178
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Induction of pathogenic cytotoxic T lymphocyte tolerance by dendritic cells: a novel therapeutic target

&
Pages 797-824 | Published online: 20 Jun 2010

Bibliography

  • Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002;2:151-61
  • Stevens TL, Bossie A, Sanders VM, Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature 1988;334:255-8
  • Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest 2006;116:1218-22
  • Guermonprez P, Valladeau J, Zitvogel L, Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002;20:621-67
  • Allan RS, Waithman J, Bedoui S, Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 2006;25:153-62
  • Matzinger P. The danger model: a renewed sense of self. Science 2002;296:301-5
  • Bousso P, Robey E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 2003;4:579-85
  • Castellino F, Huang AY, Altan-Bonnet G, Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 2006;440:890-5
  • Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989;7:145-73
  • Gett AV, Sallusto F, Lanzavecchia A, Geginat J. T cell fitness determined by signal strength. Nat Immunol 2003;4:355-60
  • Schoenberger SP, Toes RE, van der Voort EI, T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 1998;393:480-3
  • Janssen EM, Lemmens EE, Wolfe T, CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003;421:852-6
  • Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol 2005;5:772-82
  • Bouneaud C, Kourilsky P, Bousso P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 2000;13:829-40
  • Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001;2:1032-9
  • Larsen CP, Morris PJ, Austyn JM. Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med 1990;171:307-14
  • Larsen CP, Steinman RM, Witmer-Pack M, Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 1990;172:1483-93
  • Semana G, Gausling R, Jackson RA, Hafler DA. T cell autoreactivity to proinsulin epitopes in diabetic patients and healthy subjects. J Autoimmun 1999;12:259-67
  • Ohashi PS, Oehen S, Buerki K, Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 1991;65:305-17
  • Oldstone MB, Nerenberg M, Southern P, Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 1991;65:319-31
  • Kurts C, Kosaka H, Carbone FR, Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J Exp Med 1997;186:239-45
  • Schonrich G, Kalinke U, Momburg F, Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 1991;65:293-304
  • Heath WR, Kurts C, Caminschi I, CD30 prevents T-cell responses to non-lymphoid tissues. Immunol Rev 1999;169:23-9
  • Sixt M, Kanazawa N, Selg M, The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 2005;22:19-29
  • Bedoui S, Whitney PG, Waithman J, Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 2009;10(5):488-95
  • Dudziak D, Kamphorst AO, Heidkamp GF, Differential antigen processing by dendritic cell subsets in vivo. Science 2007;315:107-11
  • Schwartz RH. T cell anergy. Annu Rev Immunol 2003;21:305-34
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003;21:685-711
  • Verhasselt V, Vosters O, Beuneu C, Induction of FOXP3-expressing regulatory CD4pos T cells by human mature autologous dendritic cells. Eur J Immunol 2004;34:762-72
  • Ito T, Yang M, Wang YH, Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 2007;204:105-15
  • Hirano A, Luke PP, Specht SM, Graft hyporeactivity induced by immature donor-derived dendritic cells. Transpl Immunol 2000;8:161-8
  • Garrovillo M, Ali A, Oluwole SF. Indirect allorecognition in acquired thymic tolerance: induction of donor-specific tolerance to rat cardiac allografts by allopeptide-pulsed host dendritic cells. Transplantation 1999;68:1827-34
  • Ali A, Garrovillo M, Jin MX, Major histocompatibility complex class I peptide-pulsed host dendritic cells induce antigen-specific acquired thymic tolerance to islet cells. Transplantation 2000;69:221-6
  • Verginis P, Li HS, Carayanniotis G. Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T cells. J Immunol 2005;174(11):7433-9
  • Dhodapkar MV, Steinman RM, Krasovsky J, Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001;193:233-8
  • Clinical Trial; Rheumatoid Arthritis Vaccine – The University of Queenland, Australia 2010. Available from: http://www.di.uq.edu.au/current-trials, [Last accessed 6 June 2010]
  • Redmond WL, Hernandez J, Sherman LA. Deletion of naive CD8 T cells requires persistent antigen and is not programmed by an initial signal from the tolerogenic APC. J Immunol 2003;171:6349-54
  • Hernandez J, Aung S, Redmond WL, Sherman LA. Phenotypic and functional analysis of CD8+ T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J Exp Med 2001;194:707-17
  • Tan PH, Yates JB, Xue SA, Creation of tolerogenic human dendritic cells via intracellular CTLA4: a novel strategy with potential in clinical immunosuppression. Blood 2005;106:2936-43
  • Takayama T, Morelli AE, Robbins PD, Feasibility of CTLA4Ig gene delivery and expression in vivo using retrovirally transduced myeloid dendritic cells that induce alloantigen- specific T cell anergy in vitro. Gene Ther 2000;7:1265-73
  • Grohmann U, Orabona C, Fallarino F, CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 2002;3:1097-101
  • Pree I, Bigenzahn S, Fuchs D, CTLA4Ig promotes the induction of hematopoietic chimerism and tolerance independently of indoleamine-2,3-dioxygenase. Transplantation 2007;83:663-7
