430
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Targeting kallikrein-related peptidases in prostate cancer

, PhD, , MSc & , PhD

Bibliography

  • Clements JA, Willemsen NM, Myers SA, et al. The tissue kallikrein family of serine proteases: functional roles in human disease and potential as clinical biomarkers. Crit Rev Clin Lab Sci 2004;41(3):265-312
  • Yousef GM, Chang A, Scorilas A, et al. Genomic organization of the human kallikrein gene family on chromosome 19q13.3-q13.4. Biochem Biophys Res Commun 2000;276(1):125-33
  • Yousef GM, Diamandis EP. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev 2001;22(2):184-204
  • Schmitt M, Renne T, Scorilas A. The kallikreins: old proteases with new clinical potentials. Thromb Haemost 2013;110(3):396-8
  • Lawrence MG, Lai J, Clements JA. Kallikreins on steroids: structure, function, and hormonal regulation of prostate-specific antigen and the extended kallikrein locus. Endocr Rev 2010;31(4):407-46
  • Borgono CA, Gavigan JA, Alves J, et al. Defining the extended substrate specificity of kallikrein 1-related peptidases. Biol Chem 2007;388(11):1215-25
  • Borgono CA, Michael IP, Diamandis EP. Human tissue kallikreins: physiologic roles and applications in cancer. Mol Cancer Res 2004;2(5):257-80
  • Pathak M, Wong SS, Dreveny I, et al. Structure of plasma and tissue kallikreins. Thromb Haemost 2013;110(3):423-33
  • Tyndall JD, Nall T, Fairlie DP. Proteases universally recognize beta strands in their active sites. Chem Rev 2005;105(3):973-99
  • Swedberg JE, de Veer SJ, Harris JM. Kallikrein-related peptidases, Vol 1, Chapter 6: Natural, Engineered and Synthetic Inhibitors of Kallikrein-related Peptidases. De Gruyter, Berlin, Germany; 2012. p. 141-60
  • Borgono CA, Diamandis EP. The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer 2004;4(11):876-90
  • Emami N, Diamandis EP. New insights into the functional mechanisms and clinical applications of the kallikrein-related peptidase family. Mol Oncol 2007;1(3):269-87
  • Sotiropoulou G, Pampalakis G, Diamandis EP. Functional roles of human kallikrein-related peptidases. J Biol Chem 2009;284(48):32989-94
  • Pasic MD, Olkhov E, Bapat B, et al. Epigenetic regulation of kallikrein-related peptidases: there is a whole new world out there. Biol Chem 2012;393(5):319-30
  • Goettig P, Magdolen V, Brandstetter H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 2010;92(11):1546-67
  • Sotiropoulou G, Pampalakis G. Targeting the kallikrein-related peptidases for drug development. Trends Pharmacol Sci 2012;33(12):623-34
  • Mavridis K, Scorilas A. Prognostic value and biological role of the kallikrein-related peptidases in human malignancies. Future Oncol 2010;6(2):269-85
  • Avgeris M, Mavridis K, Scorilas A. Kallikrein-related peptidases in prostate, breast, and ovarian cancers: from pathobiology to clinical relevance. Biol Chem 2012;393(5):301-17
  • Avgeris M, Mavridis K, Scorilas A. Kallikrein-related peptidase genes as promising biomarkers for prognosis and monitoring of human malignancies. Biol Chem 2010;391(5):505-11
  • Emami N, Diamandis EP. Utility of kallikrein-related peptidases (KLKs) as cancer biomarkers. Clin Chem 2008;54(10):1600-7
  • Diamandis EP. Prostate cancer screening with prostate-specific antigen testing: more answers or more confusion? Clin Chem 2010;56(3):345-51
  • Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin 2011;61(2):69-90
  • Huang X, Chau CH, Figg WD. Challenges to improved therapeutics for metastatic castrate resistant prostate cancer: from recent successes and failures. J Hematol Oncol 2012;5:35
