378
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Utilization of the cellular stress response to sensitize cancer cells to TRAIL-mediated apoptosis

, MD Dr Med
Pages 801-817 | Published online: 05 Jul 2012

Bibliography

  • Stupp R, Mason WP, van den Bent MJ, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352(10):987-96
  • Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 2005;55(3):178-94
  • Ashkenazi A, Herbst RS. To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 2008;118(6):1979-90
  • Ashkenazi A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 2008;7(12):1001-12
  • Moisoi N, Klupsch K, Fedele V, Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ 2009;16(3):449-64
  • Zhao Q, Wang J, Levichkin IV, A mitochondrial specific stress response in mammalian cells. EMBO J 2002;21(17):4411-19
  • Martinus RD, Garth GP, Webster TL, Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem 1996;240(1):98-103
  • Ma Y, Hendershot LM. The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 2004;4(12):966-77
  • Elias A, Siegelin MD, Steinmuller A, Epigenetic silencing of death receptor 4 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in gliomas. Clin Cancer Res 2009;15(17):5457-65
  • Hu P, Han Z, Couvillon AD, Exton JH. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 2004;279(47):49420-9
  • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007;8(7):519-29
  • Lee K, Tirasophon W, Shen X, IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 2002;16(4):452-66
  • Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 2006;313(5783):104-7
  • Tsai YC, Weissman AM. The unfolded protein response, degradation from endoplasmic reticulum and cancer. Genes Cancer 2010;1(7):764-78
  • Fornace AJ Jr, Alamo I Jr, Hollander MC. DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci USA 1988;85(23):8800-4
  • Park JS, Luethy JD, Wang MG, Isolation, characterization and chromosomal localization of the human GADD153 gene. Gene 1992;116(2):259-67
  • Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004;11(4):381-9
  • Hattori T, Ohoka N, Inoue Y, C/EBP family transcription factors are degraded by the proteasome but stabilized by forming dimer. Oncogene 2003;22(9):1273-80
  • Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 1992;6(3):439-53
  • Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 1999;13(10):1211-33
  • Aman P, Ron D, Mandahl N, Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11). Genes Chromosomes Cancer 1992;5(4):278-85
  • Barone MV, Crozat A, Tabaee A, CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev 1994;8(4):453-64
  • Charytonowicz E, Terry M, Coakley K, PPARgamma agonists enhance ET-743-induced adipogenic differentiation in a transgenic mouse model of myxoid round cell liposarcoma. J Clin Invest 2012;122(3):886-98
  • Moisoi N, Klupsch K, Fedele V, Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ 2009;16(3):449-64
  • Eizirik DL, Bjorklund A, Cagliero E. Genotoxic agents increase expression of growth arrest and DNA damage–inducible genes gadd 153 and gadd 45 in rat pancreatic islets. Diabetes 1993;42(5):738-45
  • Zinszner H, Kuroda M, Wang X, CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998;12(7):982-95
  • McCullough KD, Martindale JL, Klotz LO, Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 2001;21(4):1249-59
  • Siegelin MD, Dohi T, Raskett CM, Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J Clin Invest 2011;121(4):1349-60
  • Nozaki S, Sledge Jr GW, Nakshatri H. Repression of GADD153/CHOP by NF-kappaB: a possible cellular defense against endoplasmic reticulum stress-induced cell death. Oncogene 2001;20(17):2178-85
