385
Views
11
CrossRef citations to date
0
Altmetric
Reviews

The lectin-like oxidized low-density lipoprotein receptor-1 as therapeutic target for atherosclerosis, inflammatory conditions and longevity

&
Pages 905-919 | Published online: 06 Jun 2013

Bibliography

  • Sawamura T, Kume N, Aoyama T, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 1997;386:73-7
  • Yoshimoto R, Fujita Y, Kakino A, et al. The discovery of LOX-1, its ligands and clinical significance. Cardiovasc Drugs Ther 2011;25:379-91
  • Delneste Y, Magistrelli G, Gauchat J, et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 2002;17:353-62
  • Matushansky I, Hernando E, Socci ND, et al. A developmental model of sarcomagenesis defines a differentiation-based classification for liposarcomas. Am J Pathol 2008;172:1069-80
  • Halvorsen B, Staff AC, Henriksen T, et al. 8-iso-prostaglandin F(2α) increases expression of LOX-1 in JAR cells. Hypertension 2001;37:1184-90
  • Ishikawa M, Ito H, Akiyoshi M, et al. Lectin-like oxidized low-density lipoprotein receptor 1 signal is a potent biomarker and therapeutic target for human rheumatoid arthritis. Arthritis Rheum 2012;64:1024-34
  • Zhang D, Sun L, Zhu H, et al. Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity. Neurochem Int 2012;61:1021-35
  • Kume N, Kita T. Roles of lectin-like oxidized LDL receptor-1 and its soluble forms in atherogenesis. Curr Opin Lipidol 2001;12:419-23
  • Sawamura T, Kakino A, Fujita Y. LOX-1: a multiligand receptor at the crossroads of response to danger signals. Curr Opin Lipidol 2012;23:439-45
  • Balin M, Celik A, Kobat MA, Baydas A. Circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels predict percutaneous coronary intervention-related periprocedural myocardial infarction in stable patients undergoing elective native single-vessel PCI. J Thromb Thrombolysis 2012;34:483-90
  • Balin M, Celik A, Kobat MA. Circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are associated with proximal middle segment of the LAD lesions in patients with stable coronary artery disease. Clin Res Cardiol 2012;101:247-53
  • Samson S, Mundkur L, Kakkar VV. Immune Response to Lipoproteins in Atherosclerosis Cholesterol. 2012;2012:571846
  • WHO. Cardiovascular diseases (CVDs). 2009. Available from: www.who.int/mediacentre/factsheets/fs317/en/index.html
  • Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 1999;340:115-26
  • Ross R. The pathogenesis of atherosclerosis : a perspective for the 1990s. Nature 1993;362:801-9
  • Steinberg D. The LDL modification hypothesis of atherogenesis : an update. J Lipid Res 2009;50(Suppl):S376-81
  • Tabas I, Williams K, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implicationsCirculation. 2007;116:1832-44
  • Twigg MW, Freestone K, Homer-Vanniasinkam S, Ponnambalam S. The LOX-1 scavenger receptor and its implications in the treatment of vascular disease. Cardiol Res Pract 2012;2012:632408
  • Goyal T, Mitra S, Khaidakov M, et al. Current concepts of the role of oxidized LDL receptors in atherosclerosis. Curr Atheroscler Rep 2012;14:150-9
  • Kataoka H, Kume N, Miyamoto S, et al. Expression of lectin like oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation 1999;99:3110-17
  • Li D, Mehta JL. Upregulation of endothelial receptor for oxidized LDL [LOX-1] by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol 2000;20:1116-22
  • Li D, Liu L, Chen H, et al. LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells. Circulation 2003;107:612-17
  • Hu C, Dandapat A, Sun L, et al. Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. J Biol Chem 2008;283:10226-31
  • Mehta JL, Sanada N, Hu CP, et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res 2007;100:1634-42
