671
Views
58
CrossRef citations to date
0
Altmetric
Reviews

Targeting miRNAs in osteoblast differentiation and bone formation

, , , , &
Pages 1109-1120 | Published online: 08 Aug 2010

Bibliography

  • Lakshmipathy U, Hart RP. Concise review: MicroRNA expression in multipotent mesenchymal stromal cells. Stem Cells 2008;2:356-63
  • Esau C, Kang X, Peralta E, MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004;279:52361-5
  • Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005;436(7048):214-20
  • Kuwabara T, Hsieh J, Nakashima K, A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 2004;116:779-93
  • Wu L, Belasco JG. MicroRNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol 2005;25:9198-208
  • Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 2010;28:357-64
  • Mizuno Y, Yagi K, Tokuzawa Y, miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun 2008;368:267-72
  • Li ZY, Hassan MQ, Volinia S, A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 2008;105:13906-11
  • Suomi S, Taipaleenmaki H, Seppanen A, MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. Gene Regul Syst Biol 2008;22:177-91
  • Li ZY, Hassan MQ, Jafferji M, Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 2009;284:15676-84
  • Smirnova L, Grafe A, Seiler A, Regulation of miRNA expression during neural cell specification. Eur J Neurosci 2005;21:1469-77
  • Sun Q, Zhang Y, Yang G, Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 2008;36:2690-9
  • Chen JF, Mandel EM, Thomson JM, The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006;38:228-33
  • Rao PK, Kumar RM, Farkhondeh M, Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA 2006;103:8721-6
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97
  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009;136:642-55
  • Mallory AC, Vaucheret H. Functions of microRNAs and related small RNAs in plants. Nat Genet 2006;38(Suppl):S31-6
  • Giraldez AJ, Mishima Y, Rihel J, Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006;312:75-9
  • Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005;132:4653-62
  • Laneve P, Di Marcotullio L, Gioia U, The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci USA 2007;104:7957-62
  • Wang X, Tang S, Le SY, Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 2008;3:e2557
  • Song G, Zhang Y, Wang L. MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J Biol Chem 2009;284:31921-7
  • Thompson BJ, Cohen SM. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 2006;126(4):767-74
  • Li X, Carthew RW. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 2005;123(7):1267-77
  • Kawasaki H, Taira K. Retraction: Hes1 is a target of microRNA-23 during retinoic-acid-induced neuronal differentiation of NT2 cells. Nature 2003;426:100
  • McGlinn E, Yekta S, Mansfield JH, In ovo application of antagomiRs indicates a role for miR-196 in patterning the chick axial skeleton through Hox gene regulation. Proc Natl Acad Sci USA 2009;106:18610-15
  • Huang TH, Zhu MJ, Li XY, Zhao SH. Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS One 2008;3:e3225
  • Foekens JA, Sieuwerts AM, Smid M, Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA 2008;105:13021-6
  • Sun T, Wang Q, Balk S, The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res 2009;69:3356-63
  • Lu J, Getz G, Miska EA, MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8
  • Voorhoeve PM, le Sage C, Schrier M, A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006;124:1169-81
  • Kumar MS, Lu J, Mercer KL, Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007;39:673-7
  • Poy MN, Eliasson L, Krutzfeldt J, A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004;432:226-30
  • Harris TA, Yamakuchi M, Ferlito M, MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 2008;105:1516-21
  • Xu N, Papagiannakopoulos T, Pan G, MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009;137:647-58
  • Nahid MA, Pauley KM, Satoh M, Chan EK. miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity. J Biol Chem 2009;284:34590-9
  • Yeung ML, Bennasser Y, Le SY, Jeang KT. siRNA, miRNA and HIV: promises and challenges. Cell Res 2005;15:935-46
  • Umbach JL, Kramer MF, Jurak I, MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008;454:780-3
  • Bentwich I, Avniel A, Karov Y, Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005;37:766-70
