931
Views
94
CrossRef citations to date
0
Altmetric
Reviews

CD44: a validated target for improved delivery of cancer therapeutics

, PhD, , MD MS & , PhD
Pages 635-650 | Published online: 24 May 2012

Bibliography

  • Caputo CB, MacCallum DK, Kimura JH, Characterization of fragments produced by clostripain digestion of proteoglycans from the Swarm rat chondrosarcoma. Arch Biochem Biophys 1980;204(1):220-33
  • Delpech A, Delpech B, Girard N, Hyaluronectin in normal human skin and in basal cell carcinoma. Br J Dermatol 1982;106(5):561-8
  • Girard N, Chauzy C, Olivier A, Delpech B. Characterization of hyaluronectin in human tumour heterografts in the nude mouse. Oncodev Biol Med 1982;3(4):325-34
  • Delpech B, Bertrand P, Maingonnat C. Immunoenzymoassay of the hyaluronic acid-hyaluronectin interaction: application to the detection of hyaluronic acid in serum of normal subjects and cancer patients. Anal Biochem 1985;149(2):555-65
  • Girard N, Delpech A, Delpech B. Characterization of hyaluronic acid on tissue sections with hyaluronectin. J Histochem Cytochem 1986;34(4):539-41
  • Nemec RE, Toole BP, Knudson W. The cell surface hyaluronate binding sites of invasive human bladder carcinoma cells. Biochem Biophys Res Commun 1987;149(1):249-57
  • Girard N, Courel MN, Maingonnat C, Delpech B. Hyaluronectin: detection with monoclonal antibodies in human tumors. Hybridoma 1988;7(4):333-40
  • McCarthy MT, Toole BP. Membrane-associated hyaluronate-binding activity of chondrosarcoma chondrocytes. J Cell Physiol 1989;141(1):191-202
  • Horst E, Meijer CJ, Radaszkiewicz T, Adhesion molecules in the prognosis of diffuse large-cell lymphoma: expression of a lymphocyte homing receptor (CD44), LFA-1 (CD11a/18), and ICAM-1 (CD54). Leukemia 1990;4(8):595-9
  • Horst E, Meijer CJ, Radaskiewicz T, Expression of a human homing receptor (CD44) in lymphoid malignancies and related stages of lymphoid development. Leukemia 1990;4(5):383-9
  • Moczar M, Poupon MF, Moczar E. Hyaluronate-binding proteins in weakly and highly metastatic variants of rat rhabdomyosarcoma cells. Clin Exp Metastasis 1990;8(2):129-40
  • Turley EA, Moore D, Hayden LJ. Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus transformed 3T3 cells. Biochemistry 1987;26(11):2997-3005
  • Quackenbush EJ, Vera S, Greaves A, Letarte M. Confirmation by peptide sequence and co-expression on various cell types of the identity of CD44 and P85 glycoprotein. Mol Immunol 1990;27(10):947-55
  • Hertweck MK, Erdfelder F, Kreuzer K-A. CD44 in hematological neoplasias. Ann Hematol 2011;90:493-508
  • Knudson W, Chow G, Knudson CB. CD44-mediated uptake and degradation of hyaluronan. Matrix Biol 2002;21:15-23
  • Morales TI, Hascall VC. Correlated metabolism of proteoglycans and hyaluronic acid in bovine cartilage organ cultures. J Biol Chem 1988;263:3632-8
  • Ng KC, Handley CJ, Preston BN, Robinson HC. The extracellular processing and catabolism of hyaluronan in cultured adult articular cartilage explants. Arch Biochem Biophys 1992;298:70-9
  • Culty M, Shizari M, Thompson EW, Underhill CB. Binding and degradation of hyaluronan by human breast cancer cell lines expressing different isoforms of CD44: correlation with invasive potential. J Cell Physiol 1994;160:275-86
  • Knudson W, Bartnik E, Knudson CB. Assembly of pericellular matrices by COS-7 cells transfected with CD44 homing receptor genes. Proc Natl Acad Sci USA 1993;90:4003-7
