894
Views
46
CrossRef citations to date
0
Altmetric
Reviews

Biology and novel treatment options for XLA, the most common monogenetic immunodeficiency in man

, PhD, , MD PhD, , PhD & , PhD
Pages 1003-1021 | Published online: 02 Jun 2011

Bibliography

  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000;288:669-72
  • Fischer A. Human primary immunodeficiency diseases: a perspective. Nat Immunol 2004;5:23-30
  • Thrasher AJ, Hacein-Bey-Abina S, Gaspar HB, Failure of SCID-X1 gene therapy in older patients. Blood 2005;105:4255-7
  • Aoki Y, Isselbacher KJ, Cherayil BJ, Pillai S. Tyrosine phosphorylation of Blk and Fyn Src homology 2 domain-binding proteins occurs in response to antigen-receptor ligation in B cells and constitutively in pre-B cells. Proc Natl Acad Sci USA 1994;91:4204-8
  • Conley ME, Parolini O, Rohrer J, Campana D. X-linked agammaglobulinemia: new approaches to old questions based on the identification of the defective gene. Immunol Rev 1994;138:5-21
  • Conley ME, Rohrer J, Rapalus L, Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol Rev 2000;178:75-90
  • de Weers M, Brouns GS, Hinshelwood S, B-cell antigen receptor stimulation activates the human Bruton's tyrosine kinase, which is deficient in X-linked agammaglobulinemia. J Biol Chem 1994;269:23857-60
  • de Weers M, Verschuren MC, Kraakman ME, The Bruton's tyrosine kinase gene is expressed throughout B cell differentiation, from early precursor B cell stages preceding immunoglobulin gene rearrangement up to mature B cell stages. Eur J Immunol 1993;23:3109-14
  • Hendriks RW, de Bruijn MF, Maas A, Inactivation of Btk by insertion of lacZ reveals defects in B cell development only past the pre-B cell stage. EMBO J 1996;15:4862-72
  • Middendorp S, Dingjan GM, Hendriks RW. Impaired precursor B cell differentiation in Bruton's tyrosine kinase-deficient mice. J Immunol 2002;168:2695-703
  • Middendorp S, Dingjan GM, Maas A, Function of Bruton's tyrosine kinase during B cell development is partially independent of its catalytic activity. J Immunol 2003;171:5988-96
  • Middendorp S, Zijlstra AJ, Kersseboom R, Tumor suppressor function of Bruton tyrosine kinase is independent of its catalytic activity. Blood 2005;105:259-65
  • Tsukada S, Saffran DC, Rawlings DJ, Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993;72:279-90
  • Vetrie D, Vorechovsky I, Sideras P, The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 1993;361:226-33
  • Felices M, Falk M, Kosaka Y, Berg LJ. Tec kinases in T cell and mast cell signaling. Adv Immunol 2007;93:145-84
  • Andreotti AH, Bunnell SC, Feng S, Regulatory intramolecular association in a tyrosine kinase of the Tec family. Nature 1997;385:93-7
  • Thomas JD, Sideras P, Smith CI, Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 1993;261:355-8
  • Rawlings DJ, Saffran DC, Tsukada S, Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 1993;261:358-61
  • Khan WN, Alt FW, Gerstein RM, Defective B cell development and function in Btk-deficient mice. Immunity 1995;3:283-99
  • Li T, Tsukada S, Satterthwaite A, Activation of Bruton's tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity 1995;2:451-60
  • Park H, Wahl MI, Afar DE, Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 1996;4:515-25
  • Maas A, Dingjan GM, Grosveld F, Hendriks RW. Early arrest in B cell development in transgenic mice that express the E41K Bruton's tyrosine kinase mutant under the control of the CD19 promoter region. J Immunol 1999;162:6526-33
  • Kersseboom R, Kil L, Flierman R, Constitutive activation of Bruton's tyrosine kinase induces the formation of autoreactive IgM plasma cells. Eur J Immunol 2010;40:2643-54
  • Melchers F, ten Boekel E, Seidl T et al. Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol Rev 2000;175:33-46
  • Hendriks RW, Middendorp S. The pre-BCR checkpoint as a cell-autonomous proliferation switch. Trends Immunol 2004;25:249-56
