595
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Anaerobic Pseudomonas aeruginosa and other obligately anaerobic bacterial biofilms growing in the thick airway mucus of chronically infected cystic fibrosis patients: an emerging paradigm or “Old Hat”?

, PhD & , PhD
Pages 859-873 | Published online: 16 Jul 2012

Bibliography

  • Hassett DJ, Korfhagen TR, Irvin RT, Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin Ther Targets 2010;14(2):117-30
  • Monroe D. Looking for chinks in the armor of bacterial biofilms. PLoS Biol 2007;5(11):e307
  • Yoon SS, Hennigan RF, Hilliard GM, Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 2002;3(4):593-603
  • Worlitzsch D, Tarran R, Ulrich M, Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients.. J. Clin. Invest 2002;109:317-25
  • Costerton JW. Anaerobic biofilm infections in cystic fibrosis. Mol Cell 2002;10(4):699-700
  • Hassett DJ, Lymar SV, Rowe JJ, In: Nakano MM, Zuber S. Strict and facultative anerobes: medical and environmental aspects: medical and environmental aspects. Horizon Bioscience; Norfolk, England: 2004. p. 87-108
  • Arai H. Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Front Microbiol 2011;2:103
  • Schobert M, Jahn D. Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lung. Int J Med Microbiol 2010;300(8):549-56
  • Yoon SS, Hassett DJ. Chronic Pseudomonas aeruginosa infection in cystic fibrosis airway disease: metabolic changes that unravel novel drug targets. Expert Rev. Anti Infect Ther 2004;2:89-101
  • Schreiber K, Krieger R, Benkert B, The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. J Bacteriol 2007;189(11):4310-14
  • Baron SS, Rowe JJ. Antibiotic action of pyocyanin. Antimicrob Agents Chemother 1981;20:814-20
  • Lambiase A, Catania MR, Rossano F. Anaerobic bacteria infection in cystic fibrosis airway disease. New Microbiol 2010;33(3):185-94
  • Shapiro ED, Milmoe GJ, Wald ER, Bacteriology of the maxillary sinuses in patients with cystic fibrosis. J Infect Dis 1982;146(5):589-93
  • Brook I. Sputum cultures for evaluation of anaerobes in cystic fibrosis. J Pediatr 1984;105(3):505-6
  • Parkins MD, Sibley CD, Surette MG, Rabin HR. The Streptococcus milleri group–an unrecognized cause of disease in cystic fibrosis: a case series and literature review. Pediatr Pulmonol 2008;43(5):490-7
  • Sibley CD, Parkins MD, Rabin HR, A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci USA 2008;105(39):15070-5
  • Belko J, Goldmann DA, Macone A, Zaidi AK. Clinically significant infections with organisms of the Streptococcus milleri group. Pediatr Infect Dis J 2002;21(8):715-23
  • Ruoff KL. Streptococcus anginosus (“Streptococcus milleri”): the unrecognized pathogen. Clin Microbiol Rev 1988;1(1):102-8
  • Piscitelli SC, Shwed J, Schreckenberger P, Danziger LH. Streptococcus milleri group: renewed interest in an elusive pathogen. Eur J Clin Microbiol Infect Dis 1992;11(6):491-8
  • Duan K, Dammel C, Stein J, Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 2003;50(5):1477-91
  • Field TR, Sibley CD, Parkins MD, The genus prevotella in cystic fibrosis airways. Anaerobe 2010;16(4):337-44
  • Shinzato T, Saito A. A mechanism of pathogenicity of “Streptococcus milleri group” in pulmonary infection: synergy with an anaerobe. J Med Microbiol 1994;40(2):118-23
  • Shinzato T, Saito A. The Streptococcus milleri group as a cause of pulmonary infections. Clin Infect Dis 1995;21(Suppl 3):S238-43
  • Ulrich M, Beer I, Braitmaier P, Relative contribution of Prevotella intermedia and Pseudomonas aeruginosa to lung pathology in airways of patients with cystic fibrosis. Thorax 2010;65(11):978-84
  • Wagner VE, Bushnell D, Passador L, Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 2003;185(7):2080-95
  • Filiatrault MJ, Picardo KF, Ngai H, Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth. Infect Immun 2006;74(7):4237-45
