273
Views
12
CrossRef citations to date
0
Altmetric
Reviews

An oncogenic kinase: putting PAK5 forward

, &

Bibliography

  • Manser E, Leung T, Salihuddin H, et al. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994;367(6458):40-6
  • Field J, Manser E. The PAKs come of age: celebrating 18 years of discovery. Cell Logist 2012;2(2):54-8
  • Dan C, Nath N, Liberto M, et al. PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Mol Cell Biol 2002;22(2):567-77
  • Pandey A, Dan I, Kristiansen TZ, et al. Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene 2002;21(24):3939-48
  • Wu X, Frost JA. Multiple Rho proteins regulate the subcellular targeting of PAK5. Biochem Biophys Res Commun 2006;351(2):328-35
  • Ching YP, Leong VY, Wong CM, et al. Identification of an autoinhibitory domain of p21-activated protein kinase 5. J Biol Chem 2003;278(36):33621-4
  • Dart AE, Wells CM. P21-activated kinase 4-not just one of the PAK. Eur J Cell Biol 2013;92(4-5):129-38
  • Minden A. PAK4-6 in cancer and neuronal development. Cell Logist 2012;2(2):95-104
  • Daniels RH, Bokoch GM. p21-activated protein kinase: a crucial component of morphological signaling? Trends Biochem Sci 1999;24(9):350-5
  • Sells MA, Knaus UG, Bagrodia S, et al. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol 1997;7(3):202-10
  • Cau J, Faure S, Comps M, et al. A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization. J Cell Biol 2001;155(6):1029-42
  • Luo T, Xu Y, Hoffman TL, et al. Inca: a novel p21-activated kinase-associated protein required for cranial neural crest development. Development 2007;134(7):1279-89
  • Ye DZ, Field J. PAK signaling in cancer. Cell Logist 2012;2(2):105-16
  • Wells CM, Jones GE. The emerging importance of group II PAKs. Biochem J 2010;425(3):465-73
  • Dummler B, Ohshiro K, Kumar R, et al. Pak protein kinases and their role in cancer. Cancer Metastasis Rev 2009;28(1-2):51-63
  • Gong W, An Z, Wang Y, et al. P21-activated kinase 5 is overexpressed during colorectal cancer progression and regulates colorectal carcinoma cell adhesion and migration. Int J Cancer 2009;125(3):548-55
  • Salom E, Penalver M, Homesley H, et al. Correlation of pretreatment drug induced apoptosis in ovarian cancer cells with patient survival and clinical response. J Transl Med 2012;10:162
  • Li D, Yao X, Zhang P. The overexpression of P21-activated kinase 5 (PAK5) promotes paclitaxel-chemoresistance of epithelial ovarian cancer. Mol Cell Biochem 2013;383(1-2):191-9
  • Wang XX, Cheng Q, Zhang SN, et al. PAK5-Egr1-MMP2 signaling controls the migration and invasion in breast cancer cell. Tumour Biol 2013;34(5):2721-9
  • Han ZX, Wang XX, Zhang SN, et al. Downregulation of PAK5 inhibits glioma cell migration and invasion potentially through the PAK5-Egr1-MMP2 signaling pathway. Brain Tumor Pathol 2013. [ Epub ahead of print]
  • Whale A, Hashim FN, Fram S, et al. Signalling to cancer cell invasion through PAK family kinases. Front Biosci 2011;16:849-64
  • Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995;81(1):53-62
  • Nikolic M. The role of Rho GTPases and associated kinases in regulating neurite outgrowth. Int J Biochem Cell Biol 2002;34(7):731-45
  • Kozma R, Sarner S, Ahmed S, et al. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 1997;17(3):1201-11
  • Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett 2008;582(14):2093-101
  • Daniels RH, Hall PS, Bokoch GM. Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells. EMBO J 1998;17(3):754-64
  • Li X, Minden A. Targeted disruption of the gene for the PAK5 kinase in mice. Mol Cell Biol 2003;23(20):7134-42
  • Nekrasova T, Jobes ML, Ting JH, et al. Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in learning and locomotion. Dev Biol 2008;322(1):95-108
  • Strochlic TI, Concilio S, Viaud J, et al. Identification of neuronal substrates implicates Pak5 in synaptic vesicle trafficking. Proc Nat Acad Sci USA 2012;109(11):4116-21
  • Lim L, Manser E, Leung T, et al. Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways. Eur J Biochem 1996;242(2):171-85
  • Timm T, Matenia D, Li XY, et al. Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis 2006;3(4-5):207-17
  • Matenia D, Griesshaber B, Li XY, et al. PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Mol Biol Cell 2005;16(9):4410-22
