1,203
Views
36
CrossRef citations to date
0
Altmetric
Reviews

Targeting homologous recombination-mediated DNA repair in cancer

&

Bibliography

  • Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotech 2012;30(7):679-92
  • Helleday T, Petermann E, Lundin C, et al. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 2008;8(3):193-204
  • Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 2012;12(12):801-17
  • Karanam K, Kafri R, Loewer A, et al. Quantitative live cell imaging reveals a gradual shift between DNA Repair mechanisms and a maximal use of HR in Mid S phase. Mol Cell 2012;47(2):320-9
  • Mao Z, Jiang Y, Liu X, et al. DNA repair by homologous recombination, but not by nonhomologous end joining. is elevated in breast cancer cells Neoplasia 2009;11(7):683-91
  • Greuber EK, Smith-Pearson P, Wang J, et al. Role of Abl family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer 2013;13(8):559-71
  • Bryant HE, Schultz N, Thomas HD, et al. Specific killing of Brca2-deficient tumours with inhibitors of poly(Adp-Ribose) polymerase. Nature 2005;434(7035):913-17
  • Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in brca mutant cells as a therapeutic strategy. Nature 2005;434(7035):917-21
  • McCabe N, Turner NC, Lord CJ, et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(adp-ribose) polymerase inhibition. Cancer Res 2006;66(16):8109-15
  • Qiao B, Kerr M, Groselj B, et al. imatinib radiosensitizes bladder cancer by targeting homologous recombination. Cancer Res 2013;73(5):1611-20
  • Khalil HS, Tummala H, Chakarov S, et al. Targeting Atm pathway for therapeutic intervention in cancer. Biodiscovery 2012;1:3
  • Fokas E, Prevo R, Hammond EM, et al. Targeting Atr in DNA damage response and cancer therapeutics. Cancer Treat Rev 2014;40(1):109-17
  • Matthews TP, Jones AM, Collins I. Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anticancer therapies. Expert Opin Drug Discov 2013;8(6):621-40
  • Garrett MD, Collins I. Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci 2011;32(5):308-16
  • Thompson R, Eastman A. The cancer therapeutic potential of Chk1 inhibitors: how mechanistic studies impact on clinical trial design. Br J Clin Pharmacol 2013;76(3):358-69
  • Nimonkar AV, Genschel J, Kinoshita E, et al. Blm–Dna2–Rpa–Mrn and Exo1–Blm–Rpa–Mrn constitute two DNA end resection machineries for human DNA break repair. Genes Dev 2011;25(4):350-62
  • Agarwal S, van Cappellen WA, Guénolé A, et al. Atp-dependent and independent functions of Rad54 in genome maintenance. J Cell Biol 2011;192(5):735-50
  • Tarsounas M, Davies D, West SC. Brca2-dependent and independent formation of Rad51 nuclear foci. Oncogene 2003;22(8):1115-23
  • Lok BH, Powell SN. Molecular pathways: understanding the role of Rad52 in homologous recombination for therapeutic advancement. Clin Cancer Res 2012;18(23):6400-6
  • Ceballos SJ, Heyer W-D. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim Biophys Acta 2011;1809(9):509-23
  • Haber JE. The many interfaces of Mre11. Cell 1998;95(5):583-6
  • Nelms BE, Maser RS, MacKay JF, et al. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 1998;280(5363):590-2
  • Williams RS, Williams JS, Tainer JA. Mre11–Rad50–Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 2007;85(4):509-20
  • Stracker TH, Petrini JHJ. The Mre11 complex: starting FROM the ends. Nat Rev Mol Cell Biol 2011;12(2):90-103
  • Lee J-H, Mand MR, Deshpande RA, et al. Ataxia telangiectasia-mutated (Atm) kinase activity is regulated by Atp-driven conformational changes in the Mre11/Rad50/Nbs1 (Mrn) complex. J Biol Chem 2013;288(18):12840-51
  • Paull TT. Making the best of the loose ends: mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection. DNA Repair (Amst) 2010;9(12):1283-91
  • Stewart GS, Maser RS, Stankovic T, et al. The DNA double-strand break repair gene Hmre11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 1999;99(6):577-87
  • Girard P-M, Foray N, Stumm M, et al. Radiosensitivity in nijmegen breakage syndrome cells is attributable to a repair defect and not cell cycle checkpoint defects. Cancer Res 2000;60(17):4881-8
  • O’Malley BW, Li D, Carney J, et al. Molecular disruption of the Mrn(95) complex induces radiation sensitivity in head and neck cancer. Laryngoscope 2003;113(9):1588-94
  • Araki K, Yamashita T, Reddy N, et al. Molecular disruption of Nbs1 with targeted gene delivery enhances chemosensitisation in head and neck cancer. Br J Cancer 2010;103(12):1822-30
  • Abuzeid WM, Jiang X, Shi G, et al. Molecular disruption of Rad50 sensitizes human tumor cells to cisplatin-based chemotherapy. J Clin Invest 2009;119(7):1974-85
  • Tran HM, Shi G, Li G, et al. Mutant Nbs1 enhances cisplatin-induced DNA damage and cytotoxicity in head and neck cancer. Otolaryngol Head Neck Surg 2004;131(4):477-84
  • Zhong Z-H, Jiang W-Q, Cesare AJ, et al. Disruption of telomere maintenance by depletion of the Mre11/Rad50/Nbs1 complex in cells that use alternative lengthening of telomeres. J Biol Chem 2007;282(40):29314-22