  • Hackstein H, Thomson AW. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 2004;4:24-34
  • Andreakos E, Smith C, Monaco C, IkappaB kinase 2 but not NF-kappaB-inducing kinase is essential for effective DC antigen presentation in the allogeneic mixed lymphocyte reaction. Blood 2003;101:983-91
  • Andreakos E, Sacre SM, Smith C, Distinct pathways of LPS-induced NF-kappaB activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP. Blood 2004;103:2229-37
  • Yoshimura S, Bondeson J, Brennan FM, Role of NF-kappaB in antigen presentation and development of regulatory T cells elucidated by treatment of dendritic cells with the proteasome inhibitor PSI. Eur J Immunol 2001;31:1883-93
  • Yoshimura S, Bondeson J, Foxwell BM, Effective antigen presentation by dendritic cells is NF-kappaB dependent: coordinate regulation of MHC, co-stimulatory molecules and cytokines. Int Immunol 2001;13:675-83
  • Mitsiades N, Mitsiades CS, Poulaki V, Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 2002;99:4079-86
  • Tan PH, Sagoo P, Chan C, Inhibition of NF-kappaB and oxidative pathways in human dendritic cells by antioxidative vitamins generates regulatory T cells. J Immunol 2005;174:7633-44
  • Traenckner EB, Wilk S, Baeuerle PA. A proteasome inhibitor prevents activation of NF-kappaB and stabilizes a newly phosphorylated form of IkappaB-alpha that is still bound to NF-kappaB. EMBO J 1994;13:5433-41
  • Valmori D, Gileadi U, Servis C, Modulation of proteasomal activity required for the generation of a cytotoxic T lymphocyte-defined peptide derived from the tumor antigen MAGE-3. J Exp Med 1999;189:895-906
  • Auphan N, DiDonato JA, Rosette C, Immunosuppression by glucocorticoids: inhibition of NF-kappaB activity through induction of IkappaB synthesis. Science 1995;270:286-90
  • De Bosscher K, Schmitz ML, Vanden Berghe W, Glucocorticoid-mediated repression of nuclear factor-kappaB-dependent transcription involves direct interference with transactivation. Proc Natl Acad Sci USA 1997;94:13504-9
  • Mazzeo D, Sacco S, Di Lucia P, Thiol antioxidants inhibit the formation of the interleukin-12 heterodimer: a novel mechanism for the inhibition of IL-12 production. Cytokine 2002;17:285-93
  • Ramanathapuram LV, Hahn T, Graner MW, Vesiculated alpha-tocopheryl succinate enhances the anti-tumor effect of dendritic cell vaccines. Cancer Immunol Immunother 2006;55:166-77
  • Matasic R, Dietz AB, Vuk-Pavlovic S. Cyclooxygenase-independent inhibition of dendritic cell maturation by aspirin. Immunology 2000;101:53-60
  • Ho LJ, Chang DM, Shiau HY, Aspirin differentially regulates endotoxin-induced IL-12 and TNF-alpha production in human dendritic cells. Scand J Rheumatol 2001;30:346-52
  • Hackstein H, Morelli AE, Larregina AT, Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. J Immunol 2001;166:7053-62
  • Buckland M, Jago CB, Fazekasova H, Aspirin-treated human DCs up-regulate ILT-3 and induce hyporesponsiveness and regulatory activity in responder T cells. Am J Transplant 2006;6:2046-59
  • Yoshimura S, Bondeson J, Brennan FM, Antigen presentation by murine dendritic cells is nuclear factor-kappa B dependent both in vitro and in vivo. Scand J Immunol 2003;58:165-72
  • Bonham CA, Peng L, Liang X, Marked prolongation of cardiac allograft survival by dendritic cells genetically engineered with NF-kappaB oligodeoxyribonucleotide decoys and adenoviral vectors encoding CTLA4-Ig. J Immunol 2002;169:3382-91
  • Giannoukakis N, Bonham CA, Qian S, Prolongation of cardiac allograft survival using dendritic cells treated with NF-kappaB decoy oligodeoxyribonucleotides. Mol Ther 2000;1:430-7
  • Machen J, Harnaha J, Lakomy R, Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells. J Immunol 2004;173:4331-41
  • Morelli AE, Larregina AT, Ganster RW, Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway. J Virol 2000;74:9617-28
  • Aiello S, Cassis P, Cassis L, DnIKK2-transfected dendritic cells induce a novel population of inducible nitric oxide synthase-expressing CD4+CD25– cells with tolerogenic properties. Transplantation 2007;83(4):474-84
  • Clinical Trial; Autologous Dendritic Cell Therapy for Type 1 Diabetes Suppression: A Safety Study – ClinicalTrials.gov Identifier: NCT00445913 - University of Pittsburgh, USA, 2007. Available from: http://www.clinicaltrials.gov/ct2/show/NCT00445913?term=dendritic+and+diabetes&rank=1. [Last accessed 6 June 2010]
  • Fritsche J, Mondal K, Ehrnsperger A, Regulation of 25-hydroxyvitamin D3-1alpha-hydroxylase and production of 1alpha,25-dihydroxyvitamin D3 by human dendritic cells. Blood 2003;102:3314-6
  • Gauzzi MC, Purificato C, Donato K, Suppressive effect of 1alpha,25-dihydroxyvitamin D3 on type I IFN-mediated monocyte differentiation into dendritic cells: impairment of functional activities and chemotaxis. J Immunol 2005;174:270-6
  • Griffin MD, Lutz W, Phan VA, Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci USA 2001;98:6800-5
  • Gregori S, Casorati M, Amuchastegui S, Regulatory T cells induced by 1alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol 2001;167:1945-53
  • D'Ambrosio D, Cippitelli M, Cocciolo MG, Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3 Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest 1998;101:252-62
  • Dong X, Craig T, Xing N, Direct transcriptional regulation of RelB by 1alpha,25-dihydroxyvitamin D3 and its analogs: physiologic and therapeutic implications for dendritic cell function. J Biol Chem 2003;278:49378-85
