1,023
Views
73
CrossRef citations to date
0
Altmetric
Reviews

The SOX family of genes in cancer development: biological relevance and opportunities for therapy

, PhD & , PhD
Pages 903-919 | Published online: 26 Jul 2012

Bibliography

  • Sinclair AH, Berta P, Palmer MS, A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990;346:240-4
  • Kelly M, Burke J, Smith M, Four mating-type genes control sexual differentiation in the fission yeast. EMBO J 1988;7:1537-47
  • Jantzen HM, Admon A, Bell SP, Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 1990;344:830-6
  • van de Wetering M, Oosterwegel M, Dooijes D, Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 1991;10:123-32
  • Harley VR, Jackson DI, Hextall PJ, DNA binding activity of recombinant SRY from normal males and XY females. Science 1992;255:453-6
  • van de Wetering M, Oosterwegel M, van Norren K, Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J 1993;12:3847-54
  • Schepers GE, Teasdale RD, Koopman P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 2002;3:167-70
  • King N, Westbrook MJ, Young SL, The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 2008;451:783-8
  • Force A, Lynch M, Pickett FB, Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999;151:1531-45
  • Guth SI, Wegner M. Having it both ways: sox protein function between conservation and innovation. Cell Mol Life Sci 2008;65:3000-18
  • Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization. Genetics 2000;154:459-73
  • Kiefer JC. Back to basics: sox genes. Dev Dyn 2007;236:2356-66
  • Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 2000;227:239-55
  • Mertin S, McDowall SG, Harley VR. The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Res 1999;27:1359-64
  • Lefebvre V, Dumitriu B, Penzo-Mendez A, Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 2007;39:2195-214
  • Koopman P, Gubbay J, Vivian N, Male development of chromosomally female mice transgenic for Sry. Nature 1991;351:117-21
  • Wagner T, Wirth J, Meyer J, Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994;79:1111-20
  • Chaboissier MC, Kobayashi A, Vidal VI, Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 2004;131:1891-901
  • Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 2008;453:930-4
  • Koopman P. Sex determination: a tale of two Sox genes. Trends Genet 2005;21:367-70
  • Weiss J, Meeks JJ, Hurley L, Sox3 is required for gonadal function, but not sex determination, in males and females. Mol Cell Biol 2003;23:8084-91
  • Sutton E, Hughes J, White S, Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest 2011;121:328-41
  • Laumonnier F, Ronce N, Hamel BC, Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am J Hum Genet 2002;71:1450-5
  • Rizzoti K, Brunelli S, Carmignac D, SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet 2004;36:247-55
  • Bylund M, Andersson E, Novitch BG, Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 2003;6:1162-8
  • Ferri AL, Cavallaro M, Braida D, Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 2004;131:3805-19
  • Sandberg M, Kallstrom M, Muhr J. Sox21 promotes the progression of vertebrate neurogenesis. Nat Neurosci 2005;8:995-1001
  • Bhattaram P, Penzo-Mendez A, Sock E, Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat Commun 2010;1:9
  • Bergsland M, Werme M, Malewicz M, The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev 2006;20:3475-86
  • Bergsland M, Ramskold D, Zaouter C, Sequentially acting Sox transcription factors in neural lineage development. Genes Dev 2011;25:2453-64
  • Stolt CC, Schlierf A, Lommes P, SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell 2006;11:697-709
  • Potzner MR, Griffel C, Lutjen-Drecoll E, Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system. Mol Cell Biol 2007;27:5316-26
  • Huang X, Saint-Jeannet JP. Induction of the neural crest and the opportunities of life on the edge. Dev Biol 2004;275:1-11
  • Mollaaghababa R, Pavan WJ. The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene 2003;22:3024-34
  • Kim J, Lo L, Dormand E, SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 2003;38:17-31
  • Bondurand N, Pingault V, Goerich DE, Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet 2000;9:1907-17
  • Lang D, Epstein JA. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet 2003;12:937-45