  • Takemura H, Rao VA, Sordet O, et al. Defective Mre11-dependent activation of Chk2 by ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks. J Biol Chem 2006;281(41):30814-23
  • Yuan S-SF, Hou M-F, Hsieh Y-C, et al. Role of Mre11 in cell proliferation, tumor invasion, and DNA repair in breast cancer. J Natl Cancer Inst 2012;104(19):1485-502
  • Kawashima T, Kagawa S, Kobayashi N, et al. Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res 2004;10(1):285-92
  • Kuroda S, Fujiwara T, Shirakawa Y, et al. Telomerase-dependent oncolytic adenovirus sensitizes human cancer cells to ionizing radiation via inhibition of DNA repair machinery. Cancer Res 2010;70(22):9339-48
  • Taki M, Kagawa S, Nishizaki M, et al. Enhanced oncolysis by a tropism-modified telomerase-specific replication-selective adenoviral agent Obp-405 (‘Telomelysin-Rgd’). Oncogene 2005;24(19):3130-40
  • Nemunaitis J, Tong AW, Nemunaitis M, et al. A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther 2010;18(2):429-34
  • Rink L, Slupianek A, Stoklosa T, et al. Enhanced phosphorylation of Nbs1, a member of DNA repair/checkpoint complex Mre11-Rad50-Nbs1, can be targeted to increase the efficacy of imatinib mesylate against Bcr/Abl-positive leukemia cells. Blood 2007;110(2):651-60
  • Dote H, Burgan WE, Camphausen K, et al. Inhibition of Hsp90 compromises the DNA damage response to radiation. Cancer Res 2006;66(18):9211-20
  • Lee JH, Choy ML, Ngo L, et al. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci USA 2010;107(33):14639-44
  • Chen X, Wong P, Radany EH, et al. Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of Rad51 protein and inhibition of homology-directed repair in multiple myeloma. Mol Cancer Res 2012;10(8):1052-64
  • Dupre A, Boyer-Chatenet L, Sattler RM, et al. A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nat Chem Biol 2008;4(2):119-25
  • Garner KM, Pletnev AA, Eastman A. Corrected structure of Mirin, a small-molecule inhibitor of the Mre11-Rad50-Nbs1 complex. Nat Chem Biol 2009;5(3):129-30
  • Ying S, Hamdy FC, Helleday T. Mre11-dependent degradation of stalled DNA replication forks is prevented by Brca2 and Parp1. Cancer Res 2012;72(11):2814-21
  • Wyman C, Lebbink J, Kanaar R. Mre11–Rad50 complex crystals suggest molecular calisthenics. DNA Repair (Amst) 2011;10(10):1066-70
  • Givalos N, Gakiopoulou H, Skliri M, et al. Replication protein A is an independent prognostic indicator with potential therapeutic implications in colon cancer. Mod Pathol 2007;20(2):159-66
  • Dahai Y, Sanyuan S, Hong L, et al. A relationship between replication protein A and occurrence and prognosis of esophageal carcinoma. Cell Biochem Biophys 2013;67(1):175-80
  • Levidou G, Gakiopoulou H, Kavantzas N, et al. Prognostic significance of replication protein A (Rpa) expression levels in bladder urothelial carcinoma. BJU Int 2011;108(2b):E59-65
  • Tomkiel JE, Alansari H, Tang N, et al. Autoimmunity to the Mr 32,000 subunit of replication protein A in breast cancer. Clin Cancer Res 2002;8(3):752-8
  • Kanakis D, Levidou G, Gakiopoulou H, et al. Replication protein A: a reliable biologic marker of prognostic and therapeutic value in human astrocytic tumors. Hum Pathol 2011;42(10):1545-53
  • Brosey CA, Yan C, Tsutakawa SE, et al. A new structural framework for integrating replication protein A into DNA processing machinery. Nucleic Acids Res 2013; In press
  • Dodson GE, Shi Y, Tibbetts RS. DNA replication defects, spontaneous DNA damage, and Atm-dependent checkpoint activation in replication protein A-deficient cells. J Biol Chem 2004;279(32):34010-14
  • Zou Y, Liu Y, Wu X, et al. Functions of human replication protein A (Rpa): from DNA replication to DNA damage and stress responses. J Cell Physiol 2006;208(2):267-73
  • Fanning E, Klimovich V, Nager AR. A dynamic model for replication Protein A (Rpa) function in DNA processing pathways. Nucleic Acids Res 2006;34(15):4126-37
  • Fisher LA, Bessho M, Wakasugi M, et al. Role of interaction of Xpf with Rpa in nucleotide excision repair. J Mol Biol 2011;413(2):337-46
  • Stauffer ME, Chazin WJ. Physical interaction between replication Protein A and Rad51 promotes exchange on single-stranded DNA. J Biol Chem 2004;279(24):25638-45
  • Perrault R, Cheong N, Wang H, et al. Rpa facilitates rejoining of DNA double-strand breaks in an in vitro assay utilizing genomic DNA as substrate. Int J Radiat Biol 2001;77(5):593-607
  • Banerjee P, deJesus R, Gjoerup O, et al. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein Rpa. PLoS Pathog 2013;9(10):e1003725
  • Andrews BJ, Turchi JJ. Development of a high-throughput screen for inhibitors of replication protein A and its role in nucleotide excision repair. Mol Cancer Ther 2004;3(4):385-91
  • Souza-Fagundes EM, Frank AO, Feldkamp MD, et al. A high-throughput fluorescence polarization anisotropy assay for the 70n domain of replication protein A. Anal Biochem 2012;421(2):742-9
  • Shuck SC, Turchi JJ. Targeted inhibition of replication protein A reveals cytotoxic activity, synergy with chemotherapeutic DNA-damaging agents, and insight into cellular function. Cancer Res 2010;70(8):3189-98