  • Clinical Trial; Rheumatoid arthritis vaccine - Newcastle University, United Kingdom. Available from: http://www.ncl.ac.uk/press.office/ press.release/item/1218537717
  • Greenwald RJ, Boussiotis VA, Lorsbach RB, CTLA-4 regulates induction of anergy in vivo. Immunity 2001;14(2):145-55
  • Perez VL, Van Parijs L, Biuckians A, Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997;6:411-7
  • Garrod KR, Chang CK, Liu FC, Targeted lymphoid homing of dendritic cells is required for prolongation of allograft survival. J Immunol 2006;177:863-8
  • Takayama T, Tahara H, Thomson AW. Transduction of dendritic cell progenitors with a retroviral vector encoding viral interleukin-10 and enhanced green fluorescent protein allows purification of potentially tolerogenic antigen-presenting cells. Transplantation 1999;68:1903-9
  • Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992;11:3887-95
  • Latchman Y, Wood CR, Chernova T, PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001;2:261-8
  • Keir ME, Liang SC, Guleria I, Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 2006;203:883-95
  • Filippi CM, Estes EA, Oldham JE, von Herrath MG. Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. J Clin Invest 2009;119:1515-23
  • Nishimura H, Nose M, Hiai H, Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11:141-51
  • Salama AD, Chitnis T, Imitola J, Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 2003;198:71-8
  • Reynoso ED, Elpek KG, Francisco L, Intestinal tolerance is converted to autoimmune enteritis upon PD-1 ligand blockade. J Immunol 2009;182:2102-12
  • Nishimura H, Okazaki T, Tanaka Y, Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001;291:319-22
  • Keir ME, Freeman GJ, Sharpe AH. PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues. J Immunol 2007;179:5064-70
  • Day CL, Kaufmann DE, Kiepiela P, PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006;443:350-4
  • Barber DL, Wherry EJ, Masopust D, Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006;439:682-7
  • Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH. Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 2006;203:2223-7
  • Baixeras E, Huard B, Miossec C, Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med 1992;176:327-37
  • Annunziato F, Manetti R, Cosmi L, Opposite role for interleukin-4 and interferon-gamma on CD30 and lymphocyte activation gene-3 (LAG-3) expression by activated naive T cells. Eur J Immunol 1997;27:2239-44
  • Scala E, Carbonari M, Del Porto P, Lymphocyte activation gene-3 (LAG-3) expression and IFN-gamma production are variably coregulated in different human T lymphocyte subpopulations. J Immunol 1998;61:489-93
  • Hannier S, Triebel F. The MHC class II ligand lymphocyte activation gene-3 is co-distributed with CD8 and CD3-TCR molecules after their engagement by mAb or peptide-MHC class I complexes. Int Immunol 1999;11:1745-52
  • Prigent P, El Mir S, Dreano M, Triebel F. Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. Eur J Immunol 1999;29:3867-76
  • El Mir S, Triebel F. A soluble lymphocyte activation gene-3 molecule used as a vaccine adjuvant elicits greater humoral and cellular immune responses to both particulate and soluble antigens. J Immunol 2000;164:5583-9
  • Cappello P, Triebel F, Iezzi M, LAG-3 enables DNA vaccination to persistently prevent mammary carcinogenesis in HER-2/neu transgenic BALB/c mice. Cancer Res 2003;63:2518-25
  • Grosso JF, Kelleher CC, Harris TJ, LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 2007;117:3383-92
  • Brignone C, Grygar C, Marcu M, IMP321 (sLAG-3), an immunopotentiator for T cell responses against a HBsAg antigen in healthy adults: a single blind randomised controlled phase I study. J Immune Based Ther Vaccines 2007;5:5
  • Velu V, Titanji K, Zhu B, Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 2009;458(7235):206-10
  • Blackburn SD, Shin H, Haining WN, Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009;10:29-37
  • Buisson S, Triebel F. LAG-3 (CD223) reduces macrophage and dendritic cell differentiation from monocyte precursors. Immunology 2005;114:369-74
  • Andreae S, Piras F, Burdin N, Triebel F. Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223). J Immunol 2002;168:3874-80
  • Buisson S, Triebel F. MHC class II engagement by its ligand LAG-3 (CD223) leads to a distinct pattern of chemokine and chemokine receptor expression by human dendritic cells. Vaccine 2003;21:862-8
  • Workman CJ, Cauley LS, Kim IJ, Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol 2004;172:5450-5
  • Huard B, Prigent P, Pages F, T cell major histocompatibility complex class II molecules down-regulate CD4+ T cell clone responses following LAG-3 binding. Eur J Immunol 1996;26:1180-6
  • Workman CJ, Vignali DA. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J Immunol 2005;174:688-95
  • Okamura T, Fujio K, Shibuya M, CD4+CD25–LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc Natl Acad Sci USA 2009;106:13974-9
  • Joosten SA, van Meijgaarden KE, Savage ND, Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci USA 2007;104(19):8029-34
  • Rissoan MC, Soumelis V, Kadowaki N, Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999;283:1183-6
  • Curtsinger JM, Lins DC, Mescher MF. Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med 2003;197:1141-51
  • Curtsinger JM, Valenzuela JO, Agarwal P, Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 2005;174:4465-9