  • Zhu H, Xia M, Hou M, et al. Ox-LDL plays a dual effect in modulating expression of inflammatory molecules through LOX-1 pathway in human umbilical vein endothelial cells. Front Biosci 2005;10:2585-94
  • Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000;87:840-4
  • Ryoo S, Bhunia A, Chang F, et al. OxLDL-dependent activation of Arginase II is dependent on the LOX-1 receptor and downstream RhoA signaling. Atherosclerosis 2011;214:279-87
  • Morawietz H. LOX-1 and atherosclerosis: proof of concept in LOX-1-knockout mice. Circ Res 2007;100:1534-6
  • Li D, Mehta JL. Antisense to LOX-1 inhibits oxidized LDL mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation 2000;101:2889-95
  • Sugimoto K, Ishibashi T, Sawamura T, et al. LOX-1-MT1-MMP axis is crucial for RhoA and Rac1 activation induced by oxidized low-density lipoprotein in endothelial cells. Cardiovasc Res 2009;84:127-36
  • Inoue K, Arai Y, Kurihara H, et al. Overexpression of lectin-like oxidized low-density lipoprotein receptor-1 induces intramyocardial vasculopathy in apolipoprotein E-null mice. Circ Res 2005;97:176-84
  • Hu C, Dandapat A, Sun L, et al. LOX-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-density lipoprotein receptor knockout mice fed a high-cholesterol diet. Cardiovasc Res 2008;79:287-93
  • Eichhorn B, Muller G, Leuner A, et al. Impaired vascular function in small resistance arteries of LOX-1 overexpressing mice on high-fat diet. Cardiovasc Res 2009;82:493-502
  • White SJ, Sala-Newby GB, Newby AC. Overexpression of scavenger receptor LOX-1 in endothelial cells promotes atherogenesis in the ApoE(-/-) mouse model.Cardiovasc Pathol. 2009;20:369-73
  • Biocca S, Filesi I, Mango R, et al. The splice variant LOXIN inhibits LOX-1 receptor function through hetero-oligomerization. J Mol Cell Cardiol 2008;44:561-70
  • Mango R, Biocca S, del Vecchio F, et al. In vivo and in vitro studies support that a new splicing isoform of OLR1 gene is protective against acute myocardial infarction. Circ Res 2005;97:152-8
  • Chui PC, Guan HP, Lehrke M, Lazar MA. PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. J Clin Invest 2005;115:2244-56
  • Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 2002;95:89-100
  • Tanigawa H, Miura S, Zhang B, et al. Low-density lipoprotein oxidized to various degrees activates ERK1/2 through Lox-1. Atherosclerosis 2006;188:245-50
  • Apostolov EO, Shah SV, Ray D, Basnakian AG. Scavenger receptors of endothelial cells mediate the uptake and cellular proatherogenic effects of carbamylated LDL. Arterioscler Thromb Vasc Biol 2009;29:1622-30
  • Lu J, Yang JH, Burns AR, et al. Mediation of electronegative low-density lipoprotein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ Res 2009;104:619-27
  • Murshid A, Theriault J, Gong J, Calderwood SK. Investigating receptors for extracellular heat shock proteins. Methods Mol Biol 2011;787:289-302
  • Feige JN, Gelman L, Rossi D, et al. The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor - modulator that promotes adipogenesis. J Biol Chem 2007;282:19152-66
  • Lee KA, Hammerle LP, Andrews PS, et al. Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J Biol Chem 2011;286:41530-8
  • Theriault JR, Mambula SS, Sawamura T, et al. Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 2005;579:1951-60
  • Besler C, Heinrich K, Rohrer L, et al. Mechanisms underlying adverse effects of HDL and eNOS-activating pathways in patients with coronary artery diseases. J Clin Invest 2011;121:2693-708
  • Shimaoka T, Kume N, Minami M, et al. LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J Immunol 2001;166:5108-14
  • Campbell LA, Puolakkainen M, Lee A, et al. Chlamydia pneumonia binds to the lectin-like oxidized LDL receptor for infections of endothelial cells. Microbes Infect 2012;14:43-9