  • Gregory RI, Yan KP, Amuthan G, The microprocessor complex mediates the genesis of microRNAs. Nature 2004;432(7014):235-40
  • Tan GS, Garchow BG, Liu X, Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Res 2009;37:7533-45
  • Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 2007;17:118-26
  • Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 2003;100:9779-84
  • Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004;304:594-6
  • Krutzfeldt J, Poy MN, Stoffel M. Strategies to determine the biological function of microRNAs. Nat Genet 2006;38(Suppl):S14-19
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33
  • Yue D, Liu H, Huang Y. Survey of computational algorithms for microRNA target prediction. Curr Genomics 2009;10:478-92
  • Duan RH, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 2007;16:1124-31
  • Jazdzewski K, Murray EL, Franssila K, Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA 2008;105:7269-74
  • Li H, Xie H, Liu W, A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contribute to primary osteoporosis in humans. J Clin Invest 2009;119:3666-77
  • Chen C, Ridzon DA, Broomer AJ, Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005;33(20):e179
  • Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007;8:166
  • Raymond CJ, Roberts BS, Garrett-Engele P, Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 2005;11:1737-44
  • Landgraf P, Rusu M, Sheridan R, A mammalian microRNA expression atlas based on small library sequencing. Cell 2007;129:1401-14
  • Porkka KP, Pfeiffer MJ, Waltering KK, MicroRNA expression profiling in prostate cancer. Cancer Res 2007;67:6130-5
  • Volinia S, Calin GA, Liu C-G, A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006;103:2257-61
  • Mattie MD, Benz CC, Bowers J, Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 2006;5:24
  • Calin GA, Liu C-G, Sevignani C, MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004;101(32):11755-60
  • Lu J, Getz G, Miska EA, MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8
  • Oskowitz ZO, Lu J, Penfornis P, Human multipotent stromal cells from bone marrow and microRNA: regulation of differentiation and leukemia inhibitory factor expression. Proc Natl Acad Sci USA 2008;105:18372-7
  • Komori T, Yagi H, Nomura S, Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997;89:755-64
  • Otto F, Thornell AP, Crompton T, Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997;89:765-71
  • Mundlos S, Otto F, Mundlos C, Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997;89:773-9
  • Shui C, Spelsberg TC, Riggs BL, Khosla S. Changes in Runx2/Cbfa1 expression and activity during osteoblastic differentiation of human bone marrow stromal cells. J Bone Miner Res 2003;18:213-21
  • Phimphilai M, Zhao ZR, Boules H, BMP signaling is required for Runx2-dependent induction of the osteoblast phenotype. J Bone Miner Res 2006;21:637-46
  • Stein GS, Lian JB, van Wijnen AJ, Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 2004;23:4315-29
  • Shalhoub V, Gerstenfeld LC, Collart D, Downregulation of cell growth and cell cycle regulated genes during chick osteoblast differentiation with the reciprocal expression of histone gene variants. Biochemistry 1989;28:5318-22
  • Winnard RG, Gerstenfeld LC, Toma CD, Franceschi RT. Fibronectin gene expression, synthesis and accumulation during in vitro differentiation of chicken osteoblasts. J Bone Miner Res 1995;10(12):1969-77
  • Yang XB, Roach HI, Clarke NM, Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification. Bone 2001;29:523-31
  • Grigoriadis AE, Wang ZQ, Cecchini MG, C-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994;266:443-8
  • Zhang Y, Feng XH, Derynck R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 1998;394(6696):909-13
  • Jensen ED, Gopalakrishnan R, Westendorf JJ. Regulation of gene expression in osteoblasts. Biofactors 2010;36:25-32
  • Kim YJ, Kim HN, Park EK, The bone-related Zn finger transcription factor Osterix promotes proliferation of mesenchymal cells. Gene 2006;366:145-51
  • Lee KS, Hong SH, Bae SC. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene 2002;21:7156-63
  • Xiao G, Jiang D, Ge C, Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem 2005;280:30689-93
  • Bialek P, Kern B, Yang X, A twist code determines the onset of osteoblast differentiation. Dev Cell 2004;6:423-35
