698
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Future treatment strategies for celiac disease

, PhD, , , , , & show all
Pages 665-675 | Published online: 24 May 2012

Bibliography

  • Ludvigsson JF, Leffler DA, Bai JC, The Oslo definitions for coeliac disease and related terms. Gut 2012; doi: gutjnl-2011-301346
  • Mustalahti K, Catassi C, Reunanen A, The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med 2010;42:587-95
  • Kaukinen K, Lindfors K, Collin P, Coeliac disease–a diagnostic and therapeutic challenge. Clin Chem Lab Med 2010;48:1205-16
  • Haines ML, Anderson RP, Gibson PR. Systematic review: the evidence base for long-term management of coeliac disease. Aliment Pharmacol Ther 2008;28:1042-66
  • Sollid LM, Khosla C. Novel therapies for coeliac disease. J Intern Med 2011;269:604-13
  • Wieser H. Chemistry of gluten proteins. Food Microbiol 2007;24:115-19
  • Kasarda DD. Gluten and gliadin: Precipitating factors in coeliac disease. In: Maki M, Collin P, Visakorpi JK, editors. Coeliac Disease. Coeliac Disease Study Group; Tampere: 1997. p. 195-212
  • Galili G, Altschuler Y, Levanony H. Assembly and transport of seed storage proteins. Trends Cell Biol 1993;3:437-42
  • Shewry P, Tatham A, Kasarda D. Cereal proteins and coeliac disease. In: Marsh M, editor. Coeliac Disease. Blackwell Scientific Publications; Oxford: 1992. p. 305-48
  • Jones B. Endoproteases of barley and malt. J Cereal Sci 2005;42:139-56
  • Bottari A, Capocchi A, Fontanini D, Major proteinase hydrolyzing gliadin during wheat germination. Phytochemistry 1996;43:39-44
  • Laitila A, Kotoviita E, Peltola P, Indigenous microbial community of barley greatly influences grain germination and mal quality. J Inst Brew 2007;113:9-20
  • Hausch F, Shan L, Santiago NA, Intestinal digestive resistance of immunodominant gliadin peptides. Am J Physiol Gastrointest Liver Physiol 2002;283:G996-G1003
  • Shan L, Molberg O, Parrot I, Structural basis for gluten intolerance in celiac sprue. Science 2002;297:2275-9
  • Lohi S, Mustalahti K, Kaukinen K, Increasing prevalence of coeliac disease over time. Aliment Pharmacol Ther 2007;26:1217-25
  • Rubio-Tapia A, Kyle RA, Kaplan EL, Increase prevalence and mortality in undiagnosed celiac disease. Gastroenterology 2009;137:88-93
  • Karell K, Louka AS, Moodie SJ, HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results from the European genetics cluster on celiac disease. Hum Immunol 2003;64:469-77
  • van Heel DA, Franke L, Hunt KA, A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 2007;39:827-9
  • Dubois PC, Trynka G, Franke L, Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 2010;42:295-302
  • Kurppa K, Collin P, Viljamaa M, Diagnosing mild enteropathy celiac disease: a randomized, controlled clinical study. Gastroenterology 2009;136:816-23
  • Husby S, Koletzko S, Korponay-Szabo IR, European society for pediatric gastroenterology, hepatology, and nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr 2012;54:136-60
  • Lundin KE, Scott H, Hansen T, Gliadin-specific, HLA-DQ(alpha 1*0501,beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med 1993;178:187-96
  • Molberg O, Mcadam SN, Korner R, Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 1998;4:713-17
  • Abadie V, Sollid LM, Barreiro LB, Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu Rev Immunol 2011;29:493-525
  • Jabri B, Patey-Mariaud de Serre N, Gache C, Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 2000;118:867-9
  • Maiuri L, Ciacci C, Ricciardelli I, Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 2003;362:30-7
  • Hue S, Mention JJ, Monteiro RC, A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004;21:367-77