  • Hong CS, Saint-Jeannet JP. Sox proteins and neural crest development. Semin Cell Dev Biol 2005;16:694-703
  • Kellerer S, Schreiner S, Stolt CC, Replacement of the Sox10 transcription factor by Sox8 reveals incomplete functional equivalence. Development 2006;133:2875-86
  • Arduini BL, Bosse KM, Henion PD. Genetic ablation of neural crest cell diversification. Development 2009;136:1987-94
  • Schilham MW, Oosterwegel MA, Moerer P, Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 1996;380:711-14
  • Ya J, Schilham MW, de Boer PA, Sox4-deficiency syndrome in mice is an animal model for common trunk. Circ Res 1998;83:986-94
  • Sock E, Rettig SD, Enderich J, Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol 2004;24:6635-44
  • Avilion AA, Nicolis SK, Pevny LH, Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003;17:126-40
  • Basu-Roy U, Ambrosetti D, Favaro R, The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ 2010;17:1345-53
  • Mansukhani A, Ambrosetti D, Holmes G, Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol 2005;168:1065-76
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76
  • Ragge NK, Lorenz B, Schneider A, SOX2 anophthalmia syndrome. Am J Med Genet A 2005;135:1-7; discussion 8
  • Schafer AJ, Foster JW, Kwok C, Campomelic dysplasia with XY sex reversal: diverse phenotypes resulting from mutations in a single gene. Ann NY Acad Sci 1996;785:137-49
  • Bi W, Huang W, Whitworth DJ, Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci USA 2001;98:6698-703
  • Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 1998;17:5718-33
  • Schmidt K, Schinke T, Haberland M, The high mobility group transcription factor Sox8 is a negative regulator of osteoblast differentiation. J Cell Biol 2005;168:899-910
  • Melichar HJ, Narayan K, Der SD, Regulation of gammadelta versus alphabeta T lymphocyte differentiation by the transcription factor SOX13. Science 2007;315:230-3
  • Yi Z, Cohen-Barak O, Hagiwara N, Sox6 directly silences epsilon globin expression in definitive erythropoiesis. PLoS Genet 2006;2:e14
  • Garraway LA, Sellers WR. Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 2006;6:593-602
  • Dong C, Wilhelm D, Koopman P. Sox genes and cancer. Cytogenet Genome Res 2004;105:442-7
  • Visvader JE. Cells of origin in cancer. Nature 2011;469:314-22
  • Ben-Porath I, Thomson MW, Carey VJ, An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008;40:499-507
  • Lengerke C, Fehm T, Kurth R, Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer 2011;11:42
  • Saigusa S, Tanaka K, Toiyama Y, Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol 2009;16:3488-98
  • Rodriguez-Pinilla SM, Sarrio D, Moreno-Bueno G, Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Mod Pathol 2007;20:474-81
  • Phi JH, Park SH, Kim SK, Sox2 expression in brain tumors: a reflection of the neuroglial differentiation pathway. Am J Surg Pathol 2008;32:103-12
  • Gangemi RM, Griffero F, Marubbi D, SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 2009;27:40-8
  • Jeon HM, Sohn YW, Oh SY, ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res 2011;71:3410-21
  • Ikushima H, Todo T, Ino Y, Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 2009;5:504-14
  • Castillo SD, Matheu A, Mariani N, Novel transcriptional targets of the SRY-HMG box transcription factor SOX4 link its expression to the development of small cell lung cancer. Cancer Res 2012;72:176-86
  • Sattler HP, Lensch R, Rohde V, Novel amplification unit at chromosome 3q25-q27 in human prostate cancer. Prostate 2000;45:207-15
  • Bass AJ, Watanabe H, Mermel CH, SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 2009;41:1238-42
  • Hussenet T, Dali S, Exinger J, SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One 2010;5:e8960
  • Maier S, Wilbertz T, Braun M, SOX2 amplification is a common event in squamous cell carcinomas of different organ sites. Hum Pathol 2011;42:1078-88
  • Sarkaria I, O-Charoenrat P, Talbot SG, Squamous cell carcinoma related oncogene/DCUN1D1 is highly conserved and activated by amplification in squamous cell carcinomas. Cancer Res 2006;66:9437-44
  • Angulo B, Suarez-Gauthier A, Lopez-Rios F, Expression signatures in lung cancer reveal a profile for EGFR-mutant tumours and identify selective PIK3CA overexpression by gene amplification. J Pathol 2008;214:347-56