  • Ohnishi K, Melchers F. The nonimmunoglobulin portion of lambda5 mediates cell-autonomous pre-B cell receptor signaling. Nat Immunol 2003;4:849-56
  • Ubelhart R, Bach MP, Eschbach C, N-linked glycosylation selectively regulates autonomous precursor BCR function. Nat Immunol 2010;11:759-65
  • ten Boekel E, Yamagami T, Andersson J, The formation and selection of cells expressing preB cell receptors and B cell receptors. Curr Top Microbiol Immunol 1999;246:3-9
  • Wardemann H, Yurasov S, Schaefer A, Predominant autoantibody production by early human B cell precursors. Science 2003;301:1374-7
  • Gauthier L, Rossi B, Roux F, Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc Natl Acad Sci USA 2002;99:13014-19
  • Bradl H, Wittmann J, Milius D, Interaction of murine precursor B Cell receptor with stroma cells is controlled by the unique tail of lambda5 and stroma cell-associated heparan sulfate. J Immunol 2003;171:2338-48
  • Kohler F, Hug E, Eschbach C, Autoreactive B cell receptors mimic autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 2008;29:912-21
  • Keenan RA, De Riva A, Corleis B, Censoring of autoreactive B cell development by the pre-B cell receptor. Science 2008;321:696-9
  • Saito K, Scharenberg AM, Kinet JP. Interaction between the Btk PH domain and phosphatidylinositol-3,4,5- trisphosphate directly regulates Btk. J Biol Chem 2001;276:16201-6
  • Mahajan S, Fargnoli J, Burkhardt AL, Src family protein tyrosine kinases induce autoactivation of Bruton's tyrosine kinase. Mol Cell Biol 1995;15:5304-11
  • Rawlings DJ, Scharenberg AM, Park H, Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science 1996;271:822-5
  • Wahl MI, Fluckiger AC, Kato RM, Phosphorylation of two regulatory tyrosine residues in the activation of Bruton's tyrosine kinase via alternative receptors. Proc Natl Acad Sci USA 1997;94:11526-33
  • Guo B, Kato RM, Garcia-Lloret M, Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 2000;13:243-53
  • Kouro T, Nagata K, Takaki S, Bruton's tyrosine kinase is required for signaling the CD79b-mediated pro-B to pre-B cell transition. Int Immunol 2001;13:485-93
  • Rolli V, Gallwitz M, Wossning T, Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell 2002;10:1057-69
  • Tretter T, Ross AE, Dordai DI, Desiderio S. Mimicry of pre-B cell receptor signaling by activation of the tyrosine kinase Blk. J Exp Med 2003;198:1863-73
  • Kurosaki T. Regulation of B-cell signal transduction by adaptor proteins. Nat Rev Immunol 2002;2:354-63
  • Petro JB, Rahman SM, Ballard DW, Khan WN. Bruton's tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. J Exp Med 2000;191:1745-54
  • Bajpai UD, Zhang K, Teutsch M, Bruton's tyrosine kinase links the B cell receptor to nuclear factor kappaB activation. J Exp Med 2000;191:1735-44
  • Schweighoffer E, Vanes L, Mathiot A, Unexpected requirement for ZAP-70 in pre-B cell development and allelic exclusion. Immunity 2003;18:523-33
  • Su Y, Jumaa H. LAT links the pre-BCR to calcium signaling. Immunity 2003;19:295-305
  • Ellmeier W, Jung S, Sunshine MJ, Severe B cell deficiency in mice lacking the tec kinase family members Tec and Btk. J Exp Med 2000;192:1611-24
  • Wen R, Chen Y, Schuman J, An important role of phospholipase Cgamma1 in pre-B-cell development and allelic exclusion. EMBO J 2004;23:4007-17
  • Deane JA, Fruman DA. Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu Rev Immunol 2004;22:563-98
  • Herzog S, Reth M, Jumaa H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 2009;9:195-205
  • Lindvall J, Islam TC. Interaction of Btk and Akt in B cell signaling. Biochem Biophys Res Commun 2002;293:1319-26
  • Flemming A, Brummer T, Reth M, Jumaa H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat Immunol 2003;4:38-43
  • Jumaa H, Hendriks RW, Reth M. B cell signaling and tumorigenesis. Annu Rev Immunol 2005;23:415-45
  • Malin S, McManus S, Cobaleda C, Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol 2010;11:171-9