  • Filiatrault MJ, Wagner VE, Bushnell D, Effect of anaerobiosis and nitrate on gene expression in Pseudomonas aeruginosa. Infect Immun 2005;73(6):3764-72
  • Gambello MJ, Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transciptional activator of elastase expression. J. Bacteriol 1991;173:3000-9
  • Passador L, Cook JM, Gambello MJ, Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 1993;260:1127-30
  • Ganguly K, Wu R, Ollivault-Shiflett M, Design, synthesis, and a novel application of quorum-sensing agonists as potential drug-delivery vehicles. J Drug Target 2011;19(7):528-39
  • Hoffman LR, Richardson AR, Houston LS, Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog 2010;6(1):e1000712
  • Lee KM, Go J, Yoon MY, Vitamin B12-mediated restoration of defective anaerobic growth leads to reduced biofilm formation in Pseudomonas aeruginosa. Infect Immun 2012;80(5):1639-49
  • Yoon MY, Lee KM, Park Y, Yoon SS. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS One 2011;6(1):e16105
  • Platt MD, Schurr MJ, Sauer K, Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. J Bacteriol 2008;190(8):2739-58
  • Lee KM, Yoon MY, Park Y, Anaerobiosis-induced loss of cytotoxicity is due to inactivation of quorum sensing in Pseudomonas aeruginosa. Infect Immun 2011;79(7):2792-800
  • Fuchs S, Pane-Farre J, Kohler C, Anaerobic gene expression in Staphylococcus aureus. J Bacteriol 2007;189(11):4275-89
  • Yarwood JM, Schlievert PM. Oxygen and carbon dioxide regulation of toxic shock syndrome toxin 1 production by Staphylococcus aureus MN8. J Clin Microbiol 2000;38(5):1797-803
  • Govan JRW, Fyfe JAM. Mucoid Pseudomonas aeruginosa and cystic fibrosis: resistance of the mucoid form to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro. J. Antimicrob. Chemother 1978;4:233-40
  • Henry RL, Mellis CM, Petrovic L. Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol 1992;12(3):158-61
  • Leid JG, Willson CJ, Shirtliff ME, The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 2005;175(11):7512-18
  • Meluleni GJ, Grout M, Evans DJ, Pier GB. Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J Immunol 1995;155(4):2029-38
  • Pedersen SS. Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS Suppl 1992;28:1-79
  • Pedersen SS, Kharazmi A, Espersen F, Høiby N. Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect. Immun 1990;58:3363-8
  • Govan JRW, Harris GS. Pseudomonas aeruginosa and cystic fibrosis: unusual bacterial adaptation and pathogenesis. Microbiol Sci 1986;3:302-8
  • Marcus H, Baker NR. Quantitation of adherence of mucoid and nonmucoid Pseudomonas aeruginosa to hamster tracheal epithelium. Infect Immun 1985;47:723-9
  • Ramphal R, Guay C, Pier GB. Pseudomonas aeruginosa adhesins for tracheobronchial mucin. Infect. Immun 1987;55:600-3
  • Ramphal R, Pier GB. Role of Pseudomonas aeruginosa mucoid exopolysaccharide in adherence to tracheal cells. Infect. Immun 1985;47:1-4
  • Martin DW, Schurr MJ, Mudd MH, Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci USA 1993;90(18):8377-81
  • Anwar H, Dasgupta M, Lam K, Costerton JW. Tobramycin resistance of mucoid Pseudomonas aeruginosa biofilm grown under iron limitation. J Antimicrob Chemother 1989;24(5):647-55
  • Yoon SS, Coakley R, Lau GW, Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions. J. Clin. Invest 2006;116:436-46
  • Coakley RD, Grubb BR, Paradiso AM, Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci USA 2003;100(26):16083-8
  • Major TA, Panmanee W, Mortensen JE, Sodium nitrite-mediated killing of the major cystic fibrosis pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia under anaerobic planktonic and biofilm conditions. Antimicrob Agents Chemother 2010;54(11):4671-7
