1,201
Views
57
CrossRef citations to date
0
Altmetric
Reviews

Potential targets in the discovery of new hair growth promoters for androgenic alopecia

&

Bibliography

  • Randall VA. Androgens and human hair growth. Clin Endocrinol (Oxf) 1994;40(4):439-57
  • Suraj R, Rejitha G, Anbu Jeba SB, et al. In vivo hair growth activity of Prunus dulcis seeds in rats. Biol Med 2009;1(4):34-8
  • Tobin DJ. The biogenesis and growth of human hair. In: Tobin DJ, editor. Hair in toxicology-an important bio-monitor. RSC Publishing, Cambridge; 2005
  • Meidan VM, Touitou E. Treatments for androgenetic alopecia and alopecia areata: current options and future prospects. Drugs 2001;61(1):53-69
  • Botchkarev VA, Paus R. Molecular biology of hair morphogenesis: development and cycling. J Exp Zool B Mol Dev Evol 2003;298(1):164-80
  • Messenger AG. The control of hair growth: an overview. J Invest Dermatol 1993;101:4S-9S
  • Rho S-S, Park S-J, Hwang S-L, et al. The hair growth promoting effect of Asiasari radix extract and its molecular regulation. J Dermatol Sci 2005;38(2):89-97
  • Alonso L, Fuchs E. The hair cycle. J Cell Sci 2006;119(3):391-3
  • Huh S, Lee J, Jung E, et al. A cell-based system for screening hair growth-promoting agents. Arch Dermatol Res 2009;301(5):381-5
  • Randall VA. Androgens and hair growth. Dermatol Ther 2008;21(5):314-28
  • Cotsarelis G, Millar SE. Towards a molecular understanding of hair loss and its treatment. Trends Mol Med 2001;7(7):293-301
  • Trüeb RM. Molecular mechanisms of androgenetic alopecia. Exp Gerontol 2002;37(8):981-90
  • Randall VA, Botchkareva NV. The biology of hair growth. In: Ahluwalia GA, editor. Cosmetic applications of laser and light based systems. William Andrew Inc., NY, USA; 2