  • Mohler J, Bahnson RR, Boston B, et al. NCCN clinical practice guidelines in oncology: prostate cancer. J Natl Compr Canc Netw 2010;8(2):162-200
  • Mottet N, Bellmunt J, Bolla M, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 2011;59(4):572-83
  • Mahler C, Verhelst J, Denis L. Ketoconazole and liarozole in the treatment of advanced prostatic cancer. Cancer 1993;71(3 Suppl):1068-73
  • Ryan CJ, Smith MR, de Bono JS, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013;368(2):138-48
  • Scher HI, Fizazi K, Saad F, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367(13):1187-97
  • Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004;351(15):1513-20
  • Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004;351(15):1502-12
  • de Bono JS, Oudard S, Ozguroglu M, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010;376(9747):1147-54
  • Saad F, Gleason DM, Murray R, et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 2004;96(11):879-82
  • Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 2011;377(9768):813-22
  • Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013;369(3):213-23
  • Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010;363(5):411-22
  • Avgeris M, Stravodimos K, Scorilas A. Kallikrein-related peptidase 4 gene (KLK4) in prostate tumors: quantitative expression analysis and evaluation of its clinical significance. Prostate 2011;71(16):1780-9
  • Veveris-Lowe TL, Lawrence MG, Collard RL, et al. Kallikrein 4 (hK4) and prostate-specific antigen (PSA) are associated with the loss of E-cadherin and an epithelial-mesenchymal transition (EMT)-like effect in prostate cancer cells. Endocr Relat Cancer 2005;12(3):631-43
  • Klokk TI, Kilander A, Xi Z, et al. Kallikrein 4 is a proliferative factor that is overexpressed in prostate cancer. Cancer Res 2007;67(11):5221-30
  • Xi Z, Klokk TI, Korkmaz K, et al. Kallikrein 4 is a predominantly nuclear protein and is overexpressed in prostate cancer. Cancer Res 2004;64(7):2365-70
  • Darson MF, Pacelli A, Roche P, et al. Human glandular kallikrein 2 (hK2) expression in prostatic intraepithelial neoplasia and adenocarcinoma: a novel prostate cancer marker. Urology 1997;49(6):857-62
  • Darson MF, Pacelli A, Roche P, et al. Human glandular kallikrein 2 expression in prostate adenocarcinoma and lymph node metastases. Urology 1999;53(5):939-44
  • Herrala AM, Porvari KS, Kyllonen AP, et al. Comparison of human prostate specific glandular kallikrein 2 and prostate specific antigen gene expression in prostate with gene amplification and overexpression of prostate specific glandular kallikrein 2 in tumor tissue. Cancer 2001;92(12):2975-84
  • Magklara A, Scorilas A, Stephan C, et al. Decreased concentrations of prostate-specific antigen and human glandular kallikrein 2 in malignant versus nonmalignant prostatic tissue. Urology 2000;56(3):527-32
  • Olkhov-Mitsel E, Van der Kwast T, Kron KJ, et al. Quantitative DNA methylation analysis of genes coding for kallikrein-related peptidases 6 and 10 as biomarkers for prostate cancer. Epigenetics 2012;7(9):1037-45
  • Rehault S, Monget P, Mazerbourg S, et al. Insulin-like growth factor binding proteins (IGFBPs) as potential physiological substrates for human kallikreins hK2 and hK3. Eur J Biochem 2001;268(10):2960-8
  • Cohen P, Graves HC, Peehl DM, et al. Prostate-specific antigen (PSA) is an insulin-like growth factor binding protein-3 protease found in seminal plasma. J Clin Endocrinol Metab 1992;75(4):1046-53
  • Matsumura M, Bhatt AS, Andress D, et al. Substrates of the prostate-specific serine protease prostase/KLK4 defined by positional-scanning peptide libraries. Prostate 2005;62(1):1-13