  • Curtsinger JM, Lins DC, Johnson CM, Mescher MF. Signal 3 tolerant CD8 T cells degranulate in response to antigen but lack granzyme B to mediate cytolysis. J Immunol 2005;175:4392-9
  • Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998;393:474-8
  • Bennett SR, Carbone FR, Karamalis F, Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998;393:478-80
  • Xiao Z, Casey KA, Jameson SC, Programming for CD8 T cell memory development requires IL-12 or type I IFN. J Immunol 2009;182:2786-94
  • Filatenkov AA, Jacovetty EL, Fischer UB, CD4 T cell-dependent conditioning of dendritic cells to produce IL-12 results in CD8-mediated graft rejection and avoidance of tolerance. J Immunol 2005;174:6909-17
  • Mescher MF, Agarwal P, Casey KA, Molecular basis for checkpoints in the CD8 T cell response: tolerance versus activation. Semin Immunol 2007;19:153-61
  • Curtsinger JM, Schmidt CS, Mondino A, Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 1999;162:3256-62
  • Coates PT, Krishnan R, Kireta S, Human myeloid dendritic cells transduced with an adenoviral interleukin-10 gene construct inhibit human skin graft rejection in humanized NOD–scid chimeric mice. Gene Ther 2001;8:1224-33
  • Asiedu C, Dong SS, Pereboev A, Rhesus monocyte-derived dendritic cells modified to over-express TGF-beta1 exhibit potent veto activity. Transplantation 2002;74:629-37
  • Whalen JD, Thomson AW, Lu L, Viral IL-10 gene transfer inhibits DTH responses to soluble antigens: evidence for involvement of genetically modified dendritic cells and macrophages. Mol Ther 2001;4:543-50
  • Kim SH, Lechman ER, Bianco N, Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 2005;174:6440-8
  • Lu L, Lee WC, Takayama T, Genetic engineering of dendritic cells to express immunosuppressive molecules (viral IL-10, TGF-beta, and CTLA4Ig). J Leukoc Biol 1999;66(2):293-6
  • Buonocore S, Van Meirvenne S, Demoor FX, Dendritic cells transduced with viral interleukin 10 or Fas ligand: no evidence for induction of allotolerance in vivo. Transplantation 2002;73(1 Suppl):S27-30
  • Takayama T, Tahara H, Thomson AW. Differential effects of myeloid dendritic cells retrovirally transduced to express mammalian or viral interleukin-10 on cytotoxic T lymphocyte and natural killer cell functions and resistance to tumor growth. Transplantation 2001;71:1334-40
  • Takayama T, Morelli AE, Onai N, Mammalian and viral IL-10 enhance C-C chemokine receptor 5 but down-regulate C-C chemokine receptor 7 expression by myeloid dendritic cells: impact on chemotactic responses and in vivo homing ability. J Immunol 2001;166:7136-43
  • Morel AS, Quaratino S, Douek DC, Londei M. Split activity of interleukin-10 on antigen capture and antigen presentation by human dendritic cells: definition of a maturative step. Eur J Immunol 1997;27:26-34
  • Belladonna ML, Volpi C, Bianchi R, Cutting edge: autocrine TGF-beta sustains default tolerogenesis by IDO-competent dendritic cells. J Immunol 2008;181:5194-8
  • Cook CH, Bickerstaff AA, Wang JJ, Spontaneous renal allograft acceptance associated with “regulatory” dendritic cells and IDO. J Immunol 2008;180:3103-12
  • Huang YM, Yang JS, Xu LY, Autoantigen-pulsed dendritic cells induce tolerance to experimental allergic encephalomyelitis (EAE) in Lewis rats. Clin Exp Immunol 2000;122:437-44
  • Clarke CJ, Taylor-Fishwick DA, Hales A, Interleukin-4 inhibits kappa light chain expression and NFkappaB activation but not IkappaBalpha degradation in 70Z/3 murine pre-B cells. Eur J Immunol 1995;25:2961-6
  • Kim SH, Bianco NR, Shufesky WJ, Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J Immunol 2007;179:2242-9
  • Kaneko K, Wang Z, Kim SH, Dendritic cells genetically engineered to express IL-4 exhibit enhanced IL-12p70 production in response to CD40 ligation and accelerate organ allograft rejection. Gene Ther 2003;10:143-52
  • Curtsinger JM, Johnson CM, Mescher MF. CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J Immunol 2003;171:5165-71
  • von Herrath MG, Yokoyama M, Dockter J, CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J Virol 1996;70:1072-9
  • Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 2003;300:337-9
  • Ochsenbein AF, Karrer U, Klenerman P, A comparison of T cell memory against the same antigen induced by virus versus intracellular bacteria. Proc Natl Acad Sci USA 1999;96:9293-8
  • Liu F, Feuer R, Hassett DE, Whitton JL. Peptide vaccination of mice immune to LCMV or vaccinia virus causes serious CD8 T cell-mediated, TNF-dependent immunopathology. J Clin Invest 2006;116:465-75
  • Ha SJ, Mueller SN, Wherry EJ, Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J Exp Med 2008;205:543-55
  • Radziewicz H, Ibegbu CC, Fernandez ML, Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J Virol 2007;81:2545-53
  • Blattman JN, Wherry EJ, Ha SJ, Impact of epitope escape on PD-1 expression and CD8 T-cell exhaustion during chronic infection. J Virol 2009;83:4386-94
  • Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004;22:531-62
  • von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol 2005;6:338-44
  • Dhodapkar MV, Steinman RM. Antigen-bearing immature dendritic cells induce peptide-specific CD8+ regulatory T cells in vivo in humans. Blood 2002;100:174-7
  • Albert ML, Pearce SF, Francisco LM, Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998;188:1359-68
