, et al. Correlation between in vitro stability and in vivo performance of anti-GCN4 intrabodies as cytoplasmic inhibitors. J Biol Chem 2000;275(4):2795-803
  • Sengupta DJ, Zhang B, Kraemer B, et al. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci USA 1996;93(16):8496-501
  • Licitra EJ, Liu JO. A three-hybrid system for detecting small ligand-protein receptor interactions. Proc Natl Acad Sci USA 1996;93(23):12817-21
  • Lin H, Abida WM, Sauer RT, Cornish VW. Dexamethasone-methotrexate: an efficient chemical inducer of protein dimerization in vivo. J Am Chem Soc 2000;122:4247-8
  • Henthorn DC, Jaxa-Chamiec AA, Meldrum E. A GAL4-based yeast three-hybrid system for the identification of small molecule-target protein interactions. Biochem Pharmacol 2002;63(9):1619-28
  • Baker K, Sengupta D, Salazar-Jimenez G, Cornish VW. An optimized dexamethasone-methotrexate yeast 3-hybrid system for high-throughput screening of small molecule-protein interactions. Anal Biochem 2003;315(1):134-7
  • Becker F, Murthi K, Smith C, et al. A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem Biol 2004;11(2):211-23
  • Gallagher SS, Miller LW, Cornish VW. An orthogonal dexamethasone-trimethoprim yeast three-hybrid system. Anal Biochem 2007;363(1):160-2
  • Gendreizig S, Kindermann M, Johnsson K. Induced protein dimerization in vivo through covalent labeling. J Am Chem Soc 2003;125(49):14970-1
  • Keppler A, Gendreizig S, Gronemeyer T, et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 2003;21(1):86-9
  • Kato-Stankiewicz J, Hakimi I, Zhi G, et al. Inhibitors of Ras/Raf-1 interaction identified by two-hybrid screening revert Ras-dependent transformation phenotypes in human cancer cells. Proc Natl Acad Sci USA 2002;99(22):14398-403
  • Kaur R, Bachhawat AK. The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae. Microbiology 1999;145(Pt 4):809-18
  • Dirnberger D, Unsin G, Schlenker S, Reichel C. A small-molecule-protein interaction system with split-ubiquitin as sensor. Chembiochem 2006;7(6):936-42
  • Garcia-Echeverria C, Chene P, Blommers MJ, Furet P. Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J Med Chem 2000;43(17):3205-8
  • Arkin M, Wells J. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004;3(4):301-17
  • Delano W. Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol 2002;12(1):14-20
  • Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303(5659):844-8
  • Tovar C, Rosinski J, Filipovic Z, et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 2006;103(6):1888-93
  • Vidal M, Brachmann RK, Fattaey A, et al. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci USA 1996;93(19):10315-20
  • Huang J, Schreiber SL. A yeast genetic system for selecting small molecule inhibitors of protein-protein interactions in nanodroplets. Proc Natl Acad Sci USA 1997;94(25):13396-401
  • Young K, Lin S, Sun L, et al. Identification of a calcium channel modulator using a high throughput yeast two-hybrid screen. Nat Biotechnol 1998;16(10):946-50
  • Gunde T, Tanner S, Auf Der Maur A, et al. Quenching accumulation of toxic galactose-1-phosphate as a system to select disruption of protein-protein interactions in vivo. Biotechniques 2004;37(5):844-52
  • Hirst M, Ho C, Sabourin L, et al. A two-hybrid system for transactivator bait proteins. Proc Natl Acad Sci USA 2001;98(15):8726-31
  • Joshi PB, Hirst M, Malcolm T, et al. Identification of protein interaction antagonists using the repressed transactivator two-hybrid system. Biotechniques 2007;42(5):635-44
  • Nieuwenhuijsen BW, Huang Y, Wang Y, et al. A dual luciferase multiplexed high-throughput screening platform for protein-protein interactions. J Biomol Screen 2003;8(6):676-84
  • Lau LM, Nugent JK, Zhao X, Irwin MS. HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 2007;27(7):997-1003
  • Guo D, Hazbun TR, Xu XJ, et al. A tethered catalysis, two-hybrid system to identify protein-protein interactions requiring post-translational modifications. Nat Biotechnol 2004;22(7):888-92
  • Orchard S, Salwinski L, Kerrien S, et al. The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat Biotechnol 2007;25(8):894-8
  • Colland F, Daviet L. Integrating a functional proteomic approach into the target discovery process. Biochimie 2004;86(9-10):625-32
  • Wittke S, Lewke N, Muller S, Johnsson N. Probing the molecular environment of membrane proteins in vivo. Mol Biol Cell 1999;10(8):2519-30
  • Thaminy S, Auerbach D, Arnoldo A, Stagljar I. Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system. Genome Res 2003;13(7):1744-53
  • Laser H, Bongards C, Schuller J, et al. A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter. Proc Natl Acad Sci USA 2000;97(25):13732-7
  • Mockli N, Deplazes A, Hassa PO, et al. Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. Biotechniques 2007;42(6):725-30
  • Aronheim A, Zandi E, Hennemann H, et al. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol 1997;17(6):3094-102
  • Gavin AC, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002;415(6868):141-7
  • Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002;415(6868):180-3
  • Bouwmeester T, Bauch A, Ruffner H, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004;6(2):97-105
  • Godl K, Wissing J, Kurtenbach A, et al. An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc Natl Acad Sci USA 2003;100(26):15434-9
  • Brehmer D, Greff Z, Godl K, et al. Cellular targets of gefitinib. Cancer Res 2005;65(2):379-82
  • Godl K, Gruss OJ, Eickhoff J, et al. Proteomic characterization of the angiogenesis inhibitor SU6668 reveals multiple impacts on cellular kinase signaling. Cancer Res 2005;65(15):6919-26
  • Bantscheff M, Eberhard D, Abraham Y, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 2007;25(9):1035-44
  • Berg T, Cohen S, Desharnais J, et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci USA 2002;99(6):3830-5
  • Kiessling A, Sperl B, Hollis A, et al. Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules. Chem Biol 2006;13(7):745-51
  • Daelemans D, Afonina E, Nilsson J, et al. A synthetic HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear export. Proc Natl Acad Sci USA 2002;99(22):14440-5
  • Wu TY, Wagner KW, Bursulaya B, et al. Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem Biol 2003;10(8):759-67
  • Lepourcelet M, Chen YN, France DS, et al. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 2004;5(1):91-102
  • Oltersdorf T, Elmore S, Shoemaker A, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005
  • Moerke NJ, Aktas H, Chen H, et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 2007;128(2):257-67
  • Shih HM, Goldman PS, Demaggio AJ, et al. A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. Proc Natl Acad Sci USA 1996;93(24):13896-901
  • Serebriiskii IG, Mitina O, Pugacheva EN, et al. Detection of peptides, proteins, and drugs that selectively interact with protein targets. Genome Res 2002;12(11):1785-91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.