  • Anciano Granadillo VJ, Earley JN, Shuck SC, et al. Targeting the Ob-folds of replication protein A with small molecules. J Nucleic Acids 2010;2010(2010):304035
  • Neher TM, Bodenmiller D, Fitch RW, et al. Novel irreversible small molecule inhibitors of replication protein A display single-agent activity and synergize with cisplatin. Mol Cancer Ther 2011;10(10):1796-806
  • Oakley GG, Tillison K, Opiyo SA, et al. Physical interaction between replication protein A (Rpa) and Mrn: involvement of Rpa2 phosphorylation and the N-terminus of Rpa1. Biochemistry 2009;48(31):7473-81
  • Wong JMS, Ionescu D, Ingles CJ. Interaction between Brca2 and replication protein A is compromised by a cancer-predisposing mutation in Brca2. Oncogene 2003;22(1):28-33
  • Jackson D, Dhar K, Wahl JK, et al. Analysis of the human replication protein A:rad52 complex: evidence for crosstalk between Rpa32, Rpa70, Rad52 and DNA. J Mol Biol 2002;321(1):133-48
  • Doherty KM, Sommers JA, Gray MD, et al. Physical and functional mapping of the replication protein A interaction domain of the werner and bloom syndrome helicases. J Biol Chem 2005;280(33):29494-505
  • Glanzer JG, Liu S, Oakley GG. Small molecule inhibitor of the Rpa70 N-terminal protein interaction domain discovered using in silico and in vitro methods. Bioorg Med Chem 2011;19(8):2589-95
  • Patrone JD, Kennedy JP, Frank AO, et al. Discovery of protein–protein interaction inhibitors of replication protein A. ACS Med Chem Lett 2013;4(7):601-5
  • Roy R, Chun J, Powell SN. Brca1 and Brca2: different roles in a common pathway of genome protection. Nat Rev Cancer 2012;12(1):68-78
  • Qing Y, Yamazoe M, Hirota K, et al. The epistatic relationship between Brca2 and the Other Rad51 mediators in homologous recombination. PLoS Genet 2011;7(7):e1002148
  • Dhillon KK, Swisher EM, Taniguchi T. Secondary mutations of Brca1/2 and drug resistance. Cancer Sci 2011;102(4):663-9
  • Papeo G, Casale E, Montagnoli A, et al. Parp inhibitors in cancer therapy: an update. Expert Opin Ther Patents 2013;23(4):503-14
  • Campeau P, Foulkes W, Tischkowitz M. Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 2008;124(1):31-42
  • Pal T, Permuth-Wey J, Betts JA, et al. Brca1 and Brca2 mutations account for a large proportion of ovarian carcinoma cases. Cancer 2005;104(12):2807-16
  • Yu D, Sekine E, Fujimori A, et al. Down regulation of Brca2 causes radio-sensitization of human tumor cells in vitro and in vivo. Cancer Sci 2008;99(4):810-15
  • Rytelewski M, Ferguson PJ, Vareki SM, et al. Inhibition of Brca2 and thymidylate synthase creates multidrug sensitive tumor cells via the induction of combined "complementary lethality". Mol Ther Nucleic Acids 2013;2:e78
  • Patel KJ, Yu VPCC, Lee H, et al. Involvement of Brca2 in DNA repair. Mol Cell 1998;1(3):347-57
  • Xu X, Weaver Z, Linke SP, et al. Centrosome amplification and a defective G2–M cell cycle checkpoint induce genetic instability in Brca1 exon 11 isoform–deficient cells. Mol Cell 1999;3(3):389-95
  • Wang B, Matsuoka S, Ballif BA, et al. Abraxas and Rap80 Form a Brca1 protein complex required for the DNA damage response. Science 2007;316(5828):1194-8
  • Lokesh GL, Muralidhara BK, Negi SS, et al. Thermodynamics of phosphopeptide tethering to Brct:  the structural minima for inhibitor design. J Am Chem Soc 2007;129(35):10658-9
  • Yuan Z, Kumar EA, Kizhake S, et al. Structure–activity relationship studies to probe the phosphoprotein binding site on the carboxy terminal domains of the breast cancer susceptibility gene 1. J Med Chem 2011;54(12):4264-8
  • Pessetto Z, Yan Y, Bessho T, et al. Inhibition of Brct(Brca1)-phosphoprotein interaction enhances the cytotoxic effect of olaparib in breast cancer cells: a proof of concept study for synthetic lethal therapeutic option. Breast Cancer Res Treat 2012;134(2):511-17
  • Yuan Z, Kumar EA, Campbell SJ, et al. Exploiting the P-1 pocket of Brct domains toward a structure guided inhibitor design. ACS Med Chem Lett 2011;2(10):764-7
  • Simeonov A, Yasgar A, Jadhav A, et al. Dual-fluorophore quantitative high-throughput screen for inhibitors of brct–phosphoprotein interaction. Anal Biochem 2008;375(1):60-70
  • Wang Y, Taniguchi T. Micrornas and DNA damage response: implications for cancer therapy. Cell Cycle 2013;12(1):32-42
  • Moskwa P, Buffa FM, Pan Y, et al. Mir-182-mediated downregulation of Brca1 impacts DNA repair and sensitivity to parp inhibitors. Mol Cell 2011;41(2):210-20
  • Chang S, Wang R-H, Akagi K, et al. Tumor suppressor Brca1 epigenetically controls oncogenic microrna-155. Nat Med 2011;17(10):1275-82
  • Bader AG, Brown D, Stoudemire J, et al. Developing therapeutic micrornas for cancer. Gene Ther 2011;18(12):1121-6
  • Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009;8(8):627-44
  • McNamara CR, Degterev A. Small-molecule inhibitors of the Pi3k signaling network. Future Med Chem 2011;3(5):549-65
  • Maira S-M, Pecchi S, Huang A, et al. Identification and characterization of Nvp-Bkm120, an orally available pan-class I Pi3-kinase inhibitor. Mol Cancer Ther 2012;11(2):317-28