  • Miyasaka K, Hanayama R, Tanaka M, Nagata S. Expression of milk fat globule epidermal growth factor 8 in immature dendritic cells for engulfment of apoptotic cells. Eur J Immunol 2004;34:1414-22
  • Propato A, Cutrona G, Francavilla V, Apoptotic cells overexpress vinculin and induce vinculin-specific cytotoxic T-cell cross-priming. Nat Med 2001;7:807-13
  • Grohmann U, Fallarino F, Silla S, CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells. J Immunol 2001;166:277-83
  • Kishimoto K, Sandner S, Imitola J, Th1 cytokines, programmed cell death, and alloreactive T cell clone size in transplant tolerance. J Clin Invest 2002;109:1471-9
  • Tada Y, O-Wang J, Takiguchi Y, Cutting edge: a novel role for Fas ligand in facilitating antigen acquisition by dendritic cells. J Immunol 2002;169:2241-5
  • Williams CA, Harry RA, McLeod JD. Apoptotic cells induce dendritic cell-mediated suppression via interferon-gamma-induced IDO. Immunology 2008;124:89-101
  • Wang Z, Larregina AT, Shufesky WJ, Use of the inhibitory effect of apoptotic cells on dendritic cells for graft survival via T-cell deletion and regulatory T cells. Am J Transplant 2006;6:1297-311
  • Morelli AE. The immune regulatory effect of apoptotic cells and exosomes on dendritic cells: its impact on transplantation. Am J Transplant 2006;6:254-61
  • Suss G, Shortman K. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J Exp Med 1996;183:1789-96
  • Wolfe T, Asseman C, Hughes A, Reduction of antiviral CD8 lymphocytes in vivo with dendritic cells expressing Fas ligand-increased survival of viral (lymphocytic choriomeningitis virus) central nervous system infection. J Immunol 2002;169:4867-72
  • Kim SH, Kim S, Oligino TJ, Robbins PD. Effective treatment of established mouse collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express FasL. Mol Ther 2002;6:584-90
  • Chai JG, Bartok I, Scott D, T:T antigen presentation by activated murine CD8+ T cells induces anergy and apoptosis. J Immunol 1998;160:3655-65
  • Gordon JR, Li F, Nayyar A. CD8alpha+, but not CD8alpha–, dendritic cells tolerize Th2 responses via contact-dependent and -independent mechanisms, and reverse airway hyperresponsiveness, Th2, and eosinophil responses in a mouse model of asthma. J Immunol 2005;175:1516-22
  • Hoves S, Krause SW, Halbritter D, Mature but not immature Fas ligand (CD95L)-transduced human monocyte- derived dendritic cells are protected from Fas-mediated apoptosis and can be used as killer APC. J Immunol 2003;170:5406-13
  • Ashany D, Savir A, Bhardwaj N, Elkon KB. Dendritic cells are resistant to apoptosis through the Fas (CD95/APO-1) pathway. J Immunol 1999;163:5303-11
  • Lu L, Qian S, Hershberger PA, Fas ligand (CD95L) and B7 expression on dendritic cells provide counter- regulatory signals for T cell survival and proliferation. J Immunol 1997;158:5676-84
  • Kusuhara M, Matsue K, Edelbaum D, Killing of naive T cells by CD95L-transfected dendritic cells (DC): in vivo study using killer DC-DC hybrids and CD4+ T cells from DO11.10 mice. Eur J Immunol 2002;32:1035-43
  • Chattergoon MA, Kim JJ, Yang JS, Targeted antigen delivery to antigen-presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nat Biotechnol 2000;18:974-9
  • Min WP, Gorczynski R, Huang XY, Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J Immunol 2000;164:161-7
  • Wang XY, Sun J, Wang C, Effect of liver transplantation on islet allografts: up-regulation of Fas ligand and apoptosis of T lymphocytes are associated with islet graft tolerance. Transplantation 2001;71:102-11
  • Kim SH, Bianco N, Menon R, Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther 2006;13:289-300
  • Matsue H, Matsue K, Kusuhara M, Immunosuppressive properties of CD95L-transduced “killer” hybrids created by fusing donor- and recipient-derived dendritic cells. Blood 2001;98:3465-72
  • Lundqvist A, Choudhury A, Nagata T, Recombinant adenovirus vector activates and protects human monocyte-derived dendritic cells from apoptosis. Hum Gene Ther 2002;13:1541-9
  • Buonocore S, Paulart F, Le Moine A, Dendritic cells overexpressing CD95 (Fas) ligand elicit vigorous allospecific T-cell responses in vivo. Blood 2003;101:1469-76
  • Couzin J. Cell biology: the ins and outs of exosomes. Science 2005;308:1862-3
  • Thery C, Boussac M, Veron P, Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 2001;166:7309-18
  • Andre F, Chaput N, Schartz NE, Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol 2004;172:2126-36
  • Denzer K, van Eijk M, Kleijmeer MJ, Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol 2000;165:1259-65
  • Segura E, Nicco C, Lombard B, ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 2005;106:216-23
  • Lynch S, Santos SG, Campbell EC, Novel MHC class I structures on exosomes. J Immunol 2009;183:1884-91
  • Skokos D, Botros HG, Demeure C, Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 2003;170:3037-45
  • Qazi KR, Gehrmann U, Domange Jordo E, Antigen-loaded exosomes alone induce Th1-type memory through a B-cell-dependent mechanism. Blood 2009;113:2673-83
  • Wolfers J, Lozier A, Raposo G, Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001;7(3):297-303
  • Blanchard N, Lankar D, Faure F, TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 2002;168:3235-41
  • Matsumoto K, Morisaki T, Kuroki H, Exosomes secreted from monocyte-derived dendritic cells support in vitro naive CD4+ T cell survival through NF-kappaB activation. Cell Immunol 2004;231:20-9