  • Sano A, Sangai T, Maeda H, et al. Kallikrein 11 expressed in human breast cancer cells releases insulin-like growth factor through degradation of IGFBP-3. Int J Oncol 2007;30(6):1493-8
  • Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 2008;8(12):915-28
  • Meinbach DS, Lokeshwar BL. Insulin-like growth factors and their binding proteins in prostate cancer: cause or consequence? Urol Oncol 2006;24(4):294-306
  • Mize GJ, Wang W, Takayama TK. Prostate-specific kallikreins-2 and -4 enhance the proliferation of DU-145 prostate cancer cells through protease-activated receptors-1 and -2. Mol Cancer Res 2008;6(6):1043-51
  • Wang W, Mize GJ, Zhang X, et al. Kallikrein-related peptidase-4 initiates tumor-stroma interactions in prostate cancer through protease-activated receptor-1. Int J Cancer 2010;126(3):599-610
  • Gao L, Smith RS, Chen LM, et al. Tissue kallikrein promotes prostate cancer cell migration and invasion via a protease-activated receptor-1-dependent signaling pathway. Biol Chem 2010;391(7):803-12
  • Shang Z, Niu Y, Cai Q, et al. Human kallikrein 2 (KLK2) promotes prostate cancer cell growth via function as a modulator to promote the ARA70-enhanced androgen receptor transactivation. Tumour Biol 2013. [Epub ahead of print]
  • Jin Y, Qu S, Tesikova M, et al. Molecular circuit involving KLK4 integrates androgen and mTOR signaling in prostate cancer. Proc Natl Acad Sci USA 2013;110(28):E2572-81
  • Ueda T, Bruchovsky N, Sadar MD. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 2002;277(9):7076-85
  • Hobisch A, Eder IE, Putz T, et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 1998;58(20):4640-5
  • Saxena P, Trerotola M, Wang T, et al. PSA regulates androgen receptor expression in prostate cancer cells. Prostate 2012;72(7):769-76
  • Niu Y, Yeh S, Miyamoto H, et al. Tissue prostate-specific antigen facilitates refractory prostate tumor progression via enhancing ARA70-regulated androgen receptor transactivation. Cancer Res 2008;68(17):7110-19
  • Takayama TK, Fujikawa K, Davie EW. Characterization of the precursor of prostate-specific antigen. Activation by trypsin and by human glandular kallikrein. J Biol Chem 1997;272(34):21582-8
  • Takayama TK, McMullen BA, Nelson PS, et al. Characterization of hK4 (prostase), a prostate-specific serine protease: activation of the precursor of prostate specific antigen (pro-PSA) and single-chain urokinase-type plasminogen activator and degradation of prostatic acid phosphatase. Biochemistry 2001;40(50):15341-8
  • Mikolajczyk SD, Millar LS, Kumar A, et al. Prostatic human kallikrein 2 inactivates and complexes with plasminogen activator inhibitor-1. Int J Cancer 1999;81(3):438-42
  • Pezzato E, Sartor L, Dell'Aica I, et al. Prostate carcinoma and green tea: PSA-triggered basement membrane degradation and MMP-2 activation are inhibited by (-)epigallocatechin-3-gallate. Int J Cancer 2004;112(5):787-92
  • Beaufort N, Debela M, Creutzburg S, et al. Interplay of human tissue kallikrein 4 (hK4) with the plasminogen activation system: hK4 regulates the structure and functions of the urokinase-type plasminogen activator receptor (uPAR). Biol Chem 2006;387(2):217-22
  • Whitbread AK, Veveris-Lowe TL, Lawrence MG, et al. The role of kallikrein-related peptidases in prostate cancer: potential involvement in an epithelial to mesenchymal transition. Biol Chem 2006;387(6):707-14
  • Mo L, Zhang J, Shi J, et al. Human kallikrein 7 induces epithelial-mesenchymal transition-like changes in prostate carcinoma cells: a role in prostate cancer invasion and progression. Anticancer Res 2010;30(9):3413-20