  • Ibrahim YH, García-García C, Serra V, et al. Pi3k inhibition impairs Brca1/2 expression and sensitizes Brca-proficient triple-negative breast cancer to Parp inhibition. Cancer Discov 2012;2(11):1036-47
  • Juvekar A, Burga LN, Hu H, et al. Combining a Pi3k inhibitor with a Parp inhibitor provides an effective therapy for Brca1-related breast cancer. Cancer Discov 2012;2(11):1048-63
  • Glendenning J, Tutt A. Parp inhibitors – current status and the walk towards early breast cancer. Breast 2011;20(S3):S12-19
  • Johnson N, Cai D, Kennedy RD, et al. Cdk1 participates in Brca1-dependent S phase checkpoint control in response to DNA damage. Mol Cell 2009;35(3):327-39
  • Johnson N, Li Y-C, Walton ZE, et al. Compromised Cdk1 activity sensitizes brca-proficient cancers to Parp inhibition. Nat Med 2011;17(7):875-82
  • Raghavan P, Tumati V, Yu L, et al. Azd5438, an inhibitor of Cdk1, 2, and 9, enhances the radiosensitivity of non-small cell lung carcinoma cells. Int J Radiat Oncol Biol Phys 2012;84(4):e507-e14
  • Thurn KT, Thomas S, Moore A, et al. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol 2011;7(2):263-83
  • Stiborová M, Eckschlager T, Poljaková J, et al. The synergistic effects of DNA-targeted chemotherapeutics and histone deacetylase inhibitors as therapeutic strategies for cancer treatment. Curr Med Chem 2012;19(25):4218-38
  • Weberpals J, Garbuio K, O’Brien A, et al. The DNA repair proteins Brca1 and Ercc1 as predictive markers in sporadic ovarian cancer. Int J Cancer 2009;124(4):806-15
  • Weberpals JI, O’Brien AM, Niknejad N, et al. The effect of the histone deacetylase inhibitor M344 on Brca1 expression in breast and ovarian cancer cells. Cancer Cell Int 2011;11:29
  • Burkitt K, Ljungman M. Phenylbutyrate interferes with the fanconi anemia and Brca pathway and sensitizes head and neck cancer cells to cisplatin. Mol Cancer 2008;7:24
  • Zhang Y, Carr T, Dimtchev A, et al. Attenuated DNA damage repair by trichostatin a through Brca1 suppression. Radiat Res 2007;168(1):115-24
  • Kachhap SK, Rosmus N, Collis SJ, et al. Downregulation of homologous recombination DNA repair genes by Hdac inhibition in prostate cancer is mediated through the E2f1 transcription factor. PLoS One 2010;5(6):e11208
  • Konsoula Z, Cao H, Velena A, et al. Adamantanyl-histone deacetylase inhibitor H6caha exhibits favorable pharmacokinetics and augments prostate cancer radiation sensitivity. Int J Radiat Oncol Biol Phys 2011;79(5):1541-8
  • Adimoolam S, Sirisawad M, Chen J, et al. Hdac inhibitor Pci-24781 decreases Rad51 expression and inhibits homologous recombination. Proc Natl Acad Sci USA 2007;104(49):19482-7
  • Trepel J, Mollapour M, Giaccone G, et al. Targeting the dynamic Hsp90 complex in cancer. Nat Rev Cancer 2010;10(8):537-49
  • Camphausen K, Tofilon PJ. Inhibition of Hsp90: a multitarget approach to radiosensitization. Clin Cancer Res 2007;13(15):4326-30
  • Dungey FA, Caldecott KW, Chalmers AJ. Enhanced radiosensitization of human glioma cells by combining inhibition of poly(Adp-Ribose) polymerase with inhibition of heat shock protein 90. Mol Cancer Ther 2009;8(8):2243-54
  • Noguchi M, Yu D, Hirayama R, et al. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Biochem Biophys Res Commun 2006;351(3):658-63
  • Stecklein SR, Kumaraswamy E, Behbod F, et al. Brca1 and Hsp90 cooperate in homologous and non-homologous DNA double-strand-break repair and G2/M checkpoint activation. Proc Natl Acad Sci USA 2012;109(34):13650-5
  • Motegi A, Murakawa Y, Takeda S. The vital link between the Ubiquitin–proteasome pathway and DNA repair: impact on cancer therapy. Cancer Lett 2009;283(1):1-9
  • Murakawa Y, Sonoda E, Barber LJ, et al. Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells. Cancer Res 2007;67(18):8536-43
  • Neri P, Ren L, Gratton K, et al. Bortezomib-induced “Brcaness” sensitizes multiple myeloma cells to Parp inhibitors. Blood 2011;118(24):6368-79
  • Yarde DN, Oliveira V, Mathews L, et al. Targeting the fanconi anemia/Brca pathway circumvents drug resistance in multiple Myeloma. Cancer Res 2009;69(24):9367-75
  • Cron KR, Zhu K, Kushwaha DS, et al. Proteasome inhibitors block DNA repair and radiosensitize non-small cell lung cancer. PLoS One 2013;8(9):e73710
  • Krawczyk PM, Eppink B, Essers J, et al. Mild hyperthermia inhibits homologous recombination, induces Brca2 degradation, and sensitizes cancer cells to poly (Adp-Ribose) polymerase-1 inhibition. Proc Natl Acad Sci USA 2011;108(24):9851-6
  • Eppink B, Krawczyk PM, Stap J, et al. Hyperthermia-induced DNA Repair deficiency suggests novel therapeutic anti-cancer strategies. Int J Hyperthermia 2012;28(6):509-17
  • Mazin AV, Mazina OM. Rad51 is a key protein of DNA repair and homologous recombination in humans. In: Panasci L, Aloyz R, Alaoui-Jamali M, editors, Advances in DNA repair in cancer therapy. Springer, New York; 2013. p. 281-302
  • Tsuzuki T, Fujii Y, Sakumi K, et al. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA 1996;93(13):6236-40
  • Lim DS, Hasty P. A. Mutation in mouse Rad51 results in an early embryonic lethal that is suppressed by a mutation in P53. Mol Cell Biol 1996;16(12):7133-43
