561
Views
30
CrossRef citations to date
0
Altmetric
Reviews

MmpL3 a potential new target for development of novel anti-tuberculosis drugs

Bibliography

  • WHO TB Report 2012. Available from: http://www.who.int/tb/country/en/index.html
  • Gandhi NR, Nunn P, Dheda K, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 2010;375:1830-43
  • Udwadia ZF, Amale R, Ajbani K, Rodrigues C. Totally drug-resistant tuberculosis in India. Clin Infect Dis 2012;54(4):579-81
  • Phillips L. Infectious disease: TB's revenge. Nature 2013;493:14-16
  • Available from: http://www.who.int/tb/features_archive/new_treatment_guidelines_may2010/en/index.html
  • Lienhardt C, Raviglione M, Spigelman M, et al. New drugs for the treatment of tuberculosis: needs, challenges, promise, and prospects for the future. J Infect Dis 2010;205:S241-9
  • Goldberg DE, Siliciano RF, Jacobs WR. Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell 2012;148(6):1271-83
  • World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis, 2011 update. Available from: http://whqlibdoc.who.int/publications/2011/9789241501583_eng.pdf
  • Zumla A, Abubakar I, Raviglione M, et al. Drug-resistant tuberculosis – current dilemmas, unanswered questions, challenges, and priority needs. J Infect Dis 2012;205(Suppl 2):S228-40
  • Ginsberg AM. Drugs in development for tuberculosis. Drugs 2010;70(17):2201-14
  • Rivers EC, Mancera RL. New anti-tuberculosis drugs with novel mechanisms of action. Curr Med Chem 2008;15(19):1956-67
  • Zhang Y, Yew WW, Barer MR. Targeting persisters for tuberculosis control. Antimicrob Agents Chemother 2012;56(5):2223-30
  • Krishnan N, Robertson BD, Thwaites G. The mechanisms and consequences of the extra-pulmonary dissemination of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2010;90(6):361-6
  • WHO TB/HIV Report. Available from: http://www.who.int/tb/challenges/hiv/factsheets/en/index.html
  • Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393(6685):537-44
  • Hett EC, Rubin EJ. Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 2008;72(1):126-56
  • Favrot L, Ronning DR. Targeting the mycobacterial envelope for tuberculosis drug development. Expert Rev Anti Infect Ther 2012;10(9):1023-36
  • Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinburgh) 2003;83:91-7
  • Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 2005;18(1):81-101
  • Kaur D, Guerin ME, Škovierová H, et al. Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol 2009;69:23-78
  • Hoffmann C, Leis A, Niederweis M, et al. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 2008;105(10):3963-7
  • Verschoor JA, Baird MS, Grooten J. Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog Lipid Res 2012;51(4):325-39
  • Barkan D, Hedhli D, Yan HG, et al. Mycobacterium tuberculosis lacking all mycolic acid cyclopropanation is viable but highly attenuated and hyperinflammatory in mice. Infect Immun 2012;80(6):1958-68
  • Vander Beken S, Al Dulayymi JR, Naessens T, et al. Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. Eur J Immunol 2011;41(2):450-60
  • Yuan Y, Zhu Y, Crane DD, Barry CE III. The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol 1998;29(6):1449-58
  • Dubnau E, Chan J, Raynaud C, et al. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 2000;36(3):630
  • Schweizer E, Hofmann J. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 2004;68(3):501-17
  • Bhatt A, Molle V, Besra GS, et al. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol Microbiol 2007;64(6):1442-54
  • Zhang YM, Lu YJ, Rock CO. The reductase steps of the type II fatty acid synthase as antimicrobial targets. Lipids 2004;39(11):1055-60
  • Schaeffer ML, Agnihotri G, Volker C, et al. Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem 2001;276(50):47029-37
  • Sacco E, Covarrubias AS, O'Hare HM, et al. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2007;104(37):14628-33
  • Portevin D, De Sousa-D'Auria C, Houssin C, et al. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci USA 2004;101(1):314-19
  • Schroeder EK, de Souza N, Santos DS, et al. Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis. Curr Pharm Biotechnol 2002;3(3):197-225
  • Marrakchi H, Lanéelle G, Quémard A. InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 2000;146(Pt 2):289-96
  • Grzegorzewicz AE, Korduláková J, Jones V, et al. A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. J Biol Chem 2012;287(46):38434-41
  • Belardinelli JM, Morbidoni HR. Mutations in the essential FAS II beta-hydroxyacyl ACP dehydratase complex confer resistance to thiacetazone in Mycobacterium tuberculosis and Mycobacterium kansasii. Mol Microbiol 2012;86(3):568-79
  • Freundlich JS, Wang F, Vilchèze C, et al. Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. ChemMedChem 2009;4(2):241-8
  • Parikh SL, Xiao G, Tonge PJ. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry 2000;39(26):7645-50
  • Kremer L, Douglas JD, Baulard AR, et al. Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J Biol Chem 2000;275(22):16857-64
  • Betts JC, McLaren A, Lennon MG, et al. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob Agents Chemother 2003;47(9):2903-13
  • Belisle JT, Vissa VD, Sievert T, et al. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 1997;276(5317):1420-2