  • Peche H, Heslan M, Usal C, Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation 2003;76:1503-10
  • Morelli AE, Larregina AT, Shufesky WJ, Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004;104:3257-66
  • Kim SH, Bianco NR, Shufesky WJ, MHC class II+ exosomes in plasma suppress inflammation in an antigen-specific and Fas ligand/ Fas-dependent manner. J Immunol 2007;179:2235-41
  • Ruffner MA, Kim SH, Bianco NR, B7-1/2, but not PD-L1/2 molecules, are required on IL-10-treated tolerogenic DC and DC-derived exosomes for in vivo function. Eur J Immunol 2009;39:3084-90
  • Bianco NR, Kim SH, Ruffner MA, Robbins PD. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models. Arthritis Rheum 2009;60:380-9
  • Peche H, Renaudin K, Beriou G, Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am J Transplant 2006;6:1541-50
  • Luketic L, Delanghe J, Sobol PT, Antigen presentation by exosomes released from peptide-pulsed dendritic cells is not suppressed by the presence of active CTL. J Immunol 2007;179:5024-32
  • Coppieters K, Barral AM, Juedes A, No significant CTL cross-priming by dendritic cell-derived exosomes during murine lymphocytic choriomeningitis virus infection. J Immunol 2009;182:2213-20
  • Lord GM, Matarese G, Howard JK, Leptin modulates the T-cell immune response and reverses starvation- induced immunosuppression. Nature 1998;394:897-901
  • De Rosa V, Procaccini C, Cali G, A key role of leptin in the control of regulatory T cell proliferation. Immunity 2007;26(2), 241-255
  • Cham CM, Gajewski TF. Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells. J Immunol 2005;174:4670-7
  • Frauwirth KA, Riley JL, Harris MH, The CD28 signaling pathway regulates glucose metabolism. Immunity 2002;16:769-77
  • Cham CM, Driessens G, O'Keefe JP, Gajewski TF. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur J Immunol 2008;38:2438-50
  • Munn DH, Sharma MD, Baban B, GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005;22:633-42
  • Uyttenhove C, Pilotte L, Theate I, Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003;9:1269-74
  • Munn DH, Sharma MD, Hou D, Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 2004;114:280-90
  • Manches O, Munn D, Fallahi A, HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J Clin Invest 2008;118:3431-9
  • Bailey-Bucktrout SL, Caulkins SC, Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J Immunol 2008;180:6457-61
  • Xu H, Oriss TB, Fei M, Indoleamine 2,3-dioxygenase in lung dendritic cells promotes Th2 responses and allergic inflammation. Proc Natl Acad Sci USA 2008;105:6690-5
  • Funeshima N, Fujino M, Kitazawa Y, Inhibition of allogeneic T-cell responses by dendritic cells expressing transduced indoleamine 2,3-dioxygenase. J Gene Med 2005;7:565-75
  • Tan PH, Beutelspacher SC, Wang YH, Immunolipoplexes: an efficient, nonviral alternative for transfection of human dendritic cells with potential for clinical vaccination. Mol Ther 2005;11:790-800
  • Park MJ, Min SY, Park KS, Indoleamine 2,3-dioxygenase-expressing dendritic cells are involved in the generation of CD4+CD25+ regulatory T cells in Peyer's patches in an orally tolerized, collagen-induced arthritis mouse model. Arthritis Res Ther 2008;10:R11
  • Cobbold SP, Adams E, Farquhar CA, Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci USA 2009;106:12055-60
  • Hackstein H, Taner T, Zahorchak AF, Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 2003;101:4457-63
  • Turnquist HR, Raimondi G, Zahorchak AF, Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 2007;178:7018-31
  • Taner T, Hackstein H, Wang Z, Rapamycin-treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival. Am J Transplant 2005;5:228-36
  • Chauveau C, Remy S, Royer PJ, Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood 2005;106:1694-702
  • Novitskiy SV, Ryzhov S, Zaynagetdinov R, Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008;112:1822-31
  • Belz GT, Bedoui S, Kupresanin F, Minimal activation of memory CD8+ T cell by tissue-derived dendritic cells favors the stimulation of naive CD8+ T cells. Nat Immunol 2007;8:1060-6
  • Risitano AM, Maciejewski JP, Green S, In-vivo dominant immune responses in aplastic anaemia: molecular tracking of putatively pathogenetic T-cell clones by TCR beta-CDR3 sequencing. Lancet 2004;364:355-64
  • Kita H, Lian ZX, Van de Water J, Identification of HLA-A2-restricted CD8+ cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 2002;195:113-23
  • Grubeck-Loebenstein B, Trieb K, Sztankay A, Retrobulbar T cells from patients with Graves' ophthalmopathy are CD8+ and specifically recognize autologous fibroblasts. J Clin Invest 1994;93:2738-43
  • Fuller BE, Giraldo AA, Waldmann H, Depletion of CD4+ and CD8+ cells eliminates immunologic memory of thyroiditogenicity in murine experimental autoimmune thyroiditis. Autoimmunity 1994;19:161-8
  • Sugihara S, Fujiwara H, Niimi H, Shearer GM. Self-thyroid epithelial cell (TEC)-reactive CD8+ T cell lines/clones derived from autoimmune thyroiditis lesions. They recognize self-thyroid antigens directly on TEC to exhibit T helper cell 1-type lymphokine production and cytotoxicity against TEC. J Immunol 1995;155:1619-28
  • Sugihara S, Fujiwara H, Shearer GM. Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. Characterization of thyroiditis-inducing T cell lines and clones derived from thyroid lesions. J Immunol 1993;150:683-94