  • Kim YS, Jin HO, Seo SK, Sorafenib induces apoptotic cell death in human non-small cell lung cancer cells by down-regulating mammalian target of rapamycin (mTOR)-dependent survivin expression. Biochem Pharmacol 2011;82(3):216-26
  • Davenport EL, Moore HE, Dunlop AS, Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood 2007;110(7):2641-9
  • Silva AM, Wang D, Komar AA, Salicylates trigger protein synthesis inhibition in a protein kinase R-like endoplasmic reticulum kinase-dependent manner. J Biol Chem 2007;282(14):10164-71
  • Cusimano A, Azzolina A, Iovanna JL, Novel combination of celecoxib and proteasome inhibitor MG132 provides synergistic antiproliferative and proapoptotic effects in human liver tumor cells. Cell Cycle 2010;9(7):1399-410
  • Kardosh A, Golden EB, Pyrko P, Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res 2008;68(3):843-51
  • He Q, Luo X, Jin W, Celecoxib and a novel COX-2 inhibitor ON09310 upregulate death receptor 5 expression via GADD153/CHOP. Oncogene 2008;27(18):2656-60
  • Kim SH, Hwang CI, Juhnn YS, GADD153 mediates celecoxib-induced apoptosis in cervical cancer cells. Carcinogenesis 2007;28(1):223-31
  • Tsutsumi S, Gotoh T, Tomisato W, Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell Death Differ 2004;11(9):1009-16
  • Suganuma M, Kurusu M, Suzuki K, Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation of GADD153 gene. Int J Cancer 2006;119(1):33-40
  • Chen TC, Wang W, Golden EB, Green tea epigallocatechin gallate enhances therapeutic efficacy of temozolomide in orthotopic mouse glioblastoma models. Cancer Lett 2011;302(2):100-8
  • Nawrocki ST, Carew JS, Dunner K Jr, Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 2005;65(24):11510-19
  • Obeng EA, Carlson LM, Gutman DM, Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006;107(12):4907-16
  • Yoshida T, Shiraishi T, Nakata S, Proteasome inhibitor MG132 induces death receptor 5 through CCAAT/enhancer-binding protein homologous protein. Cancer Res 2005;65(13):5662-7
  • Hetschko H, Voss V, Seifert V, Upregulation of DR5 by proteasome inhibitors potently sensitizes glioma cells to TRAIL-induced apoptosis. FEBS J 2008;275(8):1925-36
  • Di Fazio P, Schneider-Stock R, Neureiter D, The pan-deacetylase inhibitor panobinostat inhibits growth of hepatocellular carcinoma models by alternative pathways of apoptosis. Cell Oncol 2010;32(4):285-300
  • Koyama M, Izutani Y, Goda AE, Histone deacetylase inhibitors and 15-deoxy-Delta12,14-prostaglandin J2 synergistically induce apoptosis. Clin Cancer Res 2010;16(8):2320-32
  • Rao R, Nalluri S, Kolhe R, Treatment with panobinostat induces glucose-regulated protein 78 acetylation and endoplasmic reticulum stress in breast cancer cells. Mol Cancer Ther 2010;9(4):942-52
  • Namdar M, Perez G, Ngo L, Marks PA. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci USA 2010;107(46):20003-8
  • Tian X, Ye J, Alonso-Basanta M, Modulation of CCAAT/enhancer binding protein homologous protein (CHOP)-dependent DR5 expression by nelfinavir sensitizes glioblastoma multiforme cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol Chem 2011;286(33):29408-16
  • Szymczyk KH, Shapiro IM, Adams CS. Ionizing radiation sensitizes bone cells to apoptosis. Bone 2004;34(1):148-56
  • Anand S, Chakrabarti E, Kawamura H, Ultraviolet light (UVB and UVA) induces the damage-responsive transcription factor CHOP/gadd153 in murine and human epidermis: evidence for a mechanism specific to intact skin. J Invest Dermatol 2005;125(2):323-33
  • Pyrko P, Schonthal AH, Hofman FM, The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 2007;67(20):9809-16
  • De Luca P, Vazquez ES, Moiola CP, BRCA1 loss induces GADD153-mediated doxorubicin resistance in prostate cancer. Mol Cancer Res 2011;9(8):1078-90