  • Sonoda E, Sasaki MS, Buerstedde J-M, et al. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 1998;17(2):598-608
  • Maacke H, Jost K, Opitz S, et al. DNA repair and recombination factor Rad51 is over-expressed in human pancreatic adenocarcinoma. Oncogene 2000;19(23):2791-5
  • Maacke H, Opitz S, Jost K, et al. Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int J Cancer 2000;88(6):907-13
  • Martin RW, Orelli BJ, Yamazoe M, et al. Rad51 up-regulation bypasses Brca1 function and is a common feature of Brca1-deficient breast tumors. Cancer Res 2007;67(20):9658-65
  • Mitra A, Jameson C, Barbachano Y, et al. Overexpression of Rad51 occurs in aggressive prostatic cancer. Histopathology 2009;55(6):696-704
  • Takenaka T, Yoshino I, Kouso H, et al. Combined evaluation of Rad51 and Ercc1 expressions for sensitivity to platinum agents in non-small cell lung cancer. Int J Cancer 2007;121(4):895-900
  • Li Y, Yu H, Luo R-Z, et al. Elevated expression of Rad51 is correlated with decreased survival in resectable esophageal squamous cell carcinoma. J Surg Oncol 2011;104(6):617-22
  • Connell PP, Jayathilaka K, Haraf DJ, et al. Pilot study examining tumor expression of Rad51 and clinical outcomes in human head cancers. Int J Oncol 2006;28(5):1113-19
  • Welsh JW, Ellsworth RK, Kumar R, et al. Rad51 protein expression and survival in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2009;74(4):1251-5
  • Wang JY, Ho T, Trojanek J, et al. Impaired homologous recombination dna repair and enhanced sensitivity to DNA damage in prostate cancer cells exposed to anchorage-independence. Oncogene 2005;24(23):3748-58
  • Klein HL. The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (Amst) 2008;7(5):686-93
  • Qiao GB, Wu YL, Yang XN, et al. High-level expression of Rad51 Is an independent prognostic marker of survival in non-small-cell lung cancer patients. Br J Cancer 2005;93(1):137-43
  • Tennstedt P, Fresow R, Simon R, et al. Rad51 overexpression is a negative prognostic marker for colorectal adenocarcinoma. Int J Cancer 2013;132(9):2118-26
  • Barbano R, Copetti M, Perrone G, et al. High Rad51 Mrna expression characterize estrogen receptor-positive/progesteron receptor-negative breast cancer and is associated with patient’s outcome. Int J Cancer 2011;129(3):536-45
  • Hansen LT, Lundin C, Spang-Thomsen M, et al. The role of Rad51 in etoposide (Vp16) resistance in small cell lung cancer. Int J Cancer 2003;105(4):472-9
  • Hannay JAF, Liu J, Zhu Q-S, et al. Rad51 overexpression contributes to chemoresistance in human soft tissue sarcoma cells: a role for P53/activator protein 2 transcriptional regulation. Mol Cancer Ther 2007;6(5):1650-60
  • Yang Z, Waldman AS, Wyatt MD. Expression and regulation of Rad51 mediate cellular responses to chemotherapeutics. Biochem Pharmacol 2012;83(6):741-6
  • Vispé S, Cazaux C, Lesca C, et al. Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. Nucleic Acids Res 1998;26(12):2859-64
  • Kim TM, Ko JH, Hu L, et al. Rad51 mutants cause replication defects and chromosomal instability. Mol Cell Biol 2012;32(18):3663-80
  • Taki T, Ohnishi T, Yamamoto A, et al. Antisense inhibition of the Rad51 enhances radiosensitivity. Biochem Biophys Res Commun 1996;223(2):434-8
  • Ohnishi T, Taki T, Hiraga S, et al. In vitro and in vivo potentiation of radiosensitivity of malignant gliomas by antisense inhibition of the Rad51 gene. Biochem Biophys Res Commun 1998;245(2):319-24
  • Sak A, Stueben G, Groneberg M, et al. Targeting of Rad51-dependent homologous recombination: implications for the radiation sensitivity of human lung cancer cell lines. Br J Cancer 2005;92(6):1089-97
  • Choudhury A, Zhao H, Jalali F, et al. Targeting homologous recombination using imatinib results in enhanced tumor cell chemosensitivity and radiosensitivity. Mol Cancer Ther 2009;8(1):203-13
  • Tsai M-S, Kuo Y-H, Chiu Y-F, et al. Down-regulation of Rad51 expression overcomes drug resistance to gemcitabine in human non–small-cell lung cancer cells. J Pharmacol Exp Ther 2010;335(3):830-40
  • Ito M, Yamamoto S, Nimura K, et al. Rad51 sirna delivered by Hvj envelope vector enhances the anti-cancer effect of cisplatin. J Gene Med 2005;7(8):1044-52
  • Kiyohara E, Tamai K, Katayama I, et al. The combination of chemotherapy with Hvj-E containing Rad51 Sirna elicited diverse anti-tumor effects and synergistically suppressed melanoma. Gene Ther 2012;19(7):734-41
  • Saydam O, Saydam N, Glauser DL, et al. Hsv-1 amplicon-mediated post-transcriptional inhibition of Rad51 sensitizes human glioma cells to ionizing radiation. Gene Ther 2007;14(15):1143-51
  • Du L-Q, Wang Y, Wang H, et al. Knockdown of Rad51 expression induces radiation- and chemo-sensitivity in osteosarcoma cells. Med Oncol 2011;28(4):1481-7
  • Collis SJ, Tighe A, Scott SD, et al. Ribozyme minigene-mediated Rad51 down-regulation increases radiosensitivity of human prostate cancer cells. Nucleic Acids Res 2001;I9(7):1534-8