  • Beroukhim R, Mermel CH, Porter D, The landscape of somatic copy-number alteration across human cancers. Nature 2010;463:899-905
  • Riggi N, Suva ML, De Vito C, EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing's sarcoma cancer stem cells. Genes Dev 2010;24:916-32
  • Wellner U, Schubert J, Burk UC, The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009;11:1487-95
  • Otsubo T, Akiyama Y, Hashimoto Y, MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS One 2011;6:e16617
  • Chapman CJ, Thorpe AJ, Murray A, Immunobiomarkers in small cell lung cancer: potential early cancer signals. Clin Cancer Res 2011;17:1474-80
  • de Jong J, Stoop H, Gillis AJ, Differential expression of SOX17 and SOX2 in germ cells and stem cells has biological and clinical implications. J Pathol 2008;215:21-30
  • Xia Y, Papalopulu N, Vogt PK, The oncogenic potential of the high mobility group box protein Sox3. Cancer Res 2000;60:6303-6
  • Kim R, Trubetskoy A, Suzuki T, Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J Virol 2003;77:2056-62
  • Acloque H, Ocana OH, Matheu A, Reciprocal repression between Sox3 and snail transcription factors defines embryonic territories at gastrulation. Dev Cell 2011;21:546-58
  • Rhodes DR, Yu J, Shanker K, Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA 2004;101:9309-14
  • Shin MS, Fredrickson TN, Hartley JW, High-throughput retroviral tagging for identification of genes involved in initiation and progression of mouse splenic marginal zone lymphomas. Cancer Res 2004;64:4419-27
  • Suzuki T, Shen H, Akagi K, New genes involved in cancer identified by retroviral tagging. Nat Genet 2002;32:166-74
  • Aue G, Du Y, Cleveland SM, Sox4 cooperates with PU.1 haploinsufficiency in murine myeloid leukemia. Blood 2011;118:4674-81
  • Evans AJ, Gallie BL, Jewett MA, Defining a 0.5-mb region of genomic gain on chromosome 6p22 in bladder cancer by quantitative-multiplex polymerase chain reaction. Am J Pathol 2004;164:285-93
  • Wu Q, Hoffmann MJ, Hartmann FH, Amplification and overexpression of the ID4 gene at 6p22.3 in bladder cancer. Mol Cancer 2005;4:16
  • Aaboe M, Birkenkamp-Demtroder K, Wiuf C, SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res 2006;66:3434-42
  • Medina PP, Castillo SD, Blanco S, The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer. Hum Mol Genet 2009;18:1343-52
  • Friedman RS, Bangur CS, Zasloff EJ, Molecular and immunological evaluation of the transcription factor SOX-4 as a lung tumor vaccine antigen. J Immunol 2004;172:3319-27
  • Reymann S, Borlak J. Transcription profiling of lung adenocarcinomas of c-myc-transgenic mice: identification of the c-myc regulatory gene network. BMC Syst Biol 2008;2:46
  • Andersen CL, Christensen LL, Thorsen K, Dysregulation of the transcription factors SOX4, CBFB and SMARCC1 correlates with outcome of colorectal cancer. Br J Cancer 2009;100:511-23
  • Sinner D, Kordich JJ, Spence JR, Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol 2007;27:7802-15
  • Liu P, Ramachandran S, Ali Seyed M, Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res 2006;66:4011-19
  • Pramoonjago P, Baras AS, Moskaluk CA. Knockdown of Sox4 expression by RNAi induces apoptosis in ACC3 cells. Oncogene 2006;25:5626-39
  • Lee CJ, Appleby VJ, Orme AT, Differential expression of SOX4 and SOX11 in medulloblastoma. J Neurooncol 2002;57:201-14
  • Molatore S, Liyanarachchi S, Irmler M, Pheochromocytoma in rats with multiple endocrine neoplasia (MENX) shares gene expression patterns with human pheochromocytoma. Proc Natl Acad Sci USA 2010;107:18493-8
  • Beekman JM, Vervoort SJ, Dekkers F, Syntenin-mediated regulation of Sox4 proteasomal degradation modulates transcriptional output. Oncogene 2012;31:2668-79
  • Dyrskjot L, Ostenfeld MS, Bramsen JB, Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res 2009;69:4851-60
  • Huang YW, Liu JC, Deatherage DE, Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res 2009;69:9038-46
  • Shen R, Pan S, Qi S, Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun 2010;394:1047-52
  • Tavazoie SF, Alarcon C, Oskarsson T, Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008;451:147-52
  • Liao YL, Sun YM, Chau GY, Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene 2008;27:5578-89
  • Scharer CD, McCabe CD, Ali-Seyed M, Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res 2009;69:709-17