  • Yoshida T, Koide N, Mori H, et al. Chlamydia pneumoniae infection enhances lectin-like oxidized low-density lipoprotein receptor (LOX-1) expression on human endothelial cells. FEMS Microbiol Lett 2006;260:17-22
  • Xie J, Zhu H, Guo L, et al. Lectin-like oxidized low-density lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway. J Immunol 2010;185:2306-13
  • Szmitko PE, Wang CH, Weisel RD, et al. New markers of inflammation and endothelial cell activation: part I. Circulation 2003;108:1917-23
  • Verma S, Devaraj S, Jialal I. Is C-reactive protein an innocent bystander or proatherogenic culprit? C-reactive protein promotes atherothrombosis. Circulation 2006;113:2135-50; discussion 2151
  • Martin SJ, Reutelingsperger CP, McGahon AJ, et al. Early redistribution of plasmamembrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 1995;182:1545-56
  • Murphy JE, Tacon D, Tedbury PR, et al. LOX-1 scavenger receptor mediates calcium-dependent recognition of phosphatidylserine and apoptotic cells. Biochem J 2006;393(Pt1):107-15
  • Honjo M, Nakamura K, Yamashiro K, et al. Lectin-like oxidized LDL receptor-1 is a cell-adhesion molecule involved in endotoxin-induced inflammation. Proc Natl Acad Sci USA 2003;100:1274-9
  • Sakamoto N, Ishibashi T, Sugimoto K, et al. Role of LOX-1 in monocyte adhesion-triggered redox, Akt/eNOS and Ca2+ signaling pathways in endothelial cells. J Cell Physiol 2009;220:706-15
  • Mango R, Clementi F, Borgiani P, et al. Association of single nucleotide polymorphisms in the oxidised LDL receptor 1 (OLR1) gene in patients with acute myocardial infarction. J Med Genet 2003;40:933-6
  • Tatsuguchi M, Furutani M, Hinagata J, et al. Oxidized LDL receptor gene (OLR1) is associated with the risk of myocardial infarction. Biochem Biophys Res Commun 2003;303:247-50
  • Biocca S, Falconi M, Filesi I, et al. Functional analysis and molecular dynamics simulation of LOX-1 K167N polymorphism reveal alteration of receptor activity. PLoS One 2009;4:e4648
  • Predazzi IM, Norata GD, Vecchione L, et al. Association between OLR1 K167N SNP and intima media thickness of the common carotid artery in the general population. PLoS One 2012;7:e31086
  • Matsunaga S, Xie Q, Kumano M, et al. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) functions as an oligomer and oligomerization is dependent on receptor density. Exp Cell Res 2007;313:1203-14
  • Xie Q, Matsunaga S, Niimi S, et al. Human lectin-like oxidized low-density lipoprotein receptor-1 functions as a dimer in living cells. DNA Cell Biol 2004;23:111-17
  • Ishigaki T, Ohki I, Oyama T, et al. Purification, cristallization and prelimanary X-ray analysis of the ligand binding domain of human like oxidized low-density lipoprotein receptor 1 (LOX-1). Acta Crystallogr Sect F Struct Biol Cryst Commun 2005;61(Pt 5):524-7
  • Ohki J, Ishigaki T, Oyama T, et al. Crystal structure of human lectin-like, oxidized low-density lipoprotein receptor 1 ligand binding domain and its ligand recognition mode to oxLDL. Structure 2005;13:905-17
  • Murase T, Kume N, Kataoka H, et al. Identification of soluble forms of lectin-like oxidized LDL receptor-1. Arterioscler Thromb Vasc Biol 2000;20:715-20
  • Hayashida K, Kume N, Murase T, et al. Serum soluble lectin-like oxidized low density lipoprotein receptor-1 levels are elevated in acute coronary syndrome: a novel marker for early diagnosis. Circulation 2005;112:812-18
  • Kume N, Mitsuoka H, Hayashida K, et al. Soluble lectin-like oxidized LDL receptor-1 (sLOX-1) as a sensitive and specific biomarker for acute coronary syndrome–Comparison with other biomarkers. J Cardiol 2010;56:159-65
  • Kume N, Mitsuoka H, Hayashida K, et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 predicts prognosis after acute coronary syndrome—a pilot study. Circ J 2010;74:1399-404