  • Peterson R, Knudson CB, Knudson W. Expression of CD44 isoforms and truncation mutants by articular chondrocytes. Trans Orthop Res Soc 2001;26:395
  • Chow G, Knudson CB, Homandberg G, Knudson W. Increased CD44 expression in bovine articular chondrocytes by catabolic cellular mediators. J Biol Chem 1995;270:27734-41
  • Hua Q, Knudson CB, Knudson W. Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis. J Cell Sci 1993;106:365-75
  • Tammi R, Rilla K, Pienimaki J-P, Hyaluronan enters keratinocytes by a novel endocytic route for catabolism. J Biol Chem 2001;276(37):35111-35122
  • Knudson W, Knudson CB. 1999.Hyaluronan receptor, CD44. Glycoforum. Available from: http:www. glycoforum.gr.jp_science_ hyaluronan_HA10_HA10E.html., 1_30
  • Nishida Y, D'Souza AL, Thonar JMA, Knudson W. IL-1a stimulates hyaluronan metabolism in human articular cartilage. Arthritis Rheum 2000a;43:1315-26
  • Philipson LH, Schwartz NB. Subcellular localization of hyaluronate synthetase in oligodendroglioma cells. J Biol Chem 1984;259:5017-23
  • Prehm P. Hyaluronate is synthesized at plasma membranes. Biochem J 1984;220:597-600
  • Culty M, Nguyen HA, Underhill CB. The hyaluronan receptor, CD44, participates in the uptake and degradation of hyaluronan. J Cell Biol 1992;116:1055-62
  • Fraser JRE, Laurent TC. Turnover and metabolism of hyaluronan. In: Evered D, Whelan J, editors. The Biology of Hyaluronan. John Wiley & Sons, Chichester; 1989. p. 41-59
  • Hua Q, Knudson CB, Knudson W. Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis. J Cell Sci 1993;106:365-75
  • Evanko S, Wight TN. 2000.Intracellular hyaluronan. Glycoforum. Available from: http:www.glycoforum.gr.jp_science_hyaluronan_HA20_HA20E.html., 1_19
  • Evanko SP, Wight TN. Intracellular localization of hyaluronan in proliferating cells. J Histochem Cytochem 1999;43:1331-41
  • Grammatikakis N, Grammatikakis A, Yoneda M, A novel glycosaminoglycan-binding protein is the vertebrate homologue of the cell cycle control protein, Cdc37. J Biol Chem 1995;270:16198-205
  • Moore AR, Willoughby DA. Hyaluronan as a drug delivery system for diclofenac: a hypothesis for mode of action. Int J Tissue React 1995;17(4):153-6
  • Coradini D, Pellizzaro C, Miglierini G, Hyaluronic acid as drug delivery for sodium butyrate: improvement of the anti-proliferative activity on a breast-cancer cell line. Int J Cancer 1999;81(3):411-16
  • Luo Y, Prestwich GD. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjug Chem 1999;10(5):755-63
  • Luo Y, Ziebell MR, Prestwich GD. A hyaluronic acid-Taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules 2000;1(2):208-18
  • Saravanakumar G, Choi KY, Yoon HY, Hydrotropic hyaluronic acid conjugates: synthesis, characterization, and implications as a carrier of paclitaxel. Int J Pharm 2010;394(1-2):154-61
  • Xin D, Wang Y, Xiang J. The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm Res 2010;27(2):380-9
  • Sugahara S, Okuno S, Yano T, Characteristics of tissue distribution of various polysaccharides as drug carriers: influences of molecular weight and anionic charge on tumor targeting. Biol Pharm Bull 2001;24(5):535-43
  • Coradini D, Zorzet S, Rossin R, Inhibition of hepatocellular carcinomas in vitro and hepatic metastases in vivo in mice by the histone deacetylase inhibitor HA-But. Clin Cancer Res 2004;10(14):4822-30
