879
Views
37
CrossRef citations to date
0
Altmetric
Reviews

RET inhibition: implications in cancer therapy

, Biol Sci D PhD, , Biol Sci D PhD, , MD, , Biol Sci D PhD, , MD & , Biol Sci D PhD
Pages 403-419 | Published online: 06 Mar 2013

Bibliography

  • Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 1985;42:581-8
  • Takahashi M, Buma Y, Iwamoto T, Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 1988;3:571-8
  • Takahashi M, Buma Y, Hiai H. Isolation of Ret proto-oncogene cDNA with an amino-terminal signal sequence. Oncogene 1989;4:805-6
  • Fusco A, Grieco M, Santoro M, A new oncogene in human papillary thyroid carcinomas and their lymph-nodal metastases. Nature 1987;328:170-2
  • Grieco M, Santoro M, Berlingieri MT, PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990;60:557-63
  • Ju YS, Lee WC, Shin JY, A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012;22:436-45
  • Kohno T, Ichikawa H, Totoki Y, KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012;18:375-7
  • Takeuchi K, Soda M, Togashi Y, RET, ROS1 and ALK fusions in lung cancer. Nat Med 2012;18:378-81
  • Lipson D, Capelletti M, Yelensky R, Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012;18:382-4
  • Li F, Feng Y, Fang R, Identification of RET gene fusion by exon array analyses in “pan-negative” lung cancer from never smokers. Cell Res 2012;22:928-31
  • Ishizaka Y, Itoh F, Tahira T, Human RET proto-oncogene mapped to chromosome 10q11.2. Oncogene 1989;4:1519-21
  • Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 2005;16:441-67
  • Carter MT, Yome JL, Marcil MN, Conservation of RET proto-oncogene splicing variants and implications for RET isoform function. Cytogenet Cell Genet 2001;95:169-76
  • Tsui-Pierchala BA, Ahrens RC, Crowder RJ, The long and short isoforms of Ret function as independent signaling complexes. J Biol Chem 2002;277:34618-25
  • Borrello MG, Mercalli E, Perego C, Differential interaction of Enigma protein with the two RET isoforms. Biochem Biophys Res Commun 2002;296(3):515-22
  • Degl'Innocenti D, Arighi E, Popsueva A, Differential requirement of Tyr1062 multidocking site by RET isoforms to promote neural cell scatering and epithelial cell branching. Oncogene 2004;23:7297-309
  • Schuetz G, Rosario M, Grimm J, The neuronal scaffold protein Shank3 mediates signaling and biological function of the receptor tyrosine kinase Ret in epithelial cells. J Cell Biol 2004;167:945-52
  • Scott RP, Eketjall S, Aineskog H, Ibanez CF. Distinct turnover of alternatively spliced isoforms of the RET kinase receptor mediated by differential recruitment of the Cbl ubiquitin ligase. J Biol Chem 2005;280:13442-9
  • Rossel M, Pasini A, Chappuis S, Distinct biological properties of two RET isoforms activated by MEN 2A and MEN 2B mutations. Oncogene 1997;14:265-75
  • Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J. The GDNF family ligands and receptors – implications for neural development. Curr Opin Neurobiol 2000;10:103-10
  • Coulpier M, Anders J, Ibanez CF. Coordinated activation of autophosphorylation sites in the RET receptor tyrosine kinase: importance of tyrosine 1062 for GDNF mediated neuronal differentiation and survival. J Biol Chem 2002;277:1991-9
  • Liu X, Vega QC, Decker RA, Oncogenic RET receptors display different autophosphorylation sites and substrate binding specificities. J Biol Chem 1996;271:5309-12
  • Xing S, Furminger TL, Tong Q, Jhiang SM. Signal transduction pathways activated by RET oncoproteins in PC12 pheochromocytoma cells. J Biol Chem 1998;273:4909-14
  • Salvatore D, Barone MV, Salvatore G, Tyrosines 1015 and 1062 are in vivo autophosphorylation sites in ret and ret-derived oncoproteins. J Clin Endocrinol Metab 2000;85:3898-907
  • Kawamoto Y, Takeda K, Okuno Y, Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem 2004;279:14213-24
  • Iwashita T, Asai N, Murakami H, Identification of tyrosine residues that are essential for transforming activity of the RET proto-oncogene with MEN2A or MEN2B mutation. Oncogene 1996;12:481-7
  • Santoro M, Carlomagno F, Melillo RM, Fusco A. Dysfunction of the RET receptor in human cancer. Cell Mol Life Sci 2004;61:2954-64
  • Durick K, Wu RY, Gill GN, Taylor SS. Mitogenic signaling by Ret/ptc2 requires association with enigma via a LIM domain. J Biol Chem 1996;271:12691-4
  • Trupp M, Scott R, Whittemore SR, Ibanez CF. RET-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J Biol Chem 1999;274:20885-94
  • Santoro M, Wong WT, Aroca P, An epidermal growth factor receptor-ret chimera generates mitogenic and transforming signals: evidence for a ret-specific signaling pathway. Mol Cell Biol 1994;14:663-75