  • Cerbinskaite A, Mukhopadhyay A, Plummer ER, et al. Defective homologous recombination in human cancers. Cancer Treat Rev 2012;38(2):89-100
  • Raderschall E, Stout K, Freier S, et al. Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res 2002;62(1):219-25
  • Hine CM, Seluanov A, Gorbunova V. Use of the Rad51 promoter for targeted anti-cancer therapy. Proc Natl Acad Sci USA 2008;105(52):20810-15
  • Hine CM, Seluanov A, Gorbunova V. Rad51 promoter-targeted gene therapy is effective for in vivo visualization and treatment of cancer. Mol Ther 2012;20(2):347-55
  • Fong V, Osterbur M, Capella C, et al. Adenoviral vector driven by a minimal Rad51 promoter is selective for P53-deficient tumor cells. PLoS One 2011;6(12):e28714
  • Slupianek A, Hoser G, Majsterek I, et al. Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G2/M phase, and protection from apoptosis. Mol Cell Biol 2002;22(12):4189-201
  • Slupianek A, Schmutte C, Tombline G, et al. Bcr/Abl regulates mammalian reca homologs, resulting in drug resistance. Mol Cell 2001;8(4):795-806
  • Chen G, Yuan S-SF, Liu W, et al. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires Atm and C-Abl. J Biol Chem 1999;274(18):12748-52
  • Russell JS, Brady K, Burgan WE, et al. Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 2003;63(21):7377-83
  • Welsh JW, Mahadevan D, Ellsworth R, et al. The C-Met receptor tyrosine kinase inhibitor Mp470 radiosensitizes glioblastoma cells. Radiat Oncol 2009;4:69
  • Zhao H, Luoto KR, Meng AX, et al. The receptor tyrosine kinase inhibitor amuvatinib (Mp470) sensitizes tumor cells to radio- and chemo-therapies in part by inhibiting homologous recombination. Radiother Oncol 2011;101(1):59-65
  • Ko J-C, Ciou S-C, Jhan J-Y, et al. Roles of Mkk1/2-Erk1/2 and phosphoinositide 3-kinase–Akt signaling pathways in erlotinib-induced Rad51 suppression and cytotoxicity in human non–small cell lung cancer cells. Mol Cancer Res 2009;7(8):1378-89
  • Qi W, Cooke LS, Stejskal A, et al. Mp470, a novel receptor tyrosine kinase inhibitor, in combination with erlotinib inhibits the her family/Pi3k/Akt pathway and tumor growth in prostate cancer. BMC Cancer 2009;9:142
  • Ko J-C, Hong J-H, Wang L-H, et al. Role of repair protein Rad51 in regulating the response to gefitinib in human non-small cell lung cancer cells. Mol Cancer Ther 2008;7(11):3632-41
  • Chen R-S, Jhan J-Y, Su Y-J, et al. Emodin enhances gefitinib-induced cytotoxicity Via Rad51 downregulation and Erk1/2 inactivation. Exp Cell Res 2009;315(15):2658-72
  • Du L-Q, Du X-Q, Bai J-Q, et al. Methotrexate-mediated inhibition of Rad51 expression and homologous recombination in cancer cells. J Cancer Res Clin Oncol 2012;138(5):811-18
  • Blattmann C, Oertel S, Ehemann V, et al. Enhancement of radiation response in osteosarcoma and rhabomyosarcoma cell lines by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 2010;78(1):237-45
  • Chinnaiyan P, Vallabhaneni G, Armstrong E, et al. Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 2005;62(1):223-9
  • Ko J-C, Chen H-J, Huang Y-C, et al. Hsp90 inhibition induces cytotoxicity via down-regulation of Rad51 expression and DNA repair capacity in non-small cell lung cancer cells. Regul Toxicol Pharmacol 2012;64(3):415-24
  • Yao Q, Weigel B, Kersey J. Synergism between etoposide and 17-Aag in leukemia cells: critical roles for Hsp90, Flt3, topoisomerase Ii, Chk1, and Rad51. Clin Cancer Res 2007;13(5):1591-600
  • Parsels LA, Morgan MA, Tanska DM, et al. Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther 2009;8(1):45-54
  • Liu Q, Jiang H, Liu Z, et al. Berberine radiosensitizes human esophageal cancer cells by downregulating homologous recombination repair protein Rad51. PLoS One 2011;6(8):e23427
  • Wang Y, Huang J-W, Calses P, et al. Mir-96 downregulates Rev1 and Rad51 to promote cellular sensitivity to cisplatin and Parp inhibition. Cancer Res 2012;72(16):4037-46
  • Schäfer HS, Agami R, van Haaften G. Effect of microrna-124 on homologous recombination protein Rad51 and glioblastoma cells undergoing radiation. J Clin Oncol 2012;30(Suppl):abstract e13515
  • Chen P-L, Chen C-F, Chen Y, et al. The Brc repeats in Brca2 are critical for Rad51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci USA 1998;95(9):5287-92
  • Wong AKC, Pero R, Ormonde PA, et al. Rad51 interacts with the evolutionarily conserved Brc motifs in the human breast cancer susceptibility gene Brca2. J Biol Chem 1997;272(51):31941-4
  • Pellegrini L, Yu DS, Lo T, et al. Insights into DNA recombination from the structure of a Rad51-Brca2 complex. Nature 2002;420(6913):287-93
  • Chen C-F, Chen P-L, Zhong Q, et al. Expression of Brc repeats in breast cancer cells disrupts the Brca2-Rad51 complex and leads to radiation hypersensitivity and loss of G2/M checkpoint control. J Biol Chem 1999;274(46):32931-5
  • Nomme J, Takizawa Y, Martinez SF, et al. Inhibition of filament formation of human Rad51 protein by a small peptide derived from the Brc-motif of the Brca2 protein. Genes Cells 2008;13(5):471-81