  • Emanueli C, Minasi A, Zacheo A, et al. Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Circulation 2001;103(1):125-32
  • Giusti B, Serrati S, Margheri F, et al. The antiangiogenic tissue kallikrein pattern of endothelial cells in systemic sclerosis. Arthritis Rheum 2005;52(11):3618-28
  • Papadopoulos I, Sivridis E, Giatromanolaki A, et al. Tumor angiogenesis is associated with MUC1 overexpression and loss of prostate-specific antigen expression in prostate cancer. Clin Cancer Res 2001;7(6):1533-8
  • Fortier AH, Nelson BJ, Grella DK, et al. Antiangiogenic activity of prostate-specific antigen. J Natl Cancer Inst 1999;91(19):1635-40
  • Fortier AH, Holaday JW, Liang H, et al. Recombinant prostate specific antigen inhibits angiogenesis in vitro and in vivo. Prostate 2003;56(3):212-19
  • Killian CS, Corral DA, Kawinski E, et al. Mitogenic response of osteoblast cells to prostate-specific antigen suggests an activation of latent TGF-beta and a proteolytic modulation of cell adhesion receptors. Biochem Biophys Res Commun 1993;192(2):940-7
  • Goya M, Ishii G, Miyamoto S, et al. Prostate-specific antigen induces apoptosis of osteoclast precursors: potential role in osteoblastic bone metastases of prostate cancer. Prostate 2006;66(15):1573-84
  • Romanov VI, Whyard T, Adler HL, et al. Prostate cancer cell adhesion to bone marrow endothelium: the role of prostate-specific antigen. Cancer Res 2004;64(6):2083-9
  • Gao J, Collard RL, Bui L, et al. Kallikrein 4 is a potential mediator of cellular interactions between cancer cells and osteoblasts in metastatic prostate cancer. Prostate 2007;67(4):348-60
  • Kavanagh JP. Sodium, potassium, calcium, magnesium, zinc, citrate and chloride content of human prostatic and seminal fluid. J Reprod Fertil 1985;75(1):35-41
  • de Lamirande E. Semenogelin, the main protein of the human semen coagulum, regulates sperm function. Semin Thromb Hemost 2007;33(1):60-8
  • Costello LC, Feng P, Milon B, et al. Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis 2004;7(2):111-17
  • Shah MR, Kriedt CL, Lents NH, et al. Direct intra-tumoral injection of zinc-acetate halts tumor growth in a xenograft model of prostate cancer. J Exp Clin Cancer Res 2009;28:84
  • Swedberg JE, de Veer SJ, Harris JM. Natural and engineered kallikrein inhibitors: an emerging pharmacopoeia. Biol Chem 2010;391(4):357-74
  • Luo LY, Jiang W. Inhibition profiles of human tissue kallikreins by serine protease inhibitors. Biol Chem 2006;387(6):813-16
  • Heiker JT, Kloting N, Kovacs P, et al. Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol Life Sci 2013;70(14):2569-83
  • Natsuga K, Akiyama M, Shimizu H. Malignant skin tumours in patients with inherited ichthyosis. Br J Dermatol 2011;165(2):263-8
  • Domanskyy M, Stenman UH. Inhibition of KLK2 by SPNK1. 5th Annual International Symposium on Kallikreins and Kallikrein-Related Peptidases Proceedings; 2013. p. 40
  • Smith DA. Discovery and ADMET: where are we now. Curr Top Med Chem 2011;11(4):467-81
  • Chirmule N, Jawa V, Meibohm B. Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J 2012;14(2):296-302
  • Basu A, Li X, Leong SS. Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 2011;92(2):241-51
  • Shukla AA, Thommes J. Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 2010;28(5):253-61
  • Deperthes D, Kündig C. Kallikrein-related peptidases, Vol 1, Chapter 7: Kallikrein-related peptidases as pharmaceutical targets. De Gruyter, Berlin, Germany; 2012. p. 161-86
  • Cloutier SM, Kundig C, Felber LM, et al. Development of recombinant inhibitors specific to human kallikrein 2 using phage-display selected substrates. Eur J Biochem 2004;271(3):607-13