  • Barone MV, Gimigliano A, Castoria G, Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease. Gut 2007;56:480-8
  • Dieterich W, Ehnis T, Bauer M, Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997;3:797-801
  • Lindfors K, Maki M, Kaukinen K. Transglutaminase 2-targeted autoantibodies in celiac disease: pathogenetic players in addition to diagnostic tools? Autoimmun Rev 2010;9:744-9
  • Stene LC, Honeyman MC, Hoffenberg EJ, Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol 2006;101:2333-40
  • Ivarsson A, Persson LA, Nystrom L, Epidemic of coeliac disease in Swedish children. Acta Paediatr 2000;89:165-71
  • Hischenhuber C, Crevel R, Jarry B, Review article: safe amounts of gluten for patients with wheat allergy or coeliac disease. Aliment Pharmacol Ther 2006;23:559-75
  • Kaukinen K, Collin P, Holm K, Wheat starch-containing gluten-free flour products in the treatment of coeliac disease and dermatitis herpetiformis. A long-term follow-up study. Scand J Gastroenterol 1999;34:164-9
  • Hallert C, Granno C, Hulten S, Living with coeliac disease: controlled study of the burden of illness. Scand J Gastroenterol 2002;37:39-42
  • Fabiani E, Taccari LM, Ratsch I-M, Compliance with gluten-free diet in adolescents with screening-detected celiac disease: a 5-year follow-up study. J Pediatr 2000;136:841-3
  • Hall NJ, Rubin G, Charnock A. Systematic review: adherence to a gluten-free diet in adult patients with coeliac disease. Aliment Pharmacol Ther 2009;30:315-30
  • Wild D, Robins GG, Burley VJ, Evidence of high sugar intake, and low fibre and mineral intake, in the gluten-free diet. Aliment Pharmacol Ther 2010;32:573-81
  • Gass J, Khosla C. Prolyl endopeptidases. Cell Mol Life Sci 2007;64:345-55
  • Garcia-Horsman JA, Venalainen JI, Lohi O, Deficient activity of mammalian prolyl oligopeptidase on the immunoactive peptide digestion in coeliac disease. Scand J Gastroenterol 2007;42:562-71
  • Stepniak D, Spaenij-Dekking L, Mitea C, Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am J Physiol Gastrointest Liver Physiol 2006;291:G621-9
  • Mitea C, Havenaar R, Drijfhout JW, Efficient degradation of gluten by a prolyl endoprotease in a gastrointestinal model: implications for coeliac disease. Gut 2008;57:25-32
  • Piper JL, Gray GM, Khosla C. Effect of prolyl endopeptidase on digestive-resistant gliadin peptides in vivo. J Pharmacol Exp Ther 2004;311:213-19
  • Shan L, Marti T, Sollid LM, Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue. Biochem J 2004;383:311-18
  • Marti T, Molberg O, Li Q, Prolyl endopeptidase-mediated destruction of T cell epitopes in whole gluten: chemical and immunological characterization. J Pharmacol Exp Ther 2005;312:19-26
  • Pyle GG, Paaso B, Anderson BE, Effect of pretreatment of food gluten with prolyl endopeptidase on gluten-induced malabsorption in celiac sprue. Clin Gastroenterol Hepatol 2005;3:687-94
  • Bethune MT, Strop P, Tang Y, Heterologous expression, purification, refolding, and structural-functional characterization of EP-B2, a self-activating barley cysteine endoprotease. Chem Biol 2006;13:637-47
  • Gass J, Vora H, Bethune MT, Effect of barley endoprotease EP-B2 on gluten digestion in the intact rat. J Pharmacol Exp Ther 2006;318:1178-86
  • Bethune MT, Borda JT, Ribka E, A non-human primate model for gluten sensitivity. PLoS One 2008;3:e1614
  • Gass J, Bethune MT, Siegel M, Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue. Gastroenterology 2007;133:472-80
  • Siegel M, Bethune MT, Gass J, Rational design of combination enzyme therapy for celiac sprue. Chem Biol 2006;13:649-58