  • Robledo RF, Rajan L, Li X, Lufkin T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev 2002;16:1089-101
  • Hassan MQ, Javed A, Morasso MI, Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol Cell Biol 2004;24:9248-61
  • Etheridge SL, Spencer GJ, Heath DJ, Genever PG. Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 2004;22:849-60
  • Osyczka AM, Leboy PS. Bone morphogenetic protein regulation of early osteoblast genes in human marrow stromal cells is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling. Endocrinology 2005;146:3428-37
  • Levy JB, Schindler C, Raz R, Activation of the JAK-STAT signal transduction pathway by oncostatin-M cultured human and mouse osteoblastic cells. Endocrinology 1996;137:1159-65
  • Lee KS, Hong SH, Bae SC. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene 2002;21:7156-63
  • Luzi E, Marini F, Sala SC, Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 2008;23:287-95
  • Kapinas K, Kessler CB, Delany AM. miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 2009;108:216-24
  • Itoh T, Nozawa Y, Akao Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem 2009;284:19272-9
  • Inose H, Ochi H, Kimura A, A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci USA 2009;106:20794-9
  • Mizuno Y, Tokuzawa Y, Ninomiya Y, miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 2009;583:2263-8
  • Kim YJ, Bae SW, Yu SS, miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 2009;24:816-25
  • John B, Enright AJ, Aravin A, Human MicroRNA targets. PLoS Biol 2004;2(11):e363
  • Rajewsky N. microRNA target predictions in animals. Nat Genet 2006;38(Supp1):S8-13
  • Lewis BP, Shih IH, Jones-Rhoades MW, Prediction of mammalian microRNA targets. Cell 2003;115(7):787-98
  • Krek A, Grun D, Poy MN, Combinatorial microRNA target predictions. Nat Genet 2005;37:495-500
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20
  • Griffiths-Jones S, Grocock RJ, van Dongen S, miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006;34(Database issue):D140-4
  • Hsu PW, Huang HD, Hsu SD, miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 2006;34(Database issue):D135-9
  • Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG. miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 2007;35(Database issue):D149-55
  • Scott GK, Goga A, Bhaumik D, Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 2007;282:1479-86
  • Nasevicius A, Ekker SC. Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 2000;26:216-20
  • Zellweger T, Miyake H, Cooper S, Antitumor activity of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2′-O-(2-methoxy)ethyl chemistry. J Pharmacol Exp Ther 2001;298(3):934-40
  • Dean NM, Bennett CF. Antisense oligonucleotide-based therapeutics for cancer. Oncogene 2003;22:9087-96
  • Kastelein JJ, Wedel MK, Baker BF, Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. Circulation 2006;114:1729-35
  • Krutzfeldt J, Rajewsky N, Braich R, Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005;438:685-9
  • Jopling CL, Yi M, Lancaster AM, Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005;309:1577-81
  • Horwich MD, Zamore PD. Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells. Nat Protoc 2008;3:1537-49
  • McCaffrey AP, Meuse L, Pham TT, RNA interference in adult mice. Nature 2002;418:38-9
  • de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007;6:443-53
  • Jackson A, Burchard J, Schelter J, Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 2006;12:1179-87
  • Liu Z, Sall A, Yang DC. MicroRNA: an emerging therapeutic target and intervention tool. Int J Mol Sci 2008;9:978-99
  • Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 2006;34:2294-304
  • Elmen J, Lindow M, Schutz S, LNA-mediated microRNA silencing in non-human primates. Nature 2008;452:896-9
  • Leonetti C, Zupi G. Targeting different signaling pathways with antisense oligonucleotides combination for cancer therapy. Curr Pharm Des 2007;13:463-70
  • Soifer HS, Rossi JJ, Saetrom P. MicroRNAs in disease and potential therapeutic applications. Mol Ther 2007;15:2070-9
  • Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007;4:721-6
  • Brummelkamp T, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002;296:550-3
  • Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 2002;20:497-500

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.