  • van Weering DHJ, Medema JP, van Puijenbroek A, Ret receptor tyrosine kinase activates extracellular signal-regulated kinase 2 in SK-N-MC cells. Oncogene 1995;11:2207-14
  • Worby CA, Vega QC, Zhao Y, Glial cell line-derived neurotrophic factor signals through the RET receptor and activates mitogen-activated protein kinase. J Biol Chem 1996;271:23619-22
  • van Weering DHJ, Bos JL. Glial cell line-derived neurotrophic factor induces Ret-mediated lamellipodia formation. J Biol Chem 1997;272:249-54
  • Segouffin-Cariou C, Billaud M. Transforming ability of MEN2A-RET requires activation of the phosphatidylinositol 3-kinase/AKT signaling pathway. J Biol Chem 2000;275:3568-76
  • Maeda K, Murakami H, Yoshida R, Biochemical and biological responses induced by coupling of Gab1 to phosphatidylinositol 3-kinase in RET-expressing cells. Biochem Biophys Res Commun 2004;323:345-54
  • Iavarone C, Acunzo M, Carlomagno F, Activation of the Erk8 mitogen-activated protein (MAP) kinase by RET/PTC3, a constitutively active form of the RET proto-oncogene. J Biol Chem 2006;281:10567-76
  • Hayashi H, Ichihara M, Iwashita T, Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene 2000;14:4469-75
  • Morandi A, Plaza-Menacho I, Isacke CM. RET in breast cancer: functional and therapeutic implications. Trends Mol Med 2011;17:149-57
  • Borrello MG, Alberti L, Fischer A, Induction of a proinflammatory programme in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci USA 2005;102:14825-30
  • Menicali E, Moretti S, Voce P, Intracellular signal transduction and modification of the tumor microenvironment induced by RET/PTCs in papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2012;3:67
  • Cassinelli G, Favini E, Degl'Innocenti D, RET/PTC1-driven neoplastic transformation and proinvasive phenotype of human thyrocytes involve Met induction and beta-catenin nuclear translocation. Neoplasia 2009;11:10-21
  • Plaza-Menacho I, Morandi A, Mologni L, Focal adhesion kinase (FAK) binds RET kinase via its FERM domain, priming a direct and reciprocal RET-FAK transactivation mechanism. J Biol Chem 2011;286:17292-302
  • Siegel R, Jemal A. Cancer facts and figures. Am Cancer Soc 2012;1-64
  • Delellis RA, Lloyd RV, Heitz PU, Eng C. Pathology and genetics of tumors of endocrine organs. In: World Health Organization classification of tumours. IARC Press; Lyon: 2004
  • Nakachi K, Hayashi T, Hamatani K, Sixty years of follow-up of Hiroshima and Nagasaki survivors: current progress in molecular epidemiology studies. Mutat Res 2008;659:109-17
  • Nikiforov YE. Radiation-induced thyroid cancer: what we have learned from chernobyl. Endocr Pathol 2006;17:307-17
  • Schlumberger M, Sherman SI. Clinical trials for progressive differentiated thyroid cancer: patient selection, study design, and recent advances. Thyroid 2009;19:1393-400
  • Greco A, Borrello MG, Miranda C, Molecular pathology of differentiated thyroid cancer. Q J Nucl Med Mol Imaging 2009;53(5):440-53
  • Viglietto G, Chiappetta G, Martinez-Tello FJ, RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 1995;11:1207-10
  • Jhiang SM, Sagartz JE, Tong Q, Targeted expression of the RET/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 1996;137:375-8
  • Fischer AH, Bond JA, Taysavang P, Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am J Pathol 1998;153:1443-50
  • Sipple JH. The association of pheochromocytoma with carcinoma of the thyroid gland. Am J Med 1961;31:163-6
  • Marx SJ. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat Rev Cancer 2005;5(5):367-75
  • Margraf RL, Crockett DK, Krautscheid PM, Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum Mutat 2009;30(4):548-56
  • Eng C, Clayton D, Schuffenecker I, The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 1996;276:1575-9
  • Santoro M, Carlomagno F, Romano A, Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995;267:381-3
  • Frank-Raue K, Rondot S, Raue F. Molecular genetics and phenomics of RET mutations: impact on prognosis of MTC. Mol Cell Endocrinol 2010;322(1-2):2-7
  • Acton DS, Velthuyzen D, Lips CJ, Hoppener JW. Multiple endocrine neoplasia type 2B mutation in human RET oncogene induces medullary thyroid carcinoma in transgenic mice. Oncogene 2000;19:3121-5
  • Gagel RF, Marx SJ. Multiple endocrine neoplasia. In: Kronenberg HM, Melamed J, Polonsky K, Larsen P, editors. Williams textbook of endocrinology. Saunders, Elsevier Science; Philadelphia: 2008. p. 1705-46
  • Smith-Hicks CL, Sizer KC, Powers JF, C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J 2000;19:612-22
