828
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Can targeting SIRT-1 to treat type 2 diabetes be a good strategy? A review

, MSc, , MS Pharm, , MPharm, , PhD & , PhD
Pages 819-832 | Published online: 05 Jul 2012

Bibliography

  • Regional overview, International Diabetes Federation. Brussels, Belgium. Available from: http://www.idf.org/diabetesatlas/regional-overview
  • Herder C, Roden M. Genetics of type 2 diabetes: pathophysiologic and clinical relevance. Eur J Clin Invest 2011;41(6):679-92
  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2011;3(1):562-9
  • Zillikens MC, van Meurs JBJ, Sijbrands EJG, SIRT1 genetic variation and mortality in type 2 diabetes: interaction with smoking and dietary niacin. Free Radic Biol Med 2009;46(6):836-41
  • Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 2001;104(4):517
  • Wild S, Roglic G, Green A, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-53
  • Mokdad AH, Ford ES, Bowman BA, Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003;289(1):76
  • Rodgers JT, Lerin C, Haas W, Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434(7029):113-18
  • Ramkumar R, Richa G, Marija KD, Constantinos D. SIRTuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol 2011;2011:1-17
  • Bitterman KJ, Anderson RM, Cohen HY, Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 2002;277(47):45099
  • Sauve AA, Schramm VL. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry (N Y) 2003;42(31):9249-56
  • Borra MT, O'Neill FJ, Jackson MD, Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD -dependent deacetylases. J Biol Chem 2002;277(15):12632
  • Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. PNAS 2000;97(26):14178
  • Chen WY, Wang DH, Yen RWC, Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005;123(3):437-48
  • Abdelmohsen K, PullmannJr R, Lal A, Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 2007;25(4):543-57
  • Wang C, Chen L, Hou X, Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006;8(9):1025-31
  • Kim EJ, Kho JH, Kang MR, Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 2007;28(2):277-90
  • Zhao W, Kruse JP, Tang Y, Negative regulation of the deacetylase SIRT1 by DBC1. Nature 2008;451(7178):587-90
  • Yang Y, Fu W, Chen J, SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol 2007;9(11):1253-62
  • Patricio Monteiro J, Isabel Nogueira Cano M. SIRT1 deacetylase activity and the maintenance of protein homeostasis in response to stress: an overview. Protein Pept Lett 2011;18(2):167-73
  • Sasaki T, Maier B, Koclega KD, Phosphorylation regulates SIRT1 function. PLoS One 2008;3(12):e4020
  • Van den Berghe G. The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism. J Inherit Metab Dis 1991;14(4):407-20
  • Yoon JC, Puigserver P, Chen G, Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001;413(6852):131-8
  • Puigserver P, Rhee J, Donovan J, Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1a interaction. Nature 2003;423:550-5
  • Rhee J, Inoue Y, Yoon JC, Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4a in gluconeogenesis. PNAS 2003;100:4012-17
  • Gillum MP, Erion DM, Shulman GI. SIRTuin-1 regulation of mammalian metabolism. Trends Mol Med 2011;17(1):8-13
  • Purushotham A, Schug TT, Xu Q, Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009;9(4):327-38
  • Feige JN, Lagouge M, Canto C, Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008;8:347-58
  • Dominy JE Jr, Lee Y, Gerhart-Hines Z, Puigserver P. Nutrient-dependent regulation of PGC-1 [alpha]'s acetylation state and metabolic function through the enzymatic activities of SIRT1/GCN5. Biochimicaet Biophysica Acta (BBA) Proteins Proteomic 2010;1804(8):1676-83
  • Chen D, Bruno J, Easlon E, Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 2008;22(13):1753
  • Kahn S. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 2003;46(1):3-19
  • Steppel JH, Horton ES. Beta-cell failure in the pathogenesis of type 2 diabetes mellitus. Curr Diab Rep 2004;4(3):169-75
  • Kitamura YI, Kitamura T, Kruse JP, FoxO1 protects against pancreatic [beta] cell failure through NeuroD and MafA induction. Cell Metab 2005;2(3):153-63
  • Bordone L, Motta MC, Picard F, SIRT1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006;4(2):e31