  • Tye-Din JA, Anderson RP, Ffrench RA, The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo. Clin Immunol 2010;134:289-95
  • Siegel M, Garber ME, Spencer AG, Safety, tolerability, and activity of ALV003: results from two phase 1 single, escalating-dose clinical trials. Dig Dis Sci 2012;57:440-50
  • Lahdeaho M-L, Kaukinen K, Laurila K, ALV003, a novel glutanase, attenuates gluten-induced small intestinal mucosal injury in coeliac disease patients: a randomized controlled Phase 2a clinical trial. Gut 2011;60:A12
  • Stenman S, Venalainen JI, Lindfors K, Enzymatic detoxification of gluten by germinating wheat proteases: implications for new treatment of celiac disease. Ann Med 2009;41:390-400
  • Stenman S, Lindfors K, Venalainen JI, Degradation of coeliac disease-inducing rye secalin by germinating cereal enzymes: diminishing toxic effects in intestinal epithelial cells. Clin Exp Immunol 2010;161:242-9
  • Zamakhchari M, Wei G, Dewhirst F, Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract. PLoS One 2011;6:e24455
  • Forsberg G, Fahlgren A, Horstedt P, Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol 2004;99:894-904
  • Nistal E, Caminero A, Herran AR, Differences of small intestinal bacteria populations in adults and children with/without celiac disease: effect of age, gluten diet, and disease. Inflamm Bowel Dis 2012;18:649-56
  • De Palma G, Nadal I, Medina M, Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol 2010;10:63
  • Sanchez E, Donat E, Ribes-Koninckx C, Intestinal Bacteroides species associated with coeliac disease. J Clin Pathol 2010;63:1105-11
  • Lindfors K, Blomqvist T, Juuti-Uusitalo K, Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol 2008;152:552-8
  • Cinova J, De Palma G, Stepankova R, Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats. PLoS One 2011;6:e16169
  • Liang L, Pinier M, Leroux JC, Interaction of alpha-gliadin with poly(HEMA-co-SS): structural characterization and biological implication. Biopolymers 2009;91:169-78
  • Pinier M, Verdu EF, Nasser-Eddine M, Polymeric binders suppress gliadin-induced toxicity in the intestinal epithelium. Gastroenterology 2009;136:288-98
  • Pinier M, Fuhrmann G, Galipeau H, The copolymer P(HEMA)-co-SS) binds gluten and reduces immune response in gluten-sensitized mice and human tissues. Gastroenterology 2012;142:316-25
  • Spaenij-Dekking L, Kooy-Winkelaar Y, van Veelen P, Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 2005;129:797-806
  • Tripathi A, Lammers KM, Goldblum S, Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci 2009;106:16799-804
  • Fasano A, Not T, Wang W, Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 2000;355:1518-19
  • Drago S, El Asmar R, Di Pierro M, Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 2006;41:408-19
  • Wang W, Uzzau S, Goldblum SE, Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci 2000;113:4435-40
  • Di Pierro M, Lu R, Uzzau S, Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J Biol Chem 2001;276:19160-5
  • Clemente MG, De Virgiliis S, Kang JS, Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut 2003;52:218-23
  • Silva MA, Jury J, Sanz Y, Increased bacterial translocation in gluten-sensitive mice is independent of small intestinal paracellular permeability defect. Dig Dis Sci 2012;57:38-47
  • Paterson BM, Lammers KM, Arrieta MC, The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther 2007;26:757-66
  • Cassani B, Villablanca EJ, Quintana FJ, Gut-tropic T cells that express integrin alpha4beta7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 2011;141:2109-18
  • Wermers JD, McNamee EN, Wurbel MA, The chemokine receptor CCR9 is required for the T-cell-mediated regulation of chronic ileitis in mice. Gastroenterology 2011;140:1526-35