  • Zhao ZW, Zhu XL, Luo YK, et al. Circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels are associated with angiographic coronary lesions complexity in patients with coronary artery disease. Clin Cardiol 2011;34:172-7
  • Kamezaki F, Yamashita K, Tasaki H, et al. Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 correlates with oxidative stress markers in stable coronary artery disease. Int J Cardiol 2009;134:285-7
  • Mehta JL, Li DY. Identification and autoregulation of receptor for OX-LDL in cultured human coronary artery endothelial cells. Biochem Biophys Res Commun 1998;248:511-14
  • Morawietz H, Rueckschloss U, Niemann B, et al. Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein. Circulation 1999;100:899-902
  • Morawietz H. LOX-1 receptor as a novel target in endothelial dysfunction and atherosclerosis. Dtsch Med Wochenschr 2010;135:308-12
  • Khaidakov M, Mitra S, Kang BY, et al. Oxidized LDL receptor 1 (OLR1) as a possible link between obesity, hyperlipidemia and cancer. PLoS One 2011;6:e20277
  • Saito A, Shimizu H, Doi Y, et al. Immunoliposomal drug-delivery system targeting lectin-like oxidized low-density lipoprotein receptor-1 for carotid plaque lesions in rats. J Neurosurg 2011;115:720-7
  • Kobayashi N, Yoshida K, Mita S, et al. Betaxolol stimulates eNOS production associated with LOX-1 and VEGF in Dahl salt-sensitive rats. J Hypertens 2004;22:1397-402
  • Kita T. LOX-1, a possible clue to the missing link between hypertension and atherogenesis. Circ Res 1999;84:1113-15
  • Metha JL, Hu B, Chen J, Li D. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation. Arterioscler Thromb Vasc Biol 2003;23:2203-8
  • Ulrich-Merzenich G, Kelber O, Koptina A, et al. Novel neurological and immunological targets for salicylate-based phytopharmaceuticals and for the anti-depressant imipramine. Phytomedicine 2012;19:930-9
  • Mehta JL, Chen J, Yu F, Li DY. Aspirin inhibits ox-LDL-mediated LOX-1 expression and metalloproteinase-1 in human coronary endothelial cells. Cardiovas Res 2004;64:243-9
  • Marwali MR, Hu CP, Mohandas B, et al. Modulation of ADP-Induced platelet activation by aspirin and pravastatin: role of lectin-like oxidized low-density lipoprotein receptor-1, nitric oxide, oxidative stress, and inside-out integrin signaling. J Pharm Exp Ther 2007;322:1324-32
  • Chen JW, Zhou SB, Tan ZM. Aspirin and pravastatin reduce lectin-like oxidized low density lipoprotein receptor-1 expression, adhesion molecules and oxidative stress in human coronary artery endothelial cells. Chin Med J 2010;123:1553-60
  • Vrontaki E, Leonis G, Papadopoulos MG, et al. Comparative binding effects of aspirin and anti-inflammatory Cu complex in the active site of LOX-1. J Chem Inf Model 2012;52:3293-301
  • Xu S, Liu Z, Huang Y, et al. Tanshinone II-A inhibits oxidized LDL-induced LOX-1 expression in macrophages by reducing intracellular superoxide radical generation and NF-kB activation. Transl Res 2012;160:114-24
  • Hu L, Xing Q, Meng J, Shang C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech 2010;11(2):582-7
  • Huang Z, Dong F, Li S, et al. Berberine-induced inhibition of adipocyte enhancer-binding protein 1 attenuates oxidized low-density lipoprotein accumulation and foam cell formation in phorbol 12-myristate 13-acetate-induced macrophages. Eur J Pharmacol 2012;690:164-9
  • Zeng X, Zeng X. Relationship between the clinical effect of berberine on severe congestive heart failure and its concentration in plasma studied by HPLC. Biomed Chromatogr 1999;13:442-4
  • Zhu JX, Tang D, Feng L, et al. Development of self-microemulsifying drug delivery system for oral bioavailability enhancement of berberine hydrochloride. Drug Dev Ind Pharm 2013;39:499-506