  • Bender A, Ernst N, Iglesias A, T cell receptor repertoire in polymyositis: clonal expansion of autoaggressive CD8+ T cells. J Exp Med 1995;181:1863-8
  • Goebels N, Michaelis D, Engelhardt M, Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. J Clin Invest 1996;97:2905-10
  • Hofbauer M, Wiesener S, Babbe H, Clonal tracking of autoaggressive T cells in polymyositis by combining laser microdissection, single-cell PCR, and CDR3-spectratype analysis. Proc Natl Acad Sci USA 2003;100:4090-5
  • Irie J, Wu Y, Wicker LS, NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med 2006;203:1209-19
  • Kita H, Matsumura S, He XS, Quantitative and functional analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. J Clin Invest 2002;109:1231-40
  • Krams SM, Van de Water J, Coppel RL, Analysis of hepatic T lymphocyte and immunoglobulin deposits in patients with primary biliary cirrhosis. Hepatology 1990;12:306-13
  • De Jersey J, Carmignac D, Le Tissier P, Factors affecting the susceptibility of the mouse pituitary gland to CD8 T-cell-mediated autoimmunity. Immunology 2004;111:254-61
  • Fujihara T, Fujita H, Tsubota K, Preferential localization of CD8+ alphaE beta7+ T cells around acinar epithelial cells with apoptosis in patients with Sjogren's syndrome. J Immunol 1999;163:2226-35
  • Attias MR, Kong L, Tortolero M, CD4 mononuclear cell infiltrates and Fas/Fas ligand positive mammary gland cells in breast tissue from a patient with Sjogren's syndrome. J Rheumatol 1998;5:1226-31
  • Blanco P, Pitard V, Viallard JF, Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 2005;52:201-11
  • Couzi L, Merville P, Deminiere C, Predominance of CD8+ T lymphocytes among periglomerular infiltrating cells and link to the prognosis of class III and class IV lupus nephritis. Arthritis Rheum 2007;56:2362-70
  • Singer PA, McEvilly RJ, Noonan DJ, Clonal diversity and T-cell receptor beta-chain variable gene expression in enlarged lymph nodes of MRL-lpr/lpr lupus mice. Proc Natl Acad Sci USA 1986;83:7018-22
  • Mozes E, Kohn LD, Hakim F, Singer DS. Resistance of MHC class I-deficient mice to experimental systemic lupus erythematosus. Science 1993;261:91-3
  • Rozzo SJ, Drake CG, Chiang BL, Evidence for polyclonal T cell activation in murine models of systemic lupus erythematosus. J Immunol 1994;153:1340-51
  • Amrani A, Serra P, Yamanouchi J, Expansion of the antigenic repertoire of a single T cell receptor upon T cell activation. J Immunol 2001;167:655-66
  • Amrani A, Verdaguer J, Anderson B, Perforin-independent beta-cell destruction by diabetogenic CD8+ T lymphocytes in transgenic nonobese diabetic mice. J Clin Invest 1999;103:1201-9
  • Anderson B, Park BJ, Verdaguer J, Prevalent CD8+ T cell response against one peptide/MHC complex in autoimmune diabetes. Proc Natl Acad Sci USA 1999;96:9311-6
  • de Jersey J, Snelgrove SL, Palmer SE, beta cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice. Proc Natl Acad Sci USA 2007;104:1295-300
  • DiLorenzo TP, Graser RT, Ono T, Major histocompatibility complex class I-restricted T cells are required for all but the end stages of diabetes development in nonobese diabetic mice and use a prevalent T cell receptor alpha chain gene rearrangement. Proc Natl Acad Sci USA 1998;95:12538-43
  • Wankowicz-Kalinska A, van den Wijngaard RM, Tigges BJ, Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo. Lab Invest 2003;83:683-95
  • Steitz J, Bruck J, Lenz J, Peripheral CD8+ T cell tolerance against melanocytic self-antigens in the skin is regulated in two steps by CD4+ T cells and local inflammation: implications for the pathophysiology of vitiligo. J Invest Dermatol 2005;124:144-50
  • Steitz J, Wenzel J, Gaffal E, Tuting T. Initiation and regulation of CD8+ T cells recognizing melanocytic antigens in the epidermis: implications for the pathophysiology of vitiligo. Eur J Cell Biol 2004;83:797-803
  • Bonneville M, Moreau JF, Blokland E, T lymphocyte cloning from rejected human kidney allograft. Recognition repertoire of alloreactive T cell clones. J Immunol 1988;141:4187-95
  • Tighe H, Clark M, Waldmann H. Blocking of cytotoxic T cell function by monoclonal antibodies against the CD45 antigen (T200/leukocyte-common antigen). Transplantation 1987;44:818-23
  • Babbe H, Roers A, Waisman A, Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 2000;192:393-404
  • Du Pasquier RA, Stein MC, Lima MA, JC virus induces a vigorous CD8+ cytotoxic T cell response in multiple sclerosis patients. J Neuroimmunol 2006;176:181-6
  • Calder VL, Bondeson J, Brennan FM, Antigen-specific T-cell downregulation by human dendritic cells following blockade of NF-kappaB. Scand J Immunol 2003;57:261-70
  • Ma L, Qian S, Liang X, Prevention of diabetes in NOD mice by administration of dendritic cells deficient in nuclear transcription factor-kappaB activity. Diabetes 2003;52:1976-85
  • Steptoe RJ, Ritchie JM, Jones LK, Harrison LC. Autoimmune diabetes is suppressed by transfer of proinsulin-encoding Gr-1+ myeloid progenitor cells that differentiate in vivo into resting dendritic cells. Diabetes 2005;54:434-42
  • Steptoe RJ, Ritchie JM, Wilson NS, Cognate CD4+ help elicited by resting dendritic cells does not impair the induction of peripheral tolerance in CD8+ T cells. J Immunol 2007;178:2094-103
  • Yang JS, Xu LY, Huang YM, Adherent dendritic cells expressing high levels of interleukin-10 and low levels of interleukin-12 induce antigen-specific tolerance to experimental autoimmune encephalomyelitis. Immunology 2000;101:397-403