  • Huang SC, Torres-Cruz J, Pack SD, Amplification and overexpression of mutant RET in multiple endocrine neoplasia type 2-associated medullary thyroid carcinoma. J Clin Endocrinol Metab 2003;88:459-63
  • Ye L, Santarpia L, Cote GJ, High resolution array-comparative genomic hybridization profiling reveals deoxyribonucleic acid copy number alterations associated with medullary thyroid carcinoma. J Clin Endocrinol Metab 2008;93:4367-72
  • Moura MM, Cavaco BM, Pinto AE, Leite V. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab 2011;96:E863-8
  • Ciampi R, Mian C, Fugazzola L, Evidence of a low prevalence of ras mutations in a large medullary thyroid cancer series. Thyroid 2012; Epub ahead of print
  • Romei C, Ugolini C, Cosci B, Low prevalence of the somatic M918T RET mutation in micro-medullary thyroid cancer. Thyroid 2012;22:476-81
  • Elisei R, Cosci B, Romei C, Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 2008;93:682-7
  • Brieger J, Weidmann E, Fenchel K, The expression of the Wilms' tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells. Leukemia 1994;8:2138-43
  • Druker BJ, Guilhot F, O'Brien SG, Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006;355:2408-17
  • Sequist LV, Martins RG, Spigel D, First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol 2008;26:2442-9
  • Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol 2011;12:175-80
  • Seo JS, Ju YS, Lee WC, The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res 2012;22:2109-19
  • Ballerini P, Struski S, Cresson C, RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia 2012;26:2384-9
  • Sawai H, Okada Y, Kazanjian K, The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling. Cancer Res 2005;65(24):11536-44
  • Nor JE, Christensen J, Liu J, Up-regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res 2001;61:2183-8
  • Jaroszewski DE, Pockaj BA, DiCaudo DJ, Bite U. The clinical behavior of desmoplastic melanoma. Am J Surg 2001;182:590-5
  • Livestro DP, Muzikansky A, Kaine EM, Biology of desmoplastic melanoma: a case-control comparison with other melanomas. J Clin Oncol 2005;23:6739-46
  • Narita N, Tanemura A, Murali R, Functional RET G691S polymorphism in cutaneous malignant melanoma. Oncogene 2009;28:3058-68
  • Wang C, Mayer JA, Mazumdar A, Brown PH. The rearranged during transfection/papillary thyroid carcinoma tyrosine kinase is an estrogen-dependent gene required for the growth of estrogen receptor positive breast cancer cells. Breast Cancer Res Treat 2012;133:487-500
  • Plaza-Menacho I, Morandi A, Robertson D, Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance. Oncogene 2010;29:4648-57
  • Ardini E, Galvani A. ALK inhibitors, a pharmaceutical perspective. Front Oncol 2012;2:17
  • Manning G, Whyte DB, Martinez R, The protein kinase complement of the human genome. Science 2002;298:1912-34
  • Wedge SR, Ogilvie DJ, Dukes M, ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 2002;62:4645-55
  • Carlomagno F, Vitagliano D, Guida T, ZD64, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 2002;62:7284-90
  • Knowles PP, Murray-Rust J, Kjaer S, Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem 2006;281:33577-87
  • Mologni L. Development of RET kinase inhibitors for targeted cancer therapy. Curr Med Chem 2011;18:162-75
  • Carlomagno F, Guida T, Anaganti S, Disease associated mutations at valine 804 in the RET receptor tyrosine kinase confer resistance to selective kinase inhibitors. Oncogene 2004;23:6056-63
  • Wells SA Jr, Robinson BG, Gagel RF, Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012;30:134-41
  • Leboulleux S, Bastholt L, Krause T, Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol 2012;13:897-905
  • Natale RB, Thongprasert S, Greco FA, Vandetanib versus erlotinib in patients with advanced non-small cell lung cancer (NSCLC) after failure of at least one prior cytotoxic chemotherapy: a randomized, double-blind phase III trial (ZEST). J Clin Oncol 2009;27
  • Lee JS, Hirsh V, Park K, Vandetanib Versus placebo in patients with advanced non-small-cell lung cancer after prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor: a randomized, double-blind phase III trial (ZEPHYR). J Clin Oncol 2012;30:1114-21
  • Herbst RS, Sun Y, Eberhardt WE, Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, phase 3 trial. Lancet Oncol 2010;11:619-26
  • de Boer RH, Arrieta O, Yang CH, Vandetanib plus pemetrexed for the second-line treatment of advanced non-small-cell lung cancer: a randomized, double-blind phase III trial. J Clin Oncol 2011;29:1067-74