  • Swedberg JE, de Veer SJ, Sit KC, et al. Mastering the canonical loop of serine protease inhibitors: enhancing potency by optimising the internal hydrogen bond network. PLoS One 2011;6(4):e19302
  • de Veer SJ, Ukolova SS, Munro CA, et al. Mechanism-based selection of a potent kallikrein-related peptidase 7 inhibitor from a versatile library based on the sunflower trypsin inhibitor SFTI-1. Biopolymers 2013;100(5):510-18
  • LeBeau AM, Kostova M, Craik CS, et al. Prostate-specific antigen: an overlooked candidate for the targeted treatment and selective imaging of prostate cancer. Biol Chem 2010;391(4):333-43
  • LeBeau AM, Singh P, Isaacs JT, et al. Potent and selective peptidyl boronic acid inhibitors of the serine protease prostate-specific antigen. Chem Biol 2008;15(7):665-74
  • Kostova MB, Rosen DM, Chen Y, et al. Structural optimization, biological evaluation, and application of peptidomimetic prostate specific antigen inhibitors. J Med Chem 2013;56(11):4224-35
  • Koistinen H, Narvanen A, Pakkala M, et al. Development of peptides specifically modulating the activity of KLK2 and KLK3. Biol Chem 2008;389(6):633-42
  • Sexton DJ, Chen T, Martik D, et al. Specific inhibition of tissue kallikrein 1 with a human monoclonal antibody reveals a potential role in airway diseases. Biochem J 2009;422(2):383-92
  • Adlington RM, Baldwin JE, Becker GW, et al. Design, synthesis, and proposed active site binding analysis of monocyclic 2-azetidinone inhibitors of prostate specific antigen. J Med Chem 2001;44(10):1491-508
  • Koistinen H, Wohlfahrt G, Mattsson JM, et al. Novel small molecule inhibitors for prostate-specific antigen. Prostate 2008;68(11):1143-51
  • Tan X, Furio L, Reboud-Ravaux M, et al. 1,2,4-Triazole derivatives as transient inactivators of kallikreins involved in skin diseases. Bioorg Med Chem Lett 2013;23(16):4547-51
  • Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov 2010;9(7):537-50
  • Jeong S, Han SR, Lee YJ, et al. Selection of RNA aptamers specific to active prostate-specific antigen. Biotechnol Lett 2010;32(3):379-85
  • Savory N, Abe K, Sode K, et al. Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing. Biosens Bioelectron 2010;26(4):1386-91
  • Arnold S, Pampalakis G, Kantiotou K, et al. One round of SELEX for the generation of DNA aptamers directed against KLK6. Biol Chem 2012;393(5):343-53
  • Denny WA. Tumor-activated prodrugs–a new approach to cancer therapy. Cancer Invest 2004;22(4):604-19
  • Janssen S, Rosen DM, Ricklis RM, et al. Pharmacokinetics, biodistribution, and antitumor efficacy of a human glandular kallikrein 2 (hK2)-activated thapsigargin prodrug. Prostate 2006;66(4):358-68
  • DiPaola RS, Rinehart J, Nemunaitis J, et al. Characterization of a novel prostate-specific antigen-activated peptide-doxorubicin conjugate in patients with prostate cancer. J Clin Oncol 2002;20(7):1874-9
  • Denmeade SR, Egerdie B, Steinhoff G, et al. Phase 1 and 2 studies demonstrate the safety and efficacy of intraprostatic injection of PRX302 for the targeted treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. Eur Urol 2011;59(5):747-54
  • Choi KY, Swierczewska M, Lee S, et al. Protease-activated drug development. Theranostics 2012;2(2):156-78
  • DeFeo-Jones D, Garsky VM, Wong BK, et al. A peptide-doxorubicin ‘prodrug’ activated by prostate-specific antigen selectively kills prostate tumor cells positive for prostate-specific antigen in vivo. Nat Med 2000;6(11):1248-52
  • Williams SA, Merchant RF, Garrett-Mayer E, et al. A prostate-specific antigen-activated channel-forming toxin as therapy for prostatic disease. J Natl Cancer Inst 2007;99(5):376-85