  • Wong LE, Reynolds AB, Dissanayaka NT, et al. p120-catenin is a binding partner and substrate for Group B Pak kinases. J Cell Biochem 2010;110(5):1244-54
  • Tkach V, Bock E, Berezin V. The role of RhoA in the regulation of cell morphology and motility. Cell Motil Cytoskeleton 2005;61(1):21-33
  • Ichii T, Takeichi M. p120-catenin regulates microtubule dynamics and cell migration in a cadherin-independent manner. Genes Cells 2007;12(7):827-39
  • Guo X, Stafford LJ, Bryan B, et al. A Rac/Cdc42-specific exchange factor, GEFT, induces cell proliferation, transformation, and migration. J Biol Chem 2003;278(15):13207-15
  • Bryan B, Kumar V, Stafford LJ, et al. GEFT, a Rho family guanine nucleotide exchange factor, regulates neurite outgrowth and dendritic spine formation. J Biol Chem 2004;279(44):45824-32
  • Wang X, Gong W, Qing H, et al. p21-activated kinase 5 inhibits camptothecin-induced apoptosis in colorectal carcinoma cells. Tumour Biol 2010;31(6):575-82
  • Giroux V, Iovanna JL, Garcia S, et al. Combined inhibition of PAK7, MAP3K7 and CK2alpha kinases inhibits the growth of MiaPaCa2 pancreatic cancer cell xenografts. Cancer Gene Ther 2009;16(9):731-40
  • Giroux V, Iovanna J, Dagorn JC. Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. FASEB J 2006;20(12):1982-91
  • Cotteret S, Jaffer ZM, Beeser A, et al. p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol Cell Biol 2003;23(16):5526-39
  • Cotteret S, Chernoff J. Nucleocytoplasmic shuttling of Pak5 regulates its antiapoptotic properties. Mol Cell Biol 2006;26(8):3215-30
  • Gnesutta N, Qu J, Minden A. The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis. J Biol Chem 2001;276(17):14414-19
  • Tang Y, Zhou H, Chen A, et al. The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem 2000;275(13):9106-9
  • Majewski M, Nieborowska-Skorska M, Salomoni P, et al. Activation of mitochondrial Raf-1 is involved in the antiapoptotic effects of Akt. Cancer Res 1999;59(12):2815-19
  • Jakobi R, Moertl E, Koeppel MA. p21-activated protein kinase gamma-PAK suppresses programmed cell death of BALB3T3 fibroblasts. J Biol Chem 2001;276(20):16624-34
  • Wu X, Carr HS, Dan I, et al. p21 activated kinase 5 activates Raf-1 and targets it to mitochondria. J Cell Biochem 2008;105(1):167-75
  • Beeser A, Jaffer ZM, Hofmann C, et al. Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J Biol Chem 2005;280(44):36609-15
  • Jin S, Zhuo Y, Guo W, et al. p21-activated Kinase 1 (Pak1)-dependent phosphorylation of Raf-1 regulates its mitochondrial localization, phosphorylation of BAD, and Bcl-2 association. J Biol Chem 2005;280(26):24698-705
  • Zcharia E, Atzmon R, Nagler A, et al. Inhibition of matrix metalloproteinase-2 by halofuginone is mediated by the Egr1 transcription factor. Anticancer Drugs 2012;23(10):1022-31
  • Lee MH, Yang HY. Regulators of G1 cyclin-dependent kinases and cancers. Cancer Metastasis Rev 2003;22(4):435-49
  • Ferraz C, Lorenz S, Wojtas B, et al. Inverse correlation of miRNA and cell cycle-associated genes suggests influence of miRNA on benign thyroid nodule tumorigenesis. J Clin Endocrinol Metab 2013;98(1):E8-16
  • Sherr CJ. Cancer cell cycles. Science 1996;274(5293):1672-7
  • Blomberg I, Hoffmann I. Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol 1999;19(9):6183-94
  • Gu J, Li K, Li M, et al. A role for p21-activated kinase 7 in the development of gastric cancer. FEBS J 2013;280(1):46-55
  • Fang ZP, Jiang BG, Gu XF, et al. P21-activated kinase 5 plays essential roles in the proliferation and tumorigenicity of human hepatocellular carcinoma. Acta Pharmacol Sin 2014;35(1):82-8
  • Niehof M, Borlak J. RSK4 and PAK5 are novel candidate genes in diabetic rat kidney and brain. Mol Pharmacol 2005;67(3):604-11
  • Jaffer ZM, Chernoff J. p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol 2002;34(7):713-17
  • Abo A, Qu J, Cammarano MS, et al. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J 1998;17(22):6527-40
  • Yang F, Li X, Sharma M, et al. Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem 2001;276(18):15345-53
  • Wen YY, Wang XX, Pei DS, et al. p21-Activated kinase 5: a pleiotropic kinase. Bioorg Med Chem Lett 2013;23(24):6636-9
  • Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature 2007;446(7132):153-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.