  • Posey KL, Coustry F, Veerisetty AC, Chop (Ddit3) is essential for D469del-COMP retention and cell death in chondrocytes in an inducible transgenic mouse model of pseudoachondroplasia. Am J Pathol 2012;180(2):727-37
  • Moon DO, Park SY, Choi YH, Guggulsterone sensitizes hepatoma cells to TRAIL-induced apoptosis through the induction of CHOP-dependent DR5: involvement of ROS-dependent ER-stress. Biochem Pharmacol 2011;82(11):1641-50
  • Huang SM, Cheung CW, Chang CS, Phloroglucinol derivative MCPP induces cell apoptosis in human colon cancer. J Cell Biochem 2011;112(2):643-52
  • Prasad S, Yadav VR, Ravindran J, Aggarwal BB. ROS and CHOP are critical for dibenzylideneacetone to sensitize tumor cells to TRAIL through induction of death receptors and downregulation of cell survival proteins. Cancer Res 2011;71(2):538-49
  • Karaky R, Gobbo E, Opolon P, HARPDelta111-136 enhances radiation-induced apoptosis of U87MG glioblastoma by induction of the proapoptotic protein CHOP. Int J Oncol 2011;38(1):179-88
  • Chiribau CB, Gaccioli F, Huang CC, Molecular symbiosis of CHOP and C/EBP beta isoform LIP contributes to endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol 2010;30(14):3722-31
  • Nakayama Y, Endo M, Tsukano H, Molecular mechanisms of the LPS-induced non-apoptotic ER stress-CHOP pathway. J Biochem 2010;147(4):471-83
  • Meng X, Leyva ML, Jenny M, A ruthenium-containing organometallic compound reduces tumor growth through induction of the endoplasmic reticulum stress gene CHOP. Cancer Res 2009;69(13):5458-66
  • Woo KJ, Lee TJ, Lee SH, Elevated gadd153/chop expression during resveratrol-induced apoptosis in human colon cancer cells. Biochem Pharmacol 2007;73(1):68-76
  • Koll H, Guiard B, Rassow J, Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell 1992;68(6):1163-75
  • Horibe T, Hoogenraad NJ. The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS One 2007;2(9):e835
  • Haynes CM, Ron D. The mitochondrial UPR - protecting organelle protein homeostasis. J Cell Sci 2010;123(Pt 22):3849-55
  • Aldridge JE, Horibe T, Hoogenraad NJ. Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS ONE 2007;2(9):e874
  • Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 2010;10(8):537-49
  • Kang BH, Plescia J, Dohi T, Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007;131(2):257-70
  • Kang BH. TRAP1 regulation of mitochondrial life or death decision in cancer cells and mitochondria-targeted TRAP1 inhibitors. BMB Rep 2012;45(1):1-6
  • Chen CF, Chen Y, Dai K, A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock. Mol Cell Biol 1996;16(9):4691-9
  • Song HY, Dunbar JD, Zhang YX, Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem 1995;270(8):3574-81
  • Felts SJ, Owen BA, Nguyen P, The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 2000;275(5):3305-12
  • Masuda Y, Shima G, Aiuchi T, Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 2004;279(41):42503-15
  • Hua G, Zhang Q, Fan Z. Heat shock protein 75 (TRAP1) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J Biol Chem 2007;282(28):20553-60
  • Voloboueva LA, Duan M, Ouyang Y, Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab 2008;28(5):1009-16
  • Tsujimoto Y, Shimizu S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 2007;12(5):835-40
  • Plescia J, Salz W, Xia F, Rational design of shepherdin, a novel anticancer agent. Cancer Cell 2005;7(5):457-68
  • Gyurkocza B, Plescia J, Raskett CM, Antileukemic activity of shepherdin and molecular diversity of hsp90 inhibitors. J Natl Cancer Inst 2006;98(15):1068-77
  • Costantino E, Maddalena F, Calise S, TRAP1, a novel mitochondrial chaperone responsible for multi-drug resistance and protection from apoptosis in human colorectal carcinoma cells. Cancer Lett 2009;279(1):39-46