  • Tai W, Shukla RS, Qin B, et al. Development of a peptide-drug conjugate for prostate cancer therapy. Mol Pharm 2011;8(3):901-12
  • Baiz D, Pinder TA, Hassan S, et al. Synthesis and characterization of a novel prostate cancer-targeted phosphatidylinositol-3-kinase inhibitor prodrug. J Med Chem 2012;55(18):8038-46
  • Li B, Zhang LJ, Zhang ZL, et al. Synergistic tumor growth-inhibitory effect of the prostate-specific antigen-activated fusion peptide BSD352 for prostate cancer therapy. Anticancer Drugs 2011;22(3):213-22
  • Denmeade SR, Jakobsen CM, Janssen S, et al. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J Natl Cancer Inst 2003;95(13):990-1000
  • Goun EA, Shinde R, Dehnert KW, et al. Intracellular cargo delivery by an octaarginine transporter adapted to target prostate cancer cells through cell surface protease activation. Bioconjug Chem 2006;17(3):787-96
  • Meinander K, Weissel J, Pakkala M, et al. Hydrocarbon isosteres of disulfide bridges in peptides that stimulate the proteolytic activity of KLK3. 5th Annual International Symposium on Kallikreins and Kallikrein-Related Peptidases Proceedings; 2013. p. 46
  • Pakkala M, Weisell J, Hekim C, et al. Mimetics of the disulfide bridge between the N- and C-terminal cysteines of the KLK3-stimulating peptide B-2. Amino Acids 2010;39(1):233-42
  • Menez R, Michel S, Muller BH, et al. Crystal structure of a ternary complex between human prostate-specific antigen, its substrate acyl intermediate and an activating antibody. J Mol Biol 2008;376(4):1021-33
  • Sonpavde G, Agarwal N, Choueiri TK, et al. Recent advances in immunotherapy for the treatment of prostate cancer. Expert Opin Biol Ther 2011;11(8):997-1009
  • Gerritsen WR. The evolving role of immunotherapy in prostate cancer. Ann Oncol 2012;23(Suppl 8):viii22-7
  • Yin L, Hu Q, Hartmann RW. Recent progress in pharmaceutical therapies for castration-resistant prostate cancer. Int J Mol Sci 2013;14(7):13958-78
  • Gulley JL, Madan RA, Heery CR. Therapeutic vaccines and immunotherapy in castration-resistant prostate cancer. Am Soc Clin Oncol Educ Book 2013;166-70
  • Madan RA, Arlen PM, Mohebtash M, et al. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs 2009;18(7):1001-11
  • Katzenwadel A, Schleer H, Gierschner D, et al. Construction and in vivo evaluation of an anti-PSA x anti-CD3 bispecific antibody for the immunotherapy of prostate cancer. Anticancer Res 2000;20(3A):1551-5
  • Berlyn KA, Schultes B, Leveugle B, et al. Generation of CD4(+) and CD8(+) T lymphocyte responses by dendritic cells armed with PSA/anti-PSA (antigen/antibody) complexes. Clin Immunol 2001;101(3):276-83
  • Daniels-Wells TR, Helguera G, Leuchter RK, et al. A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy. BMC Cancer 2013;13:195
  • Sinha AA, Quast BJ, Reddy PK, et al. Intravenous injection of an immunoconjugate (anti-PSA-IgG conjugated to 5-fluoro-2'-deoxyuridine) selectively inhibits cell proliferation and induces cell death in human prostate cancer cell tumors grown in nude mice. Anticancer Res 1999;19(2A):893-902
  • Wilkinson R, Woods K, D'Rozario R, et al. Human kallikrein 4 signal peptide induces cytotoxic T cell responses in healthy donors and prostate cancer patients. Cancer Immunol Immunother 2012;61(2):169-79
  • Pinto F, Totaro A, Palermo G, et al. Imaging in prostate cancer staging: present role and future perspectives. Urol Int 2012;88(2):125-36
  • Babaian RJ, Lamki LM. Radioimmunoscintigraphy of prostate cancer. Semin Nucl Med 1989;19(4):309-21