  • Nomme J, Renodon-CornieÌre A, Asanomi Y, et al. Design of potent inhibitors of human Rad51 recombinase based on Brc motifs of Brca2 protein: modeling and experimental validation of a chimera peptide. J Med Chem 2010;53(15):5782-91
  • Martinez SF, Renodon-Cornière A, Nomme J, et al. Targeting human rad51 by specific DNA aptamers induces inhibition of homologous recombination. Biochimie 2010;92(12):1832-8
  • Gaudin D, Yielding KL. Response of a “resistant” plasmacytoma to alkylating agents and x-ray in combination with the “excision” repair inhibitors caffeine and chloroquine. Exp Biol Med 1969;131(4):1413-16
  • Sarkaria JN, Busby EC, Tibbetts RS, et al. Inhibition of Atm and Atr kinase activities by the radiosensitizing agent, caffeine. Cancer Res 1999;59(17):4375-82
  • Jirmanova L, Bulavin DV, Fornace AJ. Inhibition of the Atr/Chk1 pathway induces a P38-dependent s-phase delay in mouse embryonic stem cells. Cell Cycle 2005;4(10):1428-34
  • Cortez D. Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (Atm) and Atm- and Rad3-related (Atr) protein kinases. J Biol Chem 2003;278(39):37139-45
  • Nesrin AA, Zhao-Chong Z, Jun G, et al. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in Xrcc2 and Xrcc3 mutants. Oncogene 2000;19(50):5788-800
  • Wang H, Boecker W, Wang H, et al. Caffeine inhibits homology-directed repair of I-Scei-induced DNA double-strand breaks. Oncogene 2004;23(3):824-34
  • Abraham J, Lemmers B, Hande MP, et al. Eme1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO J 2003;22(22):6137-47
  • Zelensky AN, Sanchez H, Ristic D, et al. Caffeine suppresses homologous recombination through interference with Rad51-mediated joint molecule formation. Nucleic Acids Res 2013;41(13):6475-89
  • Ishida T, Takizawa Y, Kainuma T, et al. Dids, a chemical compound that inhibits Rad51-mediated homologous pairing and strand exchange. Nucleic Acids Res 2009;37(10):3367-76
  • Lamont KR, Hasham MG, Donghia NM, et al. Attenuating homologous recombination stimulates an aid-induced antileukemic effect. J Exp Med 2013;210(5):1021-33
  • Pamenter ME, Perkins GA, Gu XQ, et al. Dids (4,4-diisothiocyanatostilbenedisulphonic acid) induces apoptotic cell death in a hippocampal neuronal cell line and is not neuroprotective against ischemic stress. PLoS One 2013;8(4):e60804
  • Takaku M, Kainuma T, Ishida-Takaku T, et al. Halenaquinone, a chemical compound that specifically inhibits the secondary DNA binding of Rad51. Genes Cells 2011;16(4):427-36
  • Cao S, Foster C, Brisson M, et al. Halenaquinone and xestoquinone derivatives, inhibitors of Cdc25b phosphatase from a xestospongia Sp. Bioorg Med Chem 2005;13(4):999-1003
  • Fujiwara H, Matsunaga K, Saito M, et al. Halenaquinone, a novel phosphatidylinositol 3-kinase inhibitor from a marine sponge, induces apoptosis in Pc12 cells. Eur J Pharmacol 2001;413(1):37-45
  • Huang F, Motlekar NA, Burgwin CM, et al. Identification of specific inhibitors of human Rad51 recombinase using high-throughput screening. ACS Chem Biol 2011;6(6):628-35
  • Huang F, Mazina OM, Zentner IJ, et al. Inhibition of homologous recombination in human cells by targeting Rad51 recombinase. J Med Chem 2012;55(7):3011-20
  • Budke B, Logan HL, Kalin JH, et al. Ri-1: a chemical inhibitor of Rad51 that disrupts homologous recombination in human cells. Nucleic Acids Res 2012;40(15):7347-57
  • Modesti M, Ristic D, van der Heijden T, et al. Fluorescent human Rad51 reveals multiple nucleation sites and filament segments tightly associated along a single DNA molecule. Structure 2007;15(5):599-609
  • Meindl A, Hellebrand H, Wiek C, et al. Germline mutations in breast and ovarian cancer pedigrees establish Rad51c as a human cancer susceptibility gene. Nat Genet 2010;42(5):410-14
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46(1–3):3-26
  • Budke B, Kalin JH, Pawlowski M, et al. An optimized Rad51 inhibitor that disrupts homologous recombination without requiring michael acceptor reactivity. J Med Chem 2012;56(1):254-63
  • Zhu J, Zhou L, Wu G, et al. A novel small molecule Rad51 inactivator Overcomes imatinib-resistance in chronic myeloid leukaemia. EMBO Mol Med 2013;5(3):353-65
  • Sigurdsson S, Van Komen S, Bussen W, et al. Mediator function of the human Rad51b–Rad51c complex in Rad51/Rpa-catalyzed DNA strand exchange. Genes Dev 2001;15(24):3308-18
  • Bishop DK, Ear U, Bhattacharyya A, et al. Xrcc3 Is required for assembly of Rad51 complexes in vivo. J Biol Chem 1998;273(34):21482-8
  • Liu N, Lamerdin JE, Tebbs RS, et al. Xrcc2 and Xrcc3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell 1998;1(6):783-93
  • Takata M, Sasaki MS, Tachiiri S, et al. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 2001;21(8):2858-66
  • Godthelp BC, Wiegant WW, van Duijn-Goedhart A, et al. Mammalian Rad51c contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability. Nucleic Acids Res 2002;30(10):2172-82
  • Xu Z-Y, Loignon M, Han F-Y, et al. Xrcc3 induces cisplatin resistance by stimulation of Rad51-related recombinational repair, S-Phase checkpoint activation, and reduced apoptosis. J Pharmacol Exp Ther 2005;314(2):495-505