  • Creusot RJ, Yaghoubi SS, Kodama K, Tissue-targeted therapy of autoimmune diabetes using dendritic cells transduced to express IL-4 in NOD mice. Clin Immunol 2008;127:176-87
  • Canning MO, Grotenhuis K, de Wit H, 1-alpha,25-Dihydroxyvitamin D3 (1,25(OH)2D3) hampers the maturation of fully active immature dendritic cells from monocytes. Eur J Endocrinol 2001;145:351-7
  • Piemonti L, Monti P, Sironi M, Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol 2000;164:4443-51
  • Oluwole OO, Depaz HA, Gopinathan R, Indirect allorecognition in acquired thymic tolerance: induction of donor-specific permanent acceptance of rat islets by adoptive transfer of allopeptide-pulsed host myeloid and thymic dendritic cells. Diabetes 2001;50:1546-52
  • Lutz MB, Suri RM, Niimi M, Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 2000;30:1813-22
  • Beriou G, Peche H, Guillonneau C, Donor-specific allograft tolerance by administration of recipient-derived immature dendritic cells and suboptimal immunosuppression. Transplantation 2005;79:969-72
  • Jiga LP, Ehser S, Kleist C, Inhibition of heart allograft rejection with mitomycin C-treated donor dendritic cells. Transplantation 2007;83:347-50
  • Lu L, Li W, Zhong C, Increased apoptosis of immunoreactive host cells and augmented donor leukocyte chimerism, not sustained inhibition of B7 molecule expression are associated with prolonged cardiac allograft survival in mice preconditioned with immature donor dendritic cells plus anti-CD40L mAb. Transplantation 1999;68:747-57
  • Sato K, Yamashita N, Baba M, Matsuyama T. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 2003;18:367-79
  • Wang Q, Liu Y, Wang J, Induction of allospecific tolerance by immature dendritic cells genetically modified to express soluble TNF receptor. J Immunol 2006;77:2175-85
  • Ikeguchi R, Sacks JM, Unadkat JV, Long-term survival of limb allografts induced by pharmacologically conditioned, donor alloantigen-pulsed dendritic cells without maintenance immunosuppression. Transplantation 2008;85:237-46
  • Takayama T, Nishioka Y, Lu L, Retroviral delivery of viral interleukin-10 into myeloid dendritic cells markedly inhibits their allostimulatory activity and promotes the induction of T-cell hyporesponsiveness. Transplantation 1998;66:1567-74
  • Bittencourt MC, Perruche S, Contassot E, Intravenous injection of apoptotic leukocytes enhances bone marrow engraftment across major histocompatibility barriers. Blood 2001;98:224-30
  • Whartenby KA, Straley EE, Kim H, Transduction of donor hematopoietic stem-progenitor cells with Fas ligand enhanced short-term engraftment in a murine model of allogeneic bone marrow transplantation. Blood 2002;100:3147-54
  • Matsue H, Matsue K, Walters M, Induction of antigen-specific immunosuppression by CD95L cDNA-transfected ‘killer’ dendritic cells. Nat Med 1999;5:930-7
  • Mirenda V, Berton I, Read J, Modified dendritic cells coexpressing self and allogeneic major histocompatability complex molecules: an efficient way to induce indirect pathway regulation. J Am Soc Nephrol 2004;15:987-97
  • Liu Z, Dai H, Wan N, Suppression of memory CD8 T cell generation and function by tryptophan catabolism. J Immunol 2007;178:4260-6
  • Yu G, Fang M, Gong M, Steady state dendritic cells with forced IDO expression induce skin allograft tolerance by upregulation of regulatory T cells. Transpl Immunol 2008;18:208-19
  • Haspot F, Seveno C, Dugast AS, Anti-CD28 antibody-induced kidney allograft tolerance related to tryptophan degradation and TCR class II B7 regulatory cells. Am J Transplant 2005;5:2339-48
  • Degauque N, Lair D, Dupont A, Dominant tolerance to kidney allografts induced by anti-donor MHC class II antibodies: cooperation between T and non-T CD103+ cells. J Immunol 2006;176:3915-22
  • Guillonneau C, Hill M, Hubert FX, CD40Ig treatment results in allograft acceptance mediated by CD8+ CD45RClow T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest 2007;117:1096-106
  • Laurence JM, Wang C, Zheng M, Overexpression of indoleamine dioxygenase in rat liver allografts using a high-efficiency adeno-associated virus vector does not prevent acute rejection. Liver Transpl 2009;15:233-41
  • Laurence JM, Wang C, Park ET, Blocking indoleamine dioxygenase activity early after rat liver transplantation prevents long-term survival but does not cause acute rejection. Transplantation 2008;85:1357-61
  • Davis PM, Nadler SG, Stetsk63 proliferation and effector function independent of IDO induction. Clin Immunol 2008;126:38-47
  • Grohmann U, Volpi C, Fallarino F, Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 2007;13:579-86
  • Hayashi T, Beck L, Rossetto C, Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J Clin Invest 2004;14:270-9
  • Adikari SB, Lian H, Link H, Interferon-gamma-modified dendritic cells suppress B cell function and ameliorate the development of experimental autoimmune myasthenia gravis. Clin Exp Immunol 2004;138:230-6
  • von Bubnoff D, Fimmers R, Bogdanow M, Asymptomatic atopy is associated with increased indoleamine 2,3-dioxygenase activity and interleukin-10 production during seasonal allergen exposure. Clin Exp Allergy 2004;34:1056-63
  • Jiang W, Swiggard WJ, Heufler C, The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995;375:151-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.