  • Wilhelm S, Carter C, Lynch M, Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006;5:835-44
  • Plaza-Menacho I, Mologni L, Sala E, Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J Biol Chem 2007;282:29230-40
  • Carlomagno F, Anaganti S, Guida T, BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 2006;98:326-34
  • Gupta-Abramson V, Troxel AB, Nellore A, Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 2008;26:4714-19
  • Hoftijzer H, Heemstra KA, Morreau H, Beneficial effects of sorafenib on tumor progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur J Endocrinol 2009;161:923-31
  • Lam ET, Ringel MD, Kloos RT, Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol 2010;28:2323-30
  • Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol 2007;25:884-96
  • Kim DW, Jo YS, Jung HS, An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. J Clin Endocrinol Metab 2006;91:4070-6
  • Jeong WJ, Mo JH, Park MW, Sunitinib inhibits papillary thyroid carcinoma with RET/PTC rearrangement but not BRAF mutation. Cancer Biol Ther 2011;12:458-65
  • Faivre S, Delbaldo C, Vera K, Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 2006;24:25-35
  • De Souza AJ, Busaidy N, Zimrin A, Phase II trial of sunitinib in medullary thyroid cancer (MTC). J Clin Oncol 2010;28
  • Zhang Y, Guessous F, Kofman A, XL-184, a MET, VEGFR-2 and RET kinase inhibitor for the treatment of thyroid cancer, glioblastoma multiforme and NSCLC. IDrugs 2010;13:112-21
  • Kurzrock R, Sherman SI, Ball DW, Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol 2011;29:2660-6
  • Schoffski P, Elisei R, Muller S, An international, double-blind, randomized, placebo-controlled phase III trial (EXAM) of cabozantinib (XL184) in medullary carcinoma (MTC) patients (pts) with documented RECIST progression at baseline. J Clin Oncol 2012;30
  • Polverino A, Coxon A, Starnes C, AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res 2006;66:8715-21
  • Coxon A, Bready J, Kaufman S, Anti-tumor activity of motesanib in a medullary thyroid cancer model. J Endocrinol Invest 2012;35:181-90
  • Schlumberger MJ, Elisei R, Bastholt L, Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol 2009;27:3794-801
  • Sherman SI, Wirth LJ, Droz JP, Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 2008;359:31-42
  • Cuccuru G, Lanzi C, Cassinelli G, Cellular effects and antitumor activity of RET inhibitor RPI-1 on MEN2A-associated medullary thyroid carcinoma. J Natl Cancer Inst 2004;96:1006-14
  • Cincinelli R, Cassinelli G, Dallavalle S, Synthesis, modeling, and RET protein kinase inhibitory activity of 3- and 4-substituted beta-carbolin-1-ones. J Med Chem 2008;51:7777-87
  • Carlomagno F, Vitagliano D, Guida T, The kinase inhibitor PP1 blocks tumorigenesis induced by RET oncogenes. Cancer Res 2002;62:1077-82
  • Carniti C, Perego C, Mondellini P, PP1 inhibitor induces degradation of RETMEN2A and RETMEN2B oncoproteins through proteosomal targeting. Cancer Res 2003;63:2234-43
  • Akeno-Stuart N, Croyle M, Knauf JA, The RET kinase inhibitor NVP-AST487 blocks growth and calcitonin gene expression through distinct mechanisms in medullary thyroid cancer cells. Cancer Res 2007;67:6956-64
  • Gerlinger M, Rowan AJ, Horswell S, Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366:883-92
  • Zhu Z, Ciampi R, Nikiforova MN, Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab 2006;91:3603-10
  • Rhoden KJ, Unger K, Salvatore G, RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto's thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab 2006;91:2414-23
  • Houvras Y. Completing the Arc: targeted inhibition of RET in medullary thyroid cancer. J Clin Oncol 2012;30:200-2
  • Herbst RS, Heymach JV, O'Reilly MS, Vandetanib (ZD6474): an orally available receptor tyrosine kinase inhibitor that selectively targets pathways critical for tumor growth and angiogenesis. Expert Opin Investig Drugs 2007;16:239-49
  • Wilhelm S, Carter C, Lynch M, Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006;5:835-44
  • Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol 2007;25:884-96
  • Carr LL, Mankoff DA, Goulart BH, Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res 2010;16:5260-8
  • Cohen EE, Needles BM, Cullen KJ, Phase 2 tudy of sunitinib in refractory thyroid cancer. J Clin Oncol 2008;26
  • Yakes FM, Chen J, Tan J, Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 2011;10:2298-308
  • Sherman SI, Wirth LJ, Droz JP, Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 2008;359:31-42

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.