  • Kormish JD, Sinner D, Zorn AM. Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease. Dev Dyn 2010;239:56-68
  • Pan X, Zhao J, Zhang WN, Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci USA 2009;106:3788-93
  • Jafarnejad SM, Wani AA, Martinka M, Prognostic significance of Sox4 expression in human cutaneous melanoma and its role in cell migration and invasion. Am J Pathol 2010;177:2741-52
  • Carvajal-Cuenca A, Sua LF, Silva NM, In situ mantle cell lymphoma: clinical implications of an incidental finding with indolent clinical behavior. Haematologica 2012;97:270-8
  • Ek S, Dictor M, Jerkeman M, Nuclear expression of the non B-cell lineage Sox11 transcription factor identifies mantle cell lymphoma. Blood 2008;111:800-5
  • Weigle B, Ebner R, Temme A, Highly specific overexpression of the transcription factor SOX11 in human malignant gliomas. Oncol Rep 2005;13:139-44
  • Hide T, Takezaki T, Nakatani Y, Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation. Cancer Res 2009;69:7953-9
  • Matheu A, Collado M, Wise C, Oncogenicity of the developmental transcription factor Sox9. Cancer Res 2012;72:1301-15
  • Guo W, Keckesova Z, Donaher JL, Slug and sox9 cooperatively determine the mammary stem cell state. Cell 2012;148:1015-28
  • Swartling FJ, Savov V, Persson AI, Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 2012;21:601-13
  • Muller P, Crofts JD, Newman BS, SOX9 mediates the retinoic acid-induced HES-1 gene expression in human breast cancer cells. Breast Cancer Res Treat 2010;120:317-26
  • Passeron T, Valencia JC, Namiki T, Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. J Clin Invest 2009;119:954-63
  • Bakos RM, Maier T, Besch R, Nestin and SOX9 and SOX10 transcription factors are coexpressed in melanoma. Exp Dermatol 2010;19:e89-94
  • Jiang SS, Fang WT, Hou YH, Upregulation of SOX9 in lung adenocarcinoma and its involvement in the regulation of cell growth and tumorigenicity. Clin Cancer Res 2010;16:4363-73
  • Zhou CH, Ye LP, Ye SX, Clinical significance of SOX9 in human non-small cell lung cancer progression and overall patient survival. J Exp Clin Cancer Res 2012;31:18
  • Kordes U, Hagel C. Expression of SOX9 and SOX10 in central neuroepithelial tumor. J Neurooncol 2006;80:151-5
  • Miller SJ, Jessen WJ, Mehta T, Integrative genomic analyses of neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO Mol Med 2009;1:236-48
  • Sutter R, Shakhova O, Bhagat H, Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas. Oncogene 2010;29:1845-56
  • Swartling FJ, Ferletta M, Kastemar M, Cyclic GMP-dependent protein kinase II inhibits cell proliferation, Sox9 expression and Akt phosphorylation in human glioma cell lines. Oncogene 2009;28:3121-31
  • Acevedo VD, Gangula RD, Freeman KW, Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 2007;12:559-71
  • Thomsen MK, Ambroisine L, Wynn S, SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation. Cancer Res 2010;70:979-87
  • Drivdahl R, Haugk KH, Sprenger CC, Suppression of growth and tumorigenicity in the prostate tumor cell line M12 by overexpression of the transcription factor SOX9. Oncogene 2004;23:4584-93
  • Eberl M, Klingler S, Mangelberger D, Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells. EMBO Mol Med 2012;4:218-33
  • Vidal VP, Ortonne N, Schedl A. SOX9 expression is a general marker of basal cell carcinoma and adnexal-related neoplasms. J Cutan Pathol 2008;35:373-9
  • Aleman A, Adrien L, Lopez-Serra L, Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays. Br J Cancer 2008;98:466-73
  • Ling S, Chang X, Schultz L, An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer Res 2011;71:3812-21
  • Malki S, Bibeau F, Notarnicola C, Expression and biological role of the prostaglandin D synthase/SOX9 pathway in human ovarian cancer cells. Cancer Lett 2007;255:182-93
  • Sashikawa Kimura M, Mutoh H, Sugano K. SOX9 is expressed in normal stomach, intestinal metaplasia, and gastric carcinoma in humans. J Gastroenterol 2011;46:1292-9
  • Dimova I, Orsetti B, Negre V, Genomic markers for ovarian cancer at chromosomes 1, 8 and 17 revealed by array CGH analysis. Tumori 2009;95:357-66
  • Lothe RA, Karhu R, Mandahl N, Gain of 17q24-qter detected by comparative genomic hybridization in malignant tumors from patients with von Recklinghausen's neurofibromatosis. Cancer Res 1996;56:4778-81