  • Kang Q, Chen A. Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like LDL receptor 1. Lab Invest 2009;89:1275-90
  • Kang BY, Khan JA, Ryu S, et al. Curcumin reduces angiotensin II-mediated cardiomyocyte growth via LOX-1 inhibition. J Cardiovasc Pharmacol 2010;55:417-24
  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of Curcumin: problems and Promises. Mol Pharm 2007;4:807-18
  • Zhu X, Li Z, Li C, et al. Ginkgo biloba extract and Aspirin synergistically attenuate activated platelet-induced ROS production and LOX-1 expression in human coronary artery endothelial cells. Phytomedicine 2013;20:114-19
  • Chang HC, Chen TG, Tai YT, et al. Resveratrol attenuates oxidized LDL-evoked Lox-1 signaling and consequently protects against apoptotic insults to cerebrovascular endothelial cells. J Cereb Blood Flow Metab 2011;31:842-54
  • Walle T, Hsieh F, DeLegge MH, et al. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 2004;32:1377-82
  • Yamagata K, Miyashita A, Chino M, Matsufuji H. Apigenin inhibits tumor necrosis factor alpha plus high glucose-induced LOX-1 expression in human endothelial cells. Microvasc Res 2011;81:60-7
  • Ninfali P, Dominici S, Angelino D, et al. An enzyme-linked immunosorbent assay for the measurement of plasma flavonoids in Apigenin-C-Glycoside fed mice. J Sci Food Agric 2013; Epub ahead of print
  • Nahrstedt A, Schmidt M, Jäggi R, et al. Willow bark extract : the contribution of polyphenols to the overall effect. Wien Med Wochenschr 2007;157:348-51
  • Nishizuka T, Fujita Y, Sato Y, et al. Procyanidins are potent inhibitors of LOX-1: a new player in the French Paradox. Proc Jpn Acad Ser B Phys Biol Sci 2011;87:104-13
  • Cao W, Calabro V, Root A, et al. Oligomerization is required for the activity of recombinant soluble LOX-1. FEBS J 2009;276:4909-20
  • Chen KC, Hsieh IC, His E, et al. Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1. J Cell Sci 2011;124:4115-24
  • Ding Z, Wang X, Khaidakov M, et al. MicroRNA hsa-let-7g targets lectin-like oxidized low-density lipoprotein receptor-1 expression and inhibits apoptosis in human smooth muscle cells. Exp Biol Med (Maywood) 2012;237:1093-100
  • Qin B, Xiao B, Jiang T, Yang H. Effects of miR-590-5p on ox-LDL-induced endothelial cells apoptosis and LOX-1 expression. J Cent South Univ (Med Sci) 2012;37:675-81; Chinese
  • Fujita Y, Kakino A, Nishimichi N, et al. Oxidized LDL receptor LOX-1 binds to C-reactive protein and mediates its vascular effects. Clin Chem 2009;55:285-94
  • Melander C, Burnett R, Gottesfeld JM. Regulation of gene expression with pyrrole–imidazole polyamides. J Biotechnol 2004;112:195-220
  • Ueno T, Fukuda N, Tsunemi A, et al. A novel gene silencer, pyrrole-imidazole polyamide targeting human lectin-like oxidized low-density lipoprotein receptor-1 gene improves endothelial cell function. J Hypertens 2009;27(3):508-16
  • Yao EH, Fukuda N, Ueno T, et al. Novel gene silencer pyrrole-imidazole polyamide targeting lectin-like oxidized low-density lipoprotein receptor-1 attenuates restenosis of the artery after injury. Hypertension 2008;52:86-92
  • Amati F, Diano L, Vecchione L, et al. LOX-1 inhibition in ApoE KO mice using a Schizophyllan-based Antisense Oligonucleotide Therapy. Mol Ther Nucleic Acids 2012;1:e58
  • Morawietz H, Goettsch W, Brux M, et al. Lipoprotein apharesis of hypercholesterolemic patients mediates vasoprotective gene expression in human endothelial cells. Atheroscler Suppl 2013;14:107-13
  • Ulrich-Merzenich G, Panek D, Zeitler H, et al. Drug development from natural products exploiting synergy effects. Ind J Exp Biol 2010;48:208-19
  • Winnik S, Stein S, Matter CM. SIRT-1 an anti-inflammatory pathway at the crossroads between metabolic disease and atherosclerosis. Curr Vasc Phamacol 2012;10:693-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.