  • Wurbel MA, McIntire MG, Dwyer P, CCL25/CCR9 interactions regulate large intestinal inflammation in a murine model of acute colitis. PLoS One 2011;6:e16442
  • Chatenoud L. Immune therapy for type 1 diabetes mellitus-what is unique about anti-CD3 antibodies? Nat Rev Endocrinol 2010;6:149-57
  • Sandborn WJ, Colombel JF, Frankel M, Anti-CD3 antibody visilizumab is not effective in patients with intravenous corticosteroid-refractory ulcerative colitis. Gut 2010;59:1485-92
  • Gillett HR, Arnott ID, McIntyre M, Successful infliximab treatment for steroid-refractory celiac disease: a case report. Gastroenterology 2002;122:800-5
  • Yokoyama S, Watanabe N, Sato N, Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc Natl Acad Sci 2009;106:15849-54
  • Simon-Vecsei Z, Kiraly R, Bagossi P, A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci 2012;109:431-6
  • Molberg O, McAdam S, Lundin KEA, T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol 2001;31:1317-23
  • Maiuri L, Ciacci C, Ricciardelli I, Unexpected role of surface transglutaminase type II in celiac disease. Gastroenterology 2005;129:1400-13
  • Lindfors K, Rauhavirta T, Kivisto R, Are TG2 inhibitors able to decrease gliadin-induced toxicity related to celiac disease - a proof of concept study. J Pediatr Gastroenterol Nutr 2011;52:E6
  • Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med 2008;205:143-54
  • Xia J, Bergseng E, Fleckenstein B, Cyclic and dimeric gluten peptide analogues inhibiting DQ2-mediated antigen presentation in celiac disease. Bioorg Med Chem 2007;15:6565-73
  • Kapoerchan VV, Wiesner M, Overhand M, Design of azidoproline containing gluten peptides to suppress CD4+ T-cell responses associated with celiac disease. Bioorg Med Chem 2008;16:2053-62
  • Kapoerchan VV, Wiesner M, Hillaert U, Design, synthesis and evaluation of high-affinity binders for the celiac disease associated HLA-DQ2 molecule. Mol Immunol 2010;47:1091-7
  • Juse U, van de Wal Y, Koning F, Design of new high-affinity peptide ligands for human leukocyte antigen-DQ2 using a positional scanning peptide library. Hum Immunol 2010;71:475-81
  • Arentz-Hansen H, Korner R, Molberg O, The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med 2000;191:603-12
  • Tye-Din JA, Stewart JA, Dromey JA, Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci Transl Med 2010;2:41ra51
  • Verhoef A, Alexander C, Kay AB, T cell epitope immunotherapy induces a CD4+ T cell population with regulatory activity. PLoS Med 2005;2:e78
  • Hmida NB, Ben Ahmed M, Moussa A, Impaired control of effector T cells by regulatory T cells: a clue to loss of oral tolerance and autoimmunity in celiac disease? Am J Gastroenterol 2012;1007:604-11
  • Aoyama H, Hirata T, Sakugawa H, An inverse relationship between autoimmune liver diseases and Strongyloides stercoralis infection. Am J Trop Med Hyg 2007;76:972-6
  • Elliott DE, Weinstock JV. Helminthic therapy: using worms to treat immune-mediated disease. Adv Exp Med Biol 2009;666:157-66
  • Daveson AJ, Jones DM, Gaze S, Effect of hookworm infection on wheat challenge in celiac disease–a randomised double-blinded placebo controlled trial. PLoS One 2011;6:e17366
  • McSorley HJ, Gaze S, Daveson J, Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection. PLoS One 2011;6:e24092
  • Aziz I, Evans KE, Papageorgiou V, Are patients with coeliac disease seeking alternative therapies to a gluten-free diet? J Gastrointestin Liver Dis 2011;20:27-31
  • Crespo Perez L, Leon F. Clinical trial data provides hope for attenuation of mucosal injury in coeliac disease. Eur J Intern Med 2012;23:9-14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.