  • Orsetti B, Courjal F, Cuny M, 17q21-q25 aberrations in breast cancer: combined allelotyping and CGH analysis reveals 5 regions of allelic imbalance among which two correspond to DNA amplification. Oncogene 1999;18:6262-70
  • Pezzolo A, Coco S, Raso A, Loss of 10q26.1-q26.3 in association with 7q34-q36.3 gain or 17q24.3-q25.3 gain predict poor outcome in pediatric medulloblastoma. Cancer Lett 2011;308:215-24
  • Sun J, Purcell L, Gao Z, Association between sequence variants at 17q12 and 17q24.3 and prostate cancer risk in European and African Americans. Prostate 2008;68:691-7
  • Harris ML, Baxter LL, Loftus SK, Sox proteins in melanocyte development and melanoma. Pigment Cell Melanoma Res 2010;23:496-513
  • Hoek KS, Eichhoff OM, Schlegel NC, In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 2008;68:650-6
  • Hoek KS, Schlegel NC, Brafford P, Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res 2006;19:290-302
  • Cronin JC, Wunderlich J, Loftus SK, Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res 2009;22:435-44
  • Du YC, Oshima H, Oguma K, Induction and down-regulation of Sox17 and its possible roles during the course of gastrointestinal tumorigenesis. Gastroenterology 2009;137:1346-57
  • Jia Y, Yang Y, Liu S, SOX17 antagonizes WNT/beta-catenin signaling pathway in hepatocellular carcinoma. Epigenetics 2010;5:743-9
  • Zhang W, Glockner SC, Guo M, Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Res 2008;68:2764-72
  • Druker BJ, Tamura S, Buchdunger E, Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996;2:561-6
  • Lord CJ, Ashworth A. Biology-driven cancer drug development: back to the future. BMC Biol 2010;8:38
  • Garnett MJ, Edelman EJ, Heidorn SJ, Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012;483:570-5
  • Weinstein IB, Joe A. Oncogene addiction. Cancer Res 2008;68:3077-80; discussion 80
  • Enever C, Batuwangala T, Plummer C, Next generation immunotherapeutics–honing the magic bullet. Curr Opin Biotechnol 2009;20:405-11
  • Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009;457:426-33
  • Kim SS, Garg H, Joshi A, Strategies for targeted nonviral delivery of siRNAs in vivo. Trends Mol Med 2009;15:491-500
  • Morris MJ, Tong WP, Cordon-Cardo C, Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 2002;8:679-83
  • Seo E, Basu-Roy U, Zavadil J, Distinct functions of Sox2 control self-renewal and differentiation in the osteoblast lineage. Mol Cell Biol 2012;31:4593-608
  • Cao L, Bombard J, Cintron K, BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 2011;112:2729-41
  • Wang Y, Engels IH, Knee DA, Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer Cell 2004;5:501-12
  • Bowles J, Cooper L, Berkman J, Sry requires a CAG repeat domain for male sex determination in Mus musculus. Nat Genet 1999;22:405-8
  • Nishiguchi S, Wood H, Kondoh H, Sox1 directly regulates the gamma-crystalline genes and is essential for lens development in mice. Genes Dev 1998;12:776-81
  • Kelberman D, Rizzoti K, Avilion A, Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Invest 2006;116:2442-55
  • Kiso M, Tanaka S, Saba R, The disruption of Sox21-mediated hair shaft cuticle differentiation causes cyclic alopecia in mice. Proc Natl Acad Sci USA 2009;106:9292-7
  • Hoser M, Potzner MR, Koch JM, Sox12 deletion in the mouse reveals nonreciprocal redundancy with the related Sox4 and Sox11 transcription factors. Mol Cell Biol 2008;28:4675-87
  • Smits P, Li P, Mandel J, The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell 2001;1:277-90
  • Sock E, Schmidt K, Hermanns-Borgmeyer I, Idiopathic weight reduction in mice deficient in the high-mobility-group transcription factor Sox8. Mol Cell Biol 2001;21:6951-9
  • Akiyama H, Chaboissier MC, Martin JF, The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002;16:2813-28
  • Stolt CC, Lommes P, Sock E, The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 2003;17:1677-89
  • Vidal VP, Chaboissier MC, de Rooij DG, Sox9 induces testis development in XX transgenic mice. Nat Genet 2001;28:216-17
  • Paratore C, Eichenberger C, Suter U, Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum Mol Genet 2002;11:3075-85
  • Polanco JC, Wilhelm D, Davidson TL, Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development. Hum Mol Genet 2010;19:506-16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.