  • Siegelin MD, Plescia J, Raskett CM, Global targeting of subcellular heat shock protein-90 networks for therapy of glioblastoma. Mol Cancer Ther 2010;9(6):1638-46
  • Ghosh JC, Siegelin MD, Dohi T, Altieri DC. Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 2010;70(22):8988-93
  • Kang BH, Plescia J, Song HY, Combinatorial drug design targeting multiple cancer signaling networks controlled by mitochondrial Hsp90. J Clin Invest 2009;119(3):454-64
  • Haynes CM, Yang Y, Blais SP, The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 2010;37(4):529-40
  • Ogata M, Hino S, Saito A, Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006;26(24):9220-31
  • Chu CT. A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Hum Mol Genet 2010;19(R1):R28-37
  • Du S, Hiramatsu N, Hayakawa K, Suppression of NF-kappaB by cyclosporin A and tacrolimus (FK506) via induction of the C/EBP family: implication for unfolded protein response. J Immunol 2009;182(11):7201-11
  • Sheikh MS, Burns TF, Huang Y, p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res 1998;58(8):1593-8
  • Munoz-Pinedo C, Ruiz-Ruiz C, Ruiz de Almodovar C, Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing. J Biol Chem 2003;278(15):12759-68
  • Park SY, Billiar TR, Seol DW. Hypoxia inhibition of apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Biochem Biophys Res Commun 2002;291(1):150-3
  • Kang YC, Kim KM, Lee KS, Serum bioactive lysophospholipids prevent TRAIL-induced apoptosis via PI3K/Akt-dependent cFLIP expression and Bad phosphorylation. Cell Death Differ 2004;11(12):1287-98
  • Mori S, Murakami-Mori K, Nakamura S, Sensitization of AIDS-Kaposi's sarcoma cells to Apo-2 ligand-induced apoptosis by actinomycin D. J Immunol 1999;162(9):5616-23
  • Sah NK, Munshi A, Kurland JF, Translation inhibitors sensitize prostate cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by activating c-Jun N-terminal kinase. J Biol Chem 2003;278(23):20593-602
  • Van Valen F, Fulda S, Truckenbrod B, Apoptotic responsiveness of the Ewing's sarcoma family of tumours to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Int J Cancer 2000;88(2):252-9
  • Hernandez A, Wang QD, Schwartz SA, Evers BM. Sensitization of human colon cancer cells to TRAIL-mediated apoptosis. J Gastrointest Surg 2001;5(1):56-65
  • Singh TR, Shankar S, Chen X, Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res 2003;63(17):5390-400
  • Wang MJ, Liu S, Liu Y, Zheng D. Actinomycin D enhances TRAIL-induced caspase-dependent and -independent apoptosis in SH-SY5Y neuroblastoma cells. Neurosci Res 2007;59(1):40-6
  • Robbins MA, Maksumova L, Pocock E, Chantler JK. Nuclear factor-kappaB translocation mediates double-stranded ribonucleic acid-induced NIT-1 beta-cell apoptosis and up-regulates caspase-12 and tumor necrosis factor receptor-associated ligand (TRAIL). Endocrinology 2003;144(10):4616-25
  • Siegelin MD, Reuss DE, Habel A, Quercetin promotes degradation of survivin and thereby enhances death-receptor-mediated apoptosis in glioma cells. Neuro Oncol 2009;11(2):122-31
  • Schmitz I, Weyd H, Krueger A, Resistance of short term activated T cells to CD95-mediated apoptosis correlates with de novo protein synthesis of c-FLIPshort. J Immunol 2004;172(4):2194-200
  • Adams KW, Cooper GM. Rapid turnover of mcl-1 couples translation to cell survival and apoptosis. J Biol Chem 2007;282(9):6192-200
  • Martin-Perez R, Niwa M, Lopez-Rivas A. ER stress sensitizes cells to TRAIL through down-regulation of FLIP and Mcl-1 and PERK-dependent up-regulation of TRAIL-R2. Apoptosis 2012;17(4):349-63