  • Moynihan KA, Grimm AA, Plueger MM, Increased dosage of mammalian Sir2 in pancreatic [beta] cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005;2(2):105-17
  • Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005;6(4):298-305
  • Yamashita T, Eto K, Okazaki Y, Role of uncoupling protein-2 up-regulation and triglyceride accumulation in impaired glucose-stimulated insulin secretion in a beta-cell lipotoxicity model overexpressing sterol regulatory element-binding protein-1c. Endocrinology 2004;145(8):3566
  • Takahashi A, Motomura K, Kato T, Transgenic mice overexpressing nuclear SREBP-1c in pancreatic beta-cells. Diabetes 2005;54(2):492
  • Ide T, Shimano H, Yahagi N, SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol 2004;6(4):351-7
  • Withers DJ, Gutierrez JS, Towery H, Disruption of IRS-2 causes type 2 diabetes in mice. Nature-London 1998;391(6670):900-3
  • Wang H, Kouri G, Wollheim CB. ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J Cell Sci 2005;118(17):3905
  • Randle P, Garland P, Hales C, Newsholme E. The glucose fatty-acid cycle.its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1(7285):785
  • Furler SM, Poynten AM, Kriketos AD, Independent influences of central fat and skeletal muscle lipids on insulin sensitivity. Obesity 2001;9(9):535-43
  • Koves TR, Li P, An J, Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 2005;280(39):33588-98
  • Wende AR, Huss JM, Schaeffer PJ, PGC-1 {alpha} coactivates PDK4 gene expression via the orphan nuclear receptor ERR {alpha}: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 2005;25(24):10684
  • Wu Z, Puigserver P, Andersson U, Mechanisms controlling mitochondrial biogenesis and respiration through the thermogeniccoactivator PGC-1. Cell 1999;98(1):115-24
  • Mootha VK, Bunkenborg J, Olsen JV, Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2003;115(5):629-40
  • Patti ME, Butte AJ, Crunkhorn S, Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. PNAS 2003;100(14):8466-71
  • Schreiber SN, Emter R, Hock MB, The estrogen-related receptor alpha (ERRalpha) functions in PPARgammacoactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA 2004;101(17):6472
  • Mootha VK, Handschin C, Arlow D, Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA 2004;101(17):6570
  • Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000;20(5):1868-76
  • Gerhart-Hines Z, Rodgers JT, Bare O, Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007;26(7):1913-23
  • Pfluger PT, Herranz D, Velasco-Miguel S, SIRT1 protects against high-fat diet-induced metabolic damage. PNAS 2008;105(28):9793-8
  • Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. PNAS 2007;104(29):12017-22
  • Canto C, Gerhart-Hines Z, Feige JN, AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity. Nature 2009;458(7241):1056-60
  • Fulco M, Cen Y, Zhao P, Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of nampt. Dev Cell 2008;14(5):661-73
  • Suwa M, Egashira T, Nakano H, Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 2006;101(6):1685
  • Canto C, Auwerx J. PGC-1 [alpha], SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009;20(2):98
  • Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. J Biol Chem 2008;283(41):27628
  • Hou X, Xu S, Maitland-Toolan KA, SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 2008;283(29):20015-26
  • Jessen N, Pold R, Buhl ES, Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 2003;94(4):1373
  • Fisher JS, Gao J, Han DH, Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 2002;282(1):E18-23
  • Michael LF, Wu Z, Cheatham RB, Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. PNAS 2001;98(7):3820
  • Holmes BF, Sparling DP, Olson AL, Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol Metab 2005;289(6):E1071-6
  • Elchebly M, Payette P, Michaliszyn E, Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999;283(5407):1544-8
  • Zinker BA, Rondinone CM, Trevillyan JM, PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. PNAS 2002;99(17):11357-62
  • Vaquero A, Scher M, Lee D, Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004;16(1):93-105
  • Howitz KT, Bitterman KJ, Cohen HY, Small molecule activators of sirtuinsextend saccharomyces cerevisiae lifespan. Nature 2003;425(6954):191-6