  • Nisitani S, Satterthwaite AB, Akashi K, Posttranscriptional regulation of Bruton's tyrosine kinase expression in antigen receptor-stimulated splenic B cells. Proc Natl Acad Sci USA 2000;97:2737-42
  • Belver L, de Yebenes VG, Ramiro AR. MicroRNAs prevent the generation of autoreactive antibodies. Immunity 2010;33:713-22
  • Bolland S, Pearse RN, Kurosaki T, Ravetch JV. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity 1998;8:509-16
  • Saito K, Tolias KF, Saci A, BTK regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. Immunity 2003;19:669-78
  • Horwood NJ, Page TH, McDaid JP, Bruton's tyrosine kinase is required for TLR2 and TLR4-induced TNF, but not IL-6, production. J Immunol 2006;176:3635-41
  • Mukhopadhyay S, George A, Bal V, Bruton's tyrosine kinase deficiency in macrophages inhibits nitric oxide generation leading to enhancement of IL-12 induction. J Immunol 1999;163:1786-92
  • Liu X, Zhan Z, Li D, Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol 12:416-24
  • Smith CI, Baskin B, Humire-Greiff P, Expression of Bruton's agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells. J Immunol 1994;152:557-65
  • Pearl ER, Vogler LB, Okos AJ, B lymphocyte precursors in human bone marrow: an analysis of normal individuals and patients with antibody-deficiency states. J Immunol 1978;120:1169-75
  • Landreth KS, Engelhard D, Anasetti C, Pre-B cells in agammaglobulinemia: evidence for disease heterogeneity among affected boys. J Clin Immunol 1985;5:84-9
  • Campana D, Farrant J, Inamdar N, Phenotypic features and proliferative activity of B cell progenitors in X-linked agammaglobulinemia. J Immunol 1990;145:1675-80
  • Nomura K, Kanegane H, Karasuyama H, Genetic defect in human X-linked agammaglobulinemia impedes a maturational evolution of pro-B cells into a later stage of pre-B cells in the B-cell differentiation pathway. Blood 2000;96:610-17
  • Minegishi Y, Conley ME. Negative selection at the pre-BCR checkpoint elicited by human mu heavy chains with unusual CDR3 regions. Immunity 2001;14:631-41
  • Minegishi Y, Rohrer J, Conley ME. Recent progress in the diagnosis and treatment of patients with defects in early B-cell development. Curr Opin Pediatr 1999;11:528-32
  • Conley ME. B cells in patients with X-linked agammaglobulinemia. J Immunol 1985;134:3070-4
  • Conley ME, Puck JM. Carrier detection in typical and atypical X-linked agammaglobulinemia. J Pediatr 1988;112:688-94
  • Conley ME, Brown P, Pickard AR, Expression of the gene defect in X-linked agammaglobulinemia. N Engl J Med 1986;315:564-7
  • Ng YS, Wardemann H, Chelnis J, Bruton's tyrosine kinase is essential for human B cell tolerance. J Exp Med 2004;200:927-34
  • Scher I, Ahmed A, Strong DM, X-linked B-lymphocyte immune defect in CBA/HN mice. I. Studies of the function and composition of spleen cells. J Exp Med 1975;141:788-803
  • Wicker LS, Scher I. X-linked immune deficiency (xid) of CBA/N mice. Curr Top Microbiol Immunol 1986;124:87-101
  • Hardy RR, Hayakawa K, Parks DR, Herzenberg LA. Demonstration of B-cell maturation in X-linked immunodeficient mice by simultaneous three-colour immunofluorescence. Nature 1983;306:270-2
  • Allman D, Lindsley RC, DeMuth W, Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J Immunol 2001;167:6834-40
  • Su TT, Rawlings DJ. Transitional B lymphocyte subsets operate as distinct checkpoints in murine splenic B cell development. J Immunol 2002;168:2101-10
  • Nahm MH, Paslay JW, Davie JM. Unbalanced X chromosome mosaicism in B cells of mice with X-linked immunodeficiency. J Exp Med 1983;158:920-31
  • Forrester LM, Ansell JD, Micklem HS. Development of B lymphocytes in mice heterozygous for the X-linked immunodeficiency (xid) mutation. xid inhibits development of all splenic and lymph node B cells at a stage subsequent to their initial formation in bone marrow. J Exp Med 1987;165:949-58