  • Yang JF, Cao JG, Tian L, Liu F. 5, 7-Dimethoxyflavone sensitizes TRAIL-induced apoptosis through DR5 upregulation in hepatocellular carcinoma cells. Cancer Chemother Pharmacol 2012;69(1):195-206
  • Zhang X, Inukai T, Akahane K, Endoplasmic reticulum stress inducers, but not imatinib, sensitize Philadelphia chromosome-positive leukemia cells to TRAIL-mediated apoptosis. Leuk Res 2011;35(7):940-9
  • Kim IY, Kang YJ, Yoon MJ, Amiodarone sensitizes human glioma cells but not astrocytes to TRAIL-induced apoptosis via CHOP-mediated DR5 upregulation. Neuro Oncol 2011;13(3):267-79
  • Tiwary R, Yu W, Li J, Role of endoplasmic reticulum stress in alpha-TEA-mediated TRAIL/DR5 death receptor dependent apoptosis. PLoS ONE 2010;5(7):e11865
  • Park SK, Sanders BG, Kline K. Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signaling. Breast Cancer Res Treat 2010;124(2):361-75
  • Zou W, Yue P, Khuri FR, Sun SY. Coupling of endoplasmic reticulum stress to CDDO-Me-induced up-regulation of death receptor 5 via a CHOP-dependent mechanism involving JNK activation. Cancer Res 2008;68(18):7484-92
  • Jiang CC, Chen LH, Gillespie S, Tunicamycin sensitizes human melanoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by up-regulation of TRAIL-R2 via the unfolded protein response. Cancer Res 2007;67(12):5880-8
  • Abdelrahim M, Newman K, Vanderlaag K, 3,3'-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis 2006;27(4):717-28
  • Yamaguchi H, Wang HG. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 2004;279(44):45495-502
  • Yamaguchi H, Bhalla K, Wang HG. Bax plays a pivotal role in thapsigargin-induced apoptosis of human colon cancer HCT116 cells by controlling Smac/Diablo and Omi/HtrA2 release from mitochondria. Cancer Res 2003;63(7):1483-9
  • Burikhanov R, Zhao Y, Goswami A, The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 2009;138(2):377-88
  • El-Guendy N, Zhao Y, Gurumurthy S, Identification of a unique core domain of par-4 sufficient for selective apoptosis induction in cancer cells. Mol Cell Biol 2003;23(16):5516-25
  • Moreno-Bueno G, Fernandez-Marcos PJ, Collado M, Inactivation of the candidate tumor suppressor par-4 in endometrial cancer. Cancer Res 2007;67(5):1927-34
  • Cook J, Krishnan S, Ananth S, Decreased expression of the pro-apoptotic protein Par-4 in renal cell carcinoma. Oncogene 1999;18(5):1205-8
  • Mao ZG, Jiang CC, Yang F, TRAIL-induced apoptosis of human melanoma cells involves activation of caspase-4. Apoptosis 15(10):1211-22
  • Zhang L, Lopez H, George NM, Selective involvement of BH3-only proteins and differential targets of Noxa in diverse apoptotic pathways. Cell Death Differ 2011;18(5):864-73
  • Liu X, Yue P, Chen S, The proteasome inhibitor PS-341 (bortezomib) up-regulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL-induced apoptosis despite up-regulation of c-FLIP and survivin expression in human NSCLC cells. Cancer Res 2007;67(10):4981-8
  • Voortman J, Resende TP, Abou El Hassan MA, TRAIL therapy in non-small cell lung cancer cells: sensitization to death receptor-mediated apoptosis by proteasome inhibitor bortezomib. Mol Cancer Ther 2007;6(7):2103-12
  • Koschny R, Holland H, Sykora J, Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res 2007;13(11):3403-12
  • Kandasamy K, Kraft AS. Proteasome inhibitor PS-341 (VELCADE) induces stabilization of the TRAIL receptor DR5 mRNA through the 3'-untranslated region. Mol Cancer Ther 2008;7(5):1091-100
  • Son YG, Kim EH, Kim JY, Silibinin sensitizes human glioma cells to TRAIL-mediated apoptosis via DR5 up-regulation and down-regulation of c-FLIP and survivin. Cancer Res 2007;67(17):8274-84
  • Nawrocki ST, Carew JS, Pino MS, Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 2005;65(24):11658-66

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.