  • Ronning DR, Klabunde T, Besra GS, et al. Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nat Struct Biol 2000;7(2):141-6
  • Warrier T, Tropis M, Werngren J, et al. Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis. Antimicrob Agents Chemother 2012;56(4):1735-43
  • Varela C, Rittmann D, Singh A, et al. MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem Biol 2012;19(4):498-506
  • Saier MH Jr, Paulsen IT. Phylogeny of multidrug transporters. Semin Cell Dev Biol 2001;12(3):205-13
  • Kim EH, Nies DH, McEvoy MM, Rensing C. Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis. J Bacteriol 2011;193(10):2381-7
  • Domenech P, Reed MB, Barry CE III. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 2005;73(6):3492-501
  • Tekaia F, Gordon SV, Garnier T, et al. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber Lung Dis 1999;79(6):329-42
  • Converse SE, Mougous JD, Leavell MD, et al. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci USA 2003;100(10):6121-6
  • Domenech P, Reed MB, Dowd CS, et al. The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J Biol Chem 2004;279(20):21257-65
  • Pérez J, Garcia R, Bach H, et al. Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD. Biochem Biophys Res Commun 2006;348(1):6-12
  • Tullius MV, Harmston CA, Owens CP, et al. Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci USA 2011;108(12):5051-6
  • Owens CP, Chim N, Graves AB, et al. The mycobacterium tuberculosis secreted protein Rv0203 transfers Heme to membrane proteins MmpL3 and MmpL11. J Biol Chem 2013;288(30):21714-28
  • Owens CP, Chim N, Goulding CW. Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target. Fut Med Chem 2013;5(12):1391-403
  • Grzegorzewicz AE, Pham H, Gundi VA, et al. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 2012;8(4):334-41
  • North EJ, Scherman MS, Bruhn DF, et al. Design, synthesis and anti-tuberculosis activity of 1-adamantyl-3-heteroaryl ureas with improved in vitro pharmacokinetic properties. Bioorg Med Chem 2013;21(9):2587-99
  • Deidda D, Lampis G, Fioravanti R, et al. Bactericidal activities of the pyrrole derivative BM212 against multidrug-resistant and intramacrophagic Mycobacterium tuberculosis strains. Antimicrob Agents Chemother 1998;42(11):3035-7
  • La Rosa V, Poce G, Canseco JO, et al. MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212. Antimicrob Agents Chemother 2012;56(1):324-31
  • Poce G, Bates RH, Alfonso S, et al. Improved BM212 MmpL3 inhibitor analogue shows efficacy in acute murine model of tuberculosis infection. PLoS One 2013;8(2):e56980
  • Jia L, Tomaszewski JE, Hanrahan C, et al. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br J Pharmacol 2005;144:80-7
  • Tahlan K, Wilson R, Kastrinsky DB, et al. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2012;56(4):1797-809
  • Stanley SA, Grant SS, Kawate T, et al. Identification of novel inhibitors of M. tuberculosis growth using whole cell based high-throughput screening. ACS Chem Biol 2012;7(8):1377-84
  • Remuiñán MJ, Pérez-Herrán E, Rullás J, et al. Tetrahydropyrazolo[1,5-a]Pyrimidine-3-Carboxamide and N-Benzyl-6',7'-Dihydrospiro[ Piperidine-4,4'-Thieno[3,2-c]Pyran] Analogues with Bactericidal Efficacy against Mycobacterium tuberculosis Targeting MmpL3. PLoS One 2013;8(4):e60933
  • Murakami S, Nakashima R, Yamashita E, Yamaguchi A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002;419(6907):587-93
  • Elkins CA, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol 2002;184(23):6490-8
  • Yu EW, McDermott G, Zgurskaya HI, et al. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 2003;300(5621):976-80
  • Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol 2003;185(19):5657-64
  • Cole ST. Infectious diseases: transporter targeted in tuberculosis. Nat Chem Biol 2012;8(4):326-7
  • Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov 2013;12(5):388-404
  • Jain M, Cox JS. Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. PLoS Pathog 2005;1(1):e2
  • Harrison C. Hitting the tuberculosis wall. Nat Rev Drug Discov 2013;12:578-9
  • Christophe T, Jackson M, Jeon HK, et al. High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog 2009;5(10):e1000645
  • Manina G, Pasca MR, Buroni S, et al. Decaprenylphosphoryl-β-D-ribose 2'-epimerase from Mycobacterium tuberculosis is a magic drug target. Curr Med Chem 2010;17(27):3099-108
  • Magnet S, Hartkoorn RC, Székely R, et al. Leads for antitubercular compounds from kinase inhibitor library screens. Tuberculosis (Edinb) 2010;90(6):354-60
  • Crellin PK, Brammananth R, Coppel RL. Decaprenylphosphoryl-beta-D-ribose 2'-epimerase, the target of benzothiazinones and dinitrobenzamides, is an essential enzyme in Mycobacterium smegmatis. PLoS One 2011;6(2):e16869
  • Batt SM, Jabeen T, Bhowruth V, et al. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc Natl Acad Sci USA 2012;109(28):11354-9
  • Trefzer C, Škovierová H, Buroni S, et al. Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-beta-D-ribofuranose 2'-oxidase DprE1. J Am Chem Soc 2012;134(2):912-15
  • Wang F, Sambandan D, Halder R, et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc Natl Acad Sci USA 2013;110(27):E2510-17
  • Makarov V, Manina G, Mikusova K, et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 2009;324(5928):801-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.