  • Nakayama K, Takashima K, Ishihara H, The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 2000;38(2):213-31
  • Whiteley M, Lee KM, Greenberg EP. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci 1999;96:13904-9
  • Barraud N, Schleheck D, Klebensberger J, Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 2006;188(21):7344-53
  • Barraud N, Schleheck D, Klebensberger J, Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 2009;191(23):7333-42
  • Barraud N, Storey MV, Moore ZP, Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol 2009;2(3):370-8
  • Webb JS, Lau M, Kjelleberg S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 2004;186(23):8066-73
  • Chang W, Small DA, Toghrol F, Bentley WE. Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 2005;6:115
  • Waite RD, Curtis MA. Pseudomonas aeruginosa PAO1 pyocin production affects population dynamics within mixed-culture biofilms. J Bacteriol 2009;191(4):1349-54
  • Beckman JS, Beckman TW, Chen J, Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87(4):1620-4
  • Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271(5 Pt 1):C1424-37
  • Jones-Carson J, Laughlin J, Hamad MA, Inactivation of [Fe-S] metalloproteins mediates nitric oxide-dependent killing of Burkholderia mallei. PLoS One 2008;3(4):e1976
  • Zaman K, McPherson M, Vaughan J, S-nitrosoglutathione increases cystic fibrosis transmembrane regulator maturation. Biochem Biophys Res Commun 2001;284(1):65-70
  • Brook I, Fink R. Transtracheal aspiration in pulmonary infection in children with cystic fibrosis. Eur J Respir Dis 1983;64(1):51-7
  • Thomassen MJ, Klinger JD, Badger SJ, Cultures of thoracotomy specimens confirm usefulness of sputum cultures in cystic fibrosis. J Pediatrics 1984;104:352-6
  • Jewes LA, Spencer RC. The incidence of anaerobes in the sputum of patients with cystic fibrosis. J Med Microbiol 1990;31(4):271-4
  • Rogers GB, Hart CA, Mason JR, Bacterial diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) length heterogeneity PCR and 16S rDNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 2003;41(8):3548-58
  • Rogers GB, Carroll MP, Serisier DJ, characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16s ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 2004;42(11):5176-83
  • Harris JK, De Groote MA, Sagel SD, Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci USA 2007;104(51):20529-33
  • Tunney MM, Field TR, Moriarty TF, Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med 2008;177(9):995-1001
  • Bittar F, Richet H, Dubus JC, Molecular detection of multiple emerging pathogens in sputa from cystic fibrosis patients. PLoS One 2008;3(8):e2908
  • Worlitzsch D, Rintelen C, Bohm K, Antibiotic-resistant obligate anaerobes during exacerbations of cystic fibrosis patients. Clin Microbiol Infect 2009;15(5):454-60
  • Sibley CD, Grinwis ME, Field TR, Culture enriched molecular profiling of the cystic fibrosis airway microbiome. PLoS One 2011;6(7):e22702
  • Guss AM, Roeselers G, Newton IL, Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J 2011;5(1):20-9
  • Tunney MM, Klem ER, Fodor AA, Use of culture and molecular analysis to determine the effect of antibiotic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis. Thorax 2011;66(7):579-84
  • van der Gast CJ, Walker AW, Stressmann FA, Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. Isme J 2011;5:780-91
  • Hassett DJ, Cuppoletti J, Trapnell B, Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev 2002;54(11):1425-43
  • Goldberg JB, Ohman DE. Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol 1984;158:1115-21
  • O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998;30:295-304
  • Jones AK, Fulcher NB, Balzer GJ, Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. J Bacteriol 2010;192(21):5709-17

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.