  • Barzilai N, Banerjee S, Hawkins M, Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J Clin Invest 1998;101(7):1353
  • Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 2004;101(17):6659-63
  • Gu F, Dube N, Kim JW, Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling. Mol Cell Biol 2003;23(11):3753
  • Rajala MW, Scherer PE. Minireview: the adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 2003;144(9):3765
  • Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res 2005;96(9):939-49
  • Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev 2005;26(3):439-51
  • Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 2006;281(52):39915
  • Li X, Zhang S, Blander G, SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007;28(1):91-106
  • Milne JC, Lambert PD, Schenk S, Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007;450(7170):712-16
  • Bemis JE, Vu CB, Xie R, Discovery of oxazolo [4, 5-b] pyridines and related heterocyclic analogs as novel SIRT1 activators. Bioorg Med Chem Lett 2009;19(8):2350-3
  • Vu CB, Bemis JE, Disch JS, Discovery of imidazo [1, 2-b] thiazole derivatives as novel SIRT1 activators. J Med Chem 2009;52(5):1275-83
  • Dai H, Kustigian L, Carney D, SIRT1 activation by small molecules. J Biol Chem 2010;285(43):32695-703
  • Pacholec M, Bleasdale JE, Chrunyk B, SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 2010;285(11):8340
  • Baur JA, Ungvari Z, Minor RK, Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov 2012;11(6):443-61
  • Pillarisetti S. A review of SIRT1 and SIRT1 modulators in cardiovascular and metabolic diseases. Recent Patents Cardiovasc Drug Discov 2008;3(3):156-64
  • Mai A, Valente S, Meade S, Study of 1, 4-dihydropyridine structural scaffold: discovery of novel sirtuin activators and inhibitors. J Med Chem 2009;52(17):5496-504
  • Charles AB, James LE, Christine L, SIRT1 modulation as a novel approach to the treatment of diseases of aging. J Med Chem 2011;54:417-32
  • GlaxoSmithKline. A Clinical Study to Assess the Safety, Tolerability, and Activity of Oral SRT2104 Capsules Administered for 28 Days to Subjects With Type 2 Diabetes Mellitus. 2011. ClinicalTrials.gov. Identifier: NCT01018017 Available from: http://clinicaltrials.gov/ct2/show/study/NCT01018017?term=NCT01018017.&rank=1
  • Kaleida Health, Boston University. Pilot Study of The Effects Of Resveratrol On Endothelial Function In Subjects With Type 2 Diabetes Mellitus. 2010. ClinicalTrials.gov. Identifier: NCT01038089 Available from: http://clinicaltrials.gov/ct2/show/NCT01038089?term=NCT01038089&rank=1
  • KaleidaHealth. Effect of Resveratrol on Insulin Resistance and Inflammatory Mediators in Obese and Type 2 Diabetic Subjects, 2010. ClinicalTrials.gov. Identifier: NCT01158417 Available from: http://clinicaltrials.gov/ct2/show/NCT01158417?term=NCT01158417.&rank=1
  • University of Aarhus. Long-term Investigation of Resveratrol on Management of Metabolic Syndrome, Osteoporosis and Inflammation, and Identification of Plant Derived Anti-inflammatory Compounds, 2011. ClinicalTrials.gov. Identifier: NCT01412645 Available from: http://clinicaltrials.gov/ct2/show/NCT01412645?term=NCT01412645.&rank=1
  • GlaxoSmithKline. A Phase I Randomized, Placebo-Controlled, Single-Blind, Multiple-Dose, Dose-Escalation Clinical Study to Assess the Safety and Pharmacokinetics of SRT2379 in Normal Healthy Male Volunteers, 2011. ClinicalTrials.gov. Identifier: NCT01018628 Available from: http://clinicaltrials.gov/ct2/show/NCT01018628?term=NCT01018628&rank=1
  • Sakkiah S, Krishnamoorthy N, Gajendrarao P, Pharmacophore mapping and virtual screening for SIRT1 activators. Bull Korean Chem Soc 2009;30(5):1153
  • Autiero I, Costantini S, Colonna G. Human sirt-1: molecular modeling and structure-f unction relationships of an unordered protein. PLoS ONE 2009;4(10):e7350
  • Duez H, Staels B. Rev-erb-alpha: an integrator of circadian rhythms and metabolism. J Appl Physiol 2009;107(6):1972-80
  • Duez H, Staels B. Nuclear receptors linking circadian rhythms and cardiometabolic control. Arterioscler Thromb Vasc Biol 2010;30(8):1529-34
  • Autiero I, Costantini S, Colonna G. Human sirt-1: molecular modeling and structure-function relationships of an unordered protein. PLoS ONE 2009;4(10):e7350

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.