  • Connell PP, Siddiqui N, Hoffman S, et al. A hot spot for Rad51c interactions revealed by a peptide that sensitizes cells to cisplatin. Cancer Res 2004;64(9):3002-5
  • Min A, Im S-A, Yoon Y-K, et al. Rad51c-deficient cancer cells are highly sensitive to the Parp inhibitor olaparib. Mol Cancer Ther 2013;12(6):865-77
  • Rijkers T, Van Den Ouweland J, Morolli B, et al. Targeted inactivation of mouse Rad52 reduces homologous recombination but not resistance to ionizing radiation. Mol Cell Biol 1998;18(11):6423-9
  • Yamaguchi-Iwai Y, Sonoda E, Buerstedde J-M, et al. Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in Rad52. Mol Cell Biol 1998;18(11):6430-5
  • Shinohara A, Ogawa T. Stimulation by Rad52 of Yeast Rad51-mediated recombination. Nature 1998;391(6665):404-7
  • Holloman WK. Unraveling the mechanism of Brca2 in homologous recombination. Nat Struct Mol Biol 2011;18(7):748-54
  • Feng Z, Scott SP, Bussen W, et al. Rad52 inactivation is synthetically lethal with Brca2 deficiency. Proc Natl Acad Sci USA 2011;108(2):686-91
  • Lok BH, Carley AC, Tchang B, et al. Rad52 inactivation is synthetically lethal with deficiencies in Brca1 and Palb2 in addition to Brca2 through Rad51-mediated homologous recombination. Oncogene 2013;32(30):3552-8
  • Zhang F, Ma J, Wu J, et al. Palb2 Links Brca1 and Brca2 in the DNA-damage response. Curr Biol 2009;19(6):524-9
  • Cramer-Morales K, Nieborowska-Skorska M, Scheibner K, et al. Personalized synthetic lethality induced by targeting Rad52 in Leukemias identified by gene mutation and expression profile. Blood 2013;122(7):1293-304
  • Brosh Jr, RM. DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 2013;13(8):542-58
  • Bernstein KA, Gangloff S, Rothstein R. The Recq DNA helicases in DNA repair. Annu Rev Genet 2010;44(1):393-417
  • Parvathaneni S, Stortchevoi A, Sommers JA, et al. Human Recq1 interacts with Ku70/80 and modulates DNA end-joining of double-strand breaks. PLoS One 2013;8(5):e62481
  • Sharma S, Brosh RM. Human Recq1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges. PLoS One 2007;2(12):e1297
  • Mendoza-Maldonado R, Faoro V, Bajpai S, et al. The human RECQ1 helicase is highly expressed in glioblastoma and plays an important role in tumor cell proliferation. Mol Cancer 2011;10:83
  • Arai A, Chano T, Futami K, et al. Recql1 and Wrn proteins are potential therapeutic targets in head and neck squamous cell carcinoma. Cancer Res 2011;71(13):4598-607
  • Popuri V, Croteau DL, Brosh JRM, et al. Recq1 is required for cellular resistance to replication stress and catalyzes strand exchange on stalled replication fork structures. Cell Cycle 2012;11(22):4252-65
  • Mao FJ, Sidorova JM, Lauper JM, et al. The human Wrn and Blm Recq helicases differentially regulate cell proliferation and survival after chemotherapeutic DNA damage. Cancer Res 2010;70(16):6548-55
  • Aggarwal M, Sommers JA, Shoemaker RH, et al. Inhibition of helicase activity by a small molecule impairs Werner Syndrome Helicase (Wrn) function in the cellular response to DNA damage or replication stress. Proc Natl Acad Sci USA 2011;108(4):1525-30
  • Wu L, Davies SL, Levitt NC, et al. Potential role for the Blm helicase in recombinational repair via a conserved interaction with Rad51. J Biol Chem 2001;276(22):19375-81
  • Bachrati CZ, Borts RH, Hickson ID. Mobile D-loops are a preferred substrate for the Bloom’s syndrome helicase. Nucleic Acids Res 2006;34(8):2269-79
  • Wu L, Hickson ID. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 2003;426(6968):870-4
  • Nguyen Giang H, Dexheimer Thomas S, Rosenthal Andrew S, et al. A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem Biol 2013;20(1):55-62
  • Rosenthal AS, Dexheimer TS, Gileadi O, et al. Synthesis and Sar studies of 5-(Pyridin-4-Yl)-1,3,4-thiadiazol-2-amine derivatives as potent inhibitors of bloom helicase. Bioorg Med Chem Lett 2013;23(20):5660-6
  • Aggarwal M, Brosh RM. Hitting the bull’s eye: novel directed cancer therapy through helicase-targeted synthetic lethality. J Cell Biochem 2009;106(5):758-63
  • Wyman C, Kanaar R. DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 2006;40(1):363-83
  • Deakyne JS, Huang F, Negri J, et al. Analysis of the activities of Rad54, a Swi2/Snf2 protein, using a specific small-molecule inhibitor. J Biol Chem 2013; In Press
  • Jenkins C, Kan J, Hoatlin ME. Targeting the fanconi anemia pathway to identify tailored anticancer therapeutics. Anemia 2012;2012:481583
  • Jun DW, Hwang M, Kim HJ, et al. Ouabain, a cardiac glycoside, inhibits the fanconi anemia/brca pathway activated by DNA interstrand cross-linking agents. PLoS One 2013;8(10):e75905
  • Essers J, Hendriks RW, Swagemakers SMA, et al. Disruption of mouse Rad54 reduces ionizing radiation resistance and homologous recombination. Cell 1997;89(2):195-204
  • Essers J, van Steeg H, de Wit J, et al. Homologous and non-homologous recombination differentially affect DNA damage repair in mice. EMBO J 2000;19(7):1703-10
  • Wesoly J, Agarwal S, Sigurdsson S, et al. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol Cell Biol 2006;26(3):976-89

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.