  • Heider KH, Sproll M, Susani S, Characterization of a high-affinity monoclonal antibody specific for CD44v6 as candidate for immunotherapy of squamous cell carcinomas. Cancer Immunol Immunother 1996;43(4):245-53
  • Van Hal NL, Van Dongen GA, Rood-Knippels EM, Monoclonal antibody U36, a suitable candidate for clinical immunotherapy of squamous-cell carcinoma, recognizes a CD44 isoform. Int J Cancer 1996;68(4):520-7
  • Stroomer JW, Roos JC, Sproll M, Safety and biodistribution of 99mTechnetium-labeled anti-CD44v6 monoclonal antibody BIWA 1 in head and neck cancer patients. Clin Cancer Res 2000;6(8):3046-55
  • Verel I, Heider KH, Siegmund M, Tumor targeting properties of monoclonal antibodies with different affinity for target antigen CD44V6 in nude mice bearing head-and-neck cancer xenografts. Int J Cancer 2002;99(3):396-402
  • Colnot DR, Roos JC, de Bree R, Safety, biodistribution, pharmacokinetics, and immunogenicity of 99mTc-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 2003;52(9):576-82
  • Borjesson PK, Postema EJ, Roos JC, Phase I therapy study with (186)Re-labeled humanized monoclonal antibody BIWA 4 (bivatuzumab) in patients with head and neck squamous cell carcinoma. Clin Cancer Res 2003;9(10 Pt 2):3961S-72S
  • Sauter A, Kloft C, Gronau S, Pharmacokinetics, immunogenicity and safety of bivatuzumab mertansine, a novel CD44v6-targeting immunoconjugate, in patients with squamous cell carcinoma of the head and neck. Int J Oncol 2007;30(4):927-35
  • Riechelmann H, Sauter A, Golze W, Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol 2008;44(9):823-9
  • Sandstrom K, Nestor M, Ekberg T, Targeting CD44v6 expressed in head and neck squamous cell carcinoma: preclinical characterization of an 111In-labeled monoclonal antibody. Tumour Biol 2008;29(3):137-44
  • Chen Y, Huang K, Li X, Generation of a stable anti-human CD44v6 scFv and analysis of its cancer-targeting ability in vitro. Cancer Immunol Immunother 2010;59(6):933-42
  • Rosato A, Banzato A, De Luca G, HYTAD1-p20: a new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer. Urol Oncol 2006;24(3):207-15
  • Banzato A, Bobisse S, Rondina M, A paclitaxel-hyaluronan bioconjugate targeting ovarian cancer affords a potent in vivo therapeutic activity. Clin Cancer Res 2008;14(11):3598-606
  • Banzato A, Rondina M, Melendez-Alafort L, Biodistribution imaging of a paclitaxel-hyaluronan bioconjugate. Nucl Med Biol 2009;36(5):525-33
  • De Stefano I, Battaglia A, Zannoni GF, Hyaluronic acid-paclitaxel: effects of intraperitoneal administration against CD44(+) human ovarian cancer xenografts. Cancer Chemother Pharmacol 2011;68(1):107-16
  • Serafino A, Zonfrillo M, Andreola F, CD44-targeting for antitumor drug delivery: a new SN-38-hyaluronan bioconjugate for locoregional treatment of peritoneal carcinomatosis. Curr Cancer Drug Targets 2011;11(5):572-85
  • Brown TJ. The development of hyaluronan as a drug transporter and excipient for chemotherapeutic drugs. Curr Pharm Biotechnol 2008;9(4):253-60
  • Rosenthal MA, Gibbs P, Brown TJ, Chemotherapy 2005;51:132-41
  • Gibbs P, Brown TJ, Ng R, A pilot human evaluation of a formulation of irinotecan and hyaluronic acid in 5-fluorouracil-refractory metastatic colorectal cancer patients. Chemotherapy 2009;55(1):49-59
  • Alchemia website. Available from: http://www.alchemia.com.au/irm/content/home.html