  • Evans-Axelsson S, Ulmert D, Orbom A, et al. Targeting free prostate-specific antigen for in vivo imaging of prostate cancer using a monoclonal antibody specific for unique epitopes accessible on free prostate-specific antigen alone. Cancer Biother Radiopharm 2012;27(4):243-51
  • LeBeau AM, Banerjee SR, Pomper MG, et al. Optimization of peptide-based inhibitors of prostate-specific antigen (PSA) as targeted imaging agents for prostate cancer. Bioorg Med Chem 2009;17(14):4888-93
  • Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol 2012;19(1):60-71
  • Tiemann K, Rossi JJ. RNAi-based therapeutics-current status, challenges and prospects. EMBO Mol Med 2009;1(3):142-51
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8(2):129-38
  • Williams SA, Jelinek CA, Litvinov I, et al. Enzymatically active prostate-specific antigen promotes growth of human prostate cancers. Prostate 2011;71(15):1595-607
  • Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009;10(10):704-14
  • Porkka KP, Pfeiffer MJ, Waltering KK, et al. MicroRNA expression profiling in prostate cancer. Cancer Res 2007;67(13):6130-5
  • Ozen M, Creighton CJ, Ozdemir M, et al. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008;27(12):1788-93
  • Gordanpour A, Nam RK, Sugar L, et al. MicroRNAs in prostate cancer: from biomarkers to molecularly-based therapeutics. Prostate Cancer Prostatic Dis 2012;15(4):314-19
  • Chow TF, Crow M, Earle T, et al. Kallikreins as microRNA targets: an in silico and experimental-based analysis. Biol Chem 2008;389(6):731-8
  • White NM, Chow TF, Mejia-Guerrero S, et al. Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer. Br J Cancer 2010;102(8):1244-53
  • White NM, Youssef YM, Fendler A, et al. The miRNA-kallikrein axis of interaction: a new dimension in the pathogenesis of prostate cancer. Biol Chem 2012;393(5):379-89
  • White NM, Bui A, Mejia-Guerrero S, et al. Dysregulation of kallikrein-related peptidases in renal cell carcinoma: potential targets of miRNAs. Biol Chem 2010;391(4):411-23
  • Kriegel AJ, Liu Y, Cohen B, et al. MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol Genomics 2012;44(4):259-67
  • Mavridis K, Stravodimos K, Scorilas A. Downregulation and prognostic performance of microRNA 224 expression in prostate cancer. Clin Chem 2013;59(1):261-9
  • Scott CJ, Taggart CC. Biologic protease inhibitors as novel therapeutic agents. Biochimie 2010;92(11):1681-8
  • Haq SK, Rabbani G, Ahmad E, et al. Protease inhibitors: a panacea? J Biochem Mol Toxicol 2010;24(4):270-7
  • Lawasut P, Chauhan D, Laubach J, et al. New proteasome inhibitors in myeloma. Curr Hematol Malig Rep 2012;7(4):258-66
  • Bernstein JA, Moellman JJ. Progress in the emergency management of hereditary angioedema: focus on new treatment options in the United States. Postgrad Med 2012;124(3):91-100
  • Dorman G, Cseh S, Hajdu I, et al. Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Drugs 2010;70(8):949-64
  • Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2002;2(9):657-72
  • Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002;295(5564):2387-92
  • Mavridis K, Stravodimos K, Scorilas A. Quantified KLK15 gene expression levels discriminate prostate cancer from benign tumors and constitute a novel independent predictor of disease progression. Prostate 2013;73(11):1191-201
  • Yousef GM, Stephan C, Scorilas A, et al. Differential expression of the human kallikrein gene 14 (KLK14) in normal and cancerous prostatic tissues. Prostate 2003;56(4):287-92
  • Higano CS. Potential use of custirsen to treat prostate cancer. Onco Targets Ther 2013;6:785-97

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.