  • Martin F, Kearney JF. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 2000;12:39-49
  • Wicker LS, Guelde G, Scher I, Kenny JJ. The asymmetry in idiotype-isotype expression in the response to phosphocholine is due to divergence in the expressed repertoires of Lyb- 5+ and Lyb-5– B cells. J Immunol 1983;131:2468-76
  • Anderson JS, Teutsch M, Dong Z, Wortis HH. An essential role for Bruton's [corrected] tyrosine kinase in the regulation of B-cell apoptosis. Proc Natl Acad Sci USA 1996;93:10966-71. [published erratum appears in Proc Natl Acad Sci USA 1996;93:15522]
  • Brorson K, Brunswick M, Ezhevsky S, xid affects events leading to B cell cycle entry. J Immunol 1997;159:135-43
  • Solvason N, Wu WW, Kabra N, Transgene expression of bcl-xL permits anti-immunoglobulin (Ig)-induced proliferation in xid B cells. J Exp Med 1998;187:1081-91
  • Reid GK, Osmond DG. B lymphocyte production in the bone marrow of mice with X-linked immunodeficiency (xid). J Immunol 1985;135:2299-302
  • Dingjan GM, Middendorp S, Dahlenborg K, Bruton's tyrosine kinase regulates the activation of gene rearrangements at the lambda light chain locus in precursor B cells in the mouse. J Exp Med 2001;193:1169-78
  • Jumaa H, Mitterer M, Reth M, Nielsen PJ. The absence of SLP65 and Btk blocks B cell development at the preB cell receptor-positive stage. Eur J Immunol 2001;31:2164-9
  • Kersseboom R, Middendorp S, Dingjan GM, Bruton's tyrosine kinase cooperates with the B cell linker protein SLP-65 as a tumor suppressor in Pre-B cells. J Exp Med 2003;198:91-8
  • Hayashi K, Yamamoto M, Nojima T, Distinct signaling requirements for Dmu selection, IgH allelic exclusion, pre-B cell transition, and tumor suppression in B cell progenitors. Immunity 2003;18:825-36
  • Nakayama J, Yamamoto M, Hayashi K, BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood 2009;113:1483-92
  • van Loo PF, Dingjan GM, Maas A, Hendriks RW. Surrogate-light-chain silencing is not critical for the limitation of pre-B cell expansion but is for the termination of constitutive signaling. Immunity 2007;27:468-80
  • Kersseboom R, Ta VB, Zijlstra AJ, Bruton's tyrosine kinase and SLP-65 regulate pre-B cell differentiation and the induction of Ig light chain gene rearrangement. J Immunol 2006;176:4543-52
  • Schlissel MS, Stanhope-Baker P. Accessibility and the developmental regulation of V(D)J recombination. Semin Immunol 1997;9:161-70
  • Conley ME, Howard V. Clinical findings leading to the diagnosis of X-linked agammaglobulinemia. J Pediatr 2002;141:566-71
  • Conley ME, Rohrer J. The spectrum of mutations in Btk that cause X-linked agammaglobulinemia. Clin Immunol Immunopathol 1995;76:S192-7
  • Winkelstein JA, Marino MC, Lederman HM, X-linked agammaglobulinemia: report on a United States registry of 201 patients. Medicine (Baltimore) 2006;85:193-202
  • Chun JK, Lee TJ, Song JW, Analysis of clinical presentations of Bruton disease: a review of 20 years of accumulated data from pediatric patients at Severance Hospital. Yonsei Med J 2008;49:28-36
  • Fiorini M, Franceschini R, Soresina A, BTK: 22 novel and 25 recurrent mutations in European patients with X-linked agammaglobulinemia. Hum Mutat 2004;23(3):286
  • Wang Y, Kanegane H, Wang X, Mutation of the BTK gene and clinical feature of X-linked agammaglobulinemia in mainland China. J Clin Immunol 2009;29:352-6
  • Bayrakci B, Ersoy F, Sanal O, The efficacy of immunoglobulin replacement therapy in the long-term follow-up of the B-cell deficiencies (XLA, HIM, CVID). Turk J Pediatr 2005;47:239-46
  • Kanegane H, Nomura K, Futatani T, Miyawaki T. Intravenous immunoglobulin replacement therapy in X-linked agammaglobulinemia. Nihon Rinsho Meneki Gakkai Kaishi 2002;25:337-43
  • Plebani A, Soresina A, Rondelli R, Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol 2002;104:221-30
  • Baum C, von Kalle C, Staal FJ, Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 2004;9:5-13
  • Brenner S, Malech HL. Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy. Biochim Biophys Acta 2003;1640:1-24
  • Medin JA, Fowler DH. Post-transduction events in retrovirus-mediated gene therapy involving hematopoietic stem cells: beyond efficiency issues. J Cell Biochem Suppl 2002;38:46-54
  • Rainov NG, Ren H. Clinical trials with retrovirus mediated gene therapy–what have we learned? J Neurooncol 2003;65:227-36
  • Strauss BE, Costanzi-Strauss E. Combating oncogene activation associated with retrovirus-mediated gene therapy of X-linked severe combined immunodeficiency. Braz J Med Biol Res 2007;40:601-13
  • Todd S, Anderson C, Jolly DJ, Craik CS. HIV protease as a target for retrovirus vector-mediated gene therapy. Biochim Biophys Acta 2000;1477:168-88
  • Weber E, Anderson WF, Kasahara N. Recent advances in retrovirus vector-mediated gene therapy: teaching an old vector new tricks. Curr Opin Mol Ther 2001;3:439-53
  • Deichmann A, Hacein-Bey-Abina S, Schmidt M, Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Invest 2007;117:2225-32
  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008;118:3132-42
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302:415-19
  • Ciuffi A. Mechanisms governing lentivirus integration site selection. Curr Gene Ther 2008;8:419-29
  • Vanden Driessche T, Chuah MK. Moving gene therapy forward with mobile DNA. Hum Gene Ther 2009;20:1559-61
  • Izsvak Z, Ivics Z, Plasterk RH. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 2000;302:93-102
  • Yant SR, Meuse L, Chiu W, Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 2000;25:35-41
  • Gaspar HB, Parsley KL, Howe S, Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004;364:2181-7
  • Aiuti A, Cattaneo F, Galimberti S, Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009;360:447-58
  • Aiuti A, Roncarolo MG. Ten years of gene therapy for primary immune deficiencies. Hematology Am Soc Hematol Educ Program 2009;682-9
  • Ott MG, Schmidt M, Schwarzwaelder K, Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006;12:401-9
  • Boztug K, Schmidt M, Schwarzer A, Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Eng J Med 2010;363:1918-27
  • Pike-Overzet K, de Ridder D, Weerkamp F, Gene therapy: is IL2RG oncogenic in T-cell development? Nature 2006;443:E5; discussion E6–E7
  • Pike-Overzet K, de Ridder D, Weerkamp F, Ectopic retroviral expression of LMO2, but not IL2Rgamma, blocks human T-cell development from CD34+ cells: implications for leukemogenesis ingene therapy. Leukemia 2007;21:754-63
  • Naldini L, Blomer U, Gallay P, In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996;272:263-7
  • Zufferey R, Dull T, Mandel RJ, Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998;72:9873-80
  • Cavazzana-Calvo M, Payen E, Negre O, Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 2010;467:318-22
  • Pike-Overzet K, Rodijk M, Ng YY, Correction of murine Rag1 deficiency by self-inactivating lentiviral vector-mediated gene transfer. Leukemia 2011; In press
  • Yu PW, Tabuchi RS, Kato RM, Sustained correction of B cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer. Blood 2004;104:1281-90
  • Staal FJ, Pike-Overzet K, Ng YY, van Dongen JJ. Sola dosis facit venenum. Leukemia in gene therapy trials: a question of vectors, inserts and dosage? Leukemia 2008;22:1849-52
  • Kerns HM, Ryu BY, Stirling BV, B cell-specific lentiviral gene therapy leads to sustained B-cell functional recovery in a murine model of X-linked agammaglobulinemia. Blood 2010;115:2146-55
  • Moreau T, Barlogis V, Bardin F, Development of an enhanced B-specific lentiviral vector expressing BTK: a tool for gene therapy of XLA. Gene Ther 2008;15:942-52
  • Ng YY, Baert MR, Pike-Overzet K, Correction of B-cell development in Btk-deficient mice using lentiviral vectors with codon-optimized human BTK. Leukemia 2010;24:1617-30