  • Varghese OP, Sun W, Hilborn J, Ossipov DA. In situ cross-linkable high molecular weight hyaluronan-bisphosphonate conjugate for localized delivery and cell-specific targeting: a hydrogel linked prodrug approach. J Am Chem Soc 2009;131(25):8781-3
  • Meo CD, Panza L, Capitani D, Hyaluronan as carrier of carboranes for tumor targeting in boron neutron capture therapy. Biomacromolecules 2007;8(2):552-9
  • Di Meo C, Panza L, Campo F, Novel types of carborane-carrier hyaluronan derivatives via “click chemistry”. Macromol Biosci 2008;8(7):670-81
  • Jain A, Jain SK. In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur J Pharm Sci 2008;35(5):404-16
  • Jain A, Jain SK, Ganesh N, Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine 2010;6(1):179-90
  • Bachar G, Cohen K, Hod R, Hyaluronan-grafted particle clusters loaded with Mitomycin C as selective nanovectors for primary head and neck cancers. Biomaterials 2011;32(21):4840-8
  • Peer D, Margalit R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer 2004;108(5):780-9
  • Peer D, Margalit R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia 2004;6(4):343-53
  • Surace C, Arpicco S, Dufay-Wojcicki A, Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. Mol Pharm 2009;6(4):1062-73
  • Bartusik D, Tomanek B, Lattova E, Combined treatment of human MCF-7 breast carcinoma with antibody, cationic lipid and hyaluronic acid using ex vivo assays. J Pharm Biomed Anal 2010;51(1):192-201
  • Qhattal HS, Liu X. Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol Pharm 2011;8(4):1233-46
  • Lee H, Lee K, Park TG. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconjug Chem 2008;19(6):1319-25
  • Zhang Y, Zhang H, Wang X, The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 2012;33(2):679-691
  • Li SD, Howell SB. CD44-targeted microparticles for delivery of cisplatin to peritoneal metastases. Mol Pharm 2010;7(1):280-90
  • Cerroni B, Chiessi E, Margheritelli S, Polymer shelled microparticles for a targeted doxorubicin delivery in cancer therapy. Biomacromolecules 2011;12(3):593-601
  • Kumar A, Sahoo B, Montpetit A, Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine 2007;3(2):132-7
  • Yadav AK, Mishra P, Jain S, Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin. J Drug Target 2008;16(6):464-78
  • Choi KY, Chung H, Min KH, Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 2010;31(1):106-14
  • Rivkin I, Cohen K, Koffler J, Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials 2010;31(27):7106-14
  • Jeong YI, Kim DH, Chung CW, Self-assembled nanoparticles of hyaluronic acid/poly(dl-lactide-co-glycolide) block copolymer. Colloids Surf B Biointerfaces 2012;90:28-35
  • Cho HJ, Yoon HY, Koo H, Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials 2011;32(29):7181-90
  • Pathak A, Swami A, Patnaik S, Efficient tumor targeting by polysaccharide decked polyethylenimine based nanocomposites. J Biomed Nanotechnol 2009;5(3):264-77
  • Upadhyay KK, Le Meins JF, Misra A, Biomimetic doxorubicin loaded polymersomes from hyaluronan-block-poly(gamma-benzyl glutamate) copolymers. Biomacromolecules 2009;10(10):2802-8
  • Upadhyay KK, Bhatt AN, Mishra AK, The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(gamma-benzyl L-glutamate)-b-hyaluronan polymersomes. Biomaterials 2010;31(10):2882-92
  • Upadhyay KK, Mishra AK, Chuttani K, The in vivo behavior and antitumor activity of doxorubicin-loaded poly(gamma-benzyl l-glutamate)-block-hyaluronan polymersomes in Ehrlich ascites tumor-bearing BalB/c mice. Nanomedicine 2012;8(1):71-80
  • Gilg AG, Tye SL, Tolliver LB, Targeting hyaluronan interactions in malignant gliomas and their drug-resistant multipotent progenitors. Clin Cancer Res 2008;14(6):1804-13
  • Benitez A, Yates TJ, Lopez LE, Targeting hyaluronidase for cancer therapy: antitumor activity of sulfated hyaluronic acid in prostate cancer cells. Cancer Res 2011;71(12):4085-95
  • Park W, Kim KS, Bae BC, Cancer cell specific targeting of nanogels from acetylated hyaluronic acid with low molecular weight. Eur J Pharm Sci 2010;40(4):367-75
  • Lee H, Mok H, Lee S, Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J Control Release 2007;119(2):245-52
  • Subramaniam V, Vincent IR, Gilakjan M, Jothy S. Suppression of human colon cancer tumors in nude mice by siRNA CD44 gene therapy. Exp Mol Pathol 2007;83(3):332-40
  • Li CZ, Liu B, Wen ZQ, Li HY. Inhibition of CD44 expression by small interfering RNA to suppress the growth and metastasis of ovarian cancer cells in vitro and in vivo. Folia Biol (Praha) 2008;54(6):180-6
  • Mi Z, Guo H, Russell MB, RNA aptamer blockade of osteopontin inhibits growth and metastasis of MDA-MB231 breast cancer cells. Mol Ther 2009;17(1):153-61
  • Naor D, Nedvetzki S, Golan I, CD44 in cancer. Crit Rev Clin Lab Sci 2002;39(6):527-79
  • Yadav AK, Mishra P, Agrawal GP. An insight on hyaluronic acid in drug targeting and drug delivery. J Drug Target 2008;16(2):91-107
  • Platt VM, Szoka FC Jr. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 2008;5(4):474-86
  • Maria BL, Gupta N, Gilg AG, Targeting hyaluronan interactions in spinal cord astrocytomas and diffuse pontine gliomas. J Child Neurol 2008;23(10):1214-20
  • Leonelli F, La Bella A, Migneco LM, Bettolo RM. Design, synthesis and applications of hyaluronic acid-paclitaxel bioconjugates. Molecules 2008;13(2):360-78
  • Toole BP. Hyaluronan-CD44 Interactions in Cancer: paradoxes and Possibilities. Clin Cancer Res 2009;15(24):7462-8
  • Misaghian N, Ligresti G, Steelman LS, Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 2009;23(1):25-42
  • Ossipov DA. Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opin Drug Deliv 2010;7(6):681-703
  • Orian-Rousseau V. CD44, a therapeutic target for metastasising tumours. Eur J Cancer 2010;46(7):1271-7
  • Rasheed ZA, Matsui W. Biological and clinical relevance of stem cells in pancreatic adenocarcinoma. J Gastroenterol Hepatol 2012;27(Suppl 2):15-18
  • Jin L, Hope KJ, Zhai Q, Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006;12(10):1167-74
  • Marangoni E, Lecomte N, Durand L, CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts. Br J Cancer 2009;100(6):918-22
  • Chen Y, Huang K, Li X, Generation of a stable anti-human CD44v6 scFv and analysis of its cancer-targeting ability in vitro. Cancer Immunol Immunother 2010;59(6):933-42
  • Majeti R. Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene 2011;30(9):1009-19
  • Somasunderam A, Thiviyanathan V, Tanaka T, Combinatorial selection of DNA thioaptamers targeted to the HA binding domain of human CD44. Biochemistry 2010;49(42):9106-12
  • Gupta PB, Onder TT, Jiang G, Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009;138(4):645-59
  • Huczynski A. Salinomycin – A new cancer drug candidate. Chem Biol Drug Des 2012;79:235-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.