  • Scher I, Steinberg AD, Berning AK, Paul WE. X-linked B-lymphocyte immune defect in CBA/N mice. II. Studies of the mechanisms underlying the immune defect. J Exp Med 1975;142:637-50
  • Bence K, Ma W, Kozasa T, Huang XY. Direct stimulation of Bruton's tyrosine kinase by Gq-protein alpha-subunit. Nature 1997;389:296-9
  • Pike-Overzet K, van der Burg M, Wagemaker G, New insights and unresolved issues regarding insertional mutagenesis in X-linked SCID gene therapy. Mol Ther 2007;15:1910-16
  • Herman SE, Gordon AL, Hertlein E, Bruton's tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011: Published online 21 March 2011, doi: 10.1182/blood-2011-01-328484
  • Aoki Y, Isselbacher KJ, Pillai S. Bruton tyrosine kinase is tyrosine phosphorylated and activated in pre- B lymphocytes and receptor-ligated B cells. Proc Natl Acad Sci USA 1994;91:10606-9
  • Saouaf SJ, Mahajan S, Rowley RB, Temporal differences in the activation of three classes of non- transmembrane protein tyrosine kinases following B-cell antigen receptor surface engagement. Proc Natl Acad Sci USA 1994;91:9524-8
  • de Gorter DJ, Beuling EA, Kersseboom R, Bruton's tyrosine kinase and phospholipase Cgamma2 mediate chemokine-controlled B cell migration and homing. Immunity 2007;26:93-104
  • Santos-Argumedo L, Lund FE, Heath AW, CD38 unresponsiveness of xid B cells implicates Bruton's tyrosine kinase (btk) as a regular of CD38 induced signal transduction. Int Immunol 1995;7:163-70
  • Schmidt U, Van Den Akker E, Parren-Van Amelsvoort M, Btk Is required for an efficient response to erythropoietin and for SCF-controlled protection against TRAIL in erythroid progenitors. J Exp Med 2004;199:785-95
  • Kawakami Y, Yao L, Miura T, Tyrosine phosphorylation and activation of Bruton tyrosine kinase upon FcepsilonRI cross-linking. Mol Cell Biol 1994;14:5108-13
  • Launay P, Lehuen A, Kawakami T, IgA Fc receptor (CD89) activation enables coupling to syk and Btk tyrosine kinase pathways: differential signaling after IFN-gamma or phorbol ester stimulation. J Leukoc Biol 1998;63:636-42
  • Jongstra-Bilen J, Puig Cano A, Hasija M, Dual functions of Bruton's tyrosine kinase and Tec kinase during Fcgamma receptor-induced signaling and phagocytosis. J Immunol 2008;181:288-98
  • Quek LS, Bolen J, Watson SP. A role for Bruton's tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 1998;8:1137-40
  • Sato S, Katagiri T, Takaki S, IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton's tyrosine and Janus 2 kinases. J Exp Med 1994;180:2101-11
  • Matsuda T, Takahashi-Tezuka M, Fukada T, Association and activation of Btk and Tec tyrosine kinases by gp130, a signal transducer of the interleukin-6 family of cytokines. Blood 1995;85:627-33
  • Jefferies CA, Doyle S, Brunner C, Bruton's tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem 2003;278:26258-64
  • Doyle SL, Jefferies CA, Feighery C, O'Neill LA. Signaling by Toll-like receptors 8 and 9 requires Bruton's tyrosine kinase. J Biol Chem 2007;282:36953-60
  • Taneichi H, Kanegane H, Sira MM, Toll-like receptor signaling is impaired in dendritic cells from patients with X-linked agammaglobulinemia. Clin Immunol 2008;126:148-54
  • Halcomb KE, Musuka S, Gutierrez T, Btk regulates localization, in vivo activation, and class switching of anti-DNA B cells. Mol Immunol 2008;46:233-41
  • Tsukamoto Y, Nagai Y, Kariyone A, Toll-like receptor 7 cooperates with IL-4 in activated B cells through antigen receptor or CD38 and induces class switch recombination and IgG1 production. Mol Immunol 2009;46:1278-88
  • Lee KG, Xu S, Wong ET, Bruton's tyrosine kinase separately regulates NFkappaB p65RelA activation and cytokine interleukin (IL)-10/IL-12 production in TLR9-stimulated B Cells. J Biol Chem 2008;283:11189-98
  • Rock J, Schneider E, Grun JR, CD303 (BDCA-2) signals in plasmacytoid dendritic cells via a BCR-like signalosome involving Syk, Slp65 and PLCgamma2. Eur J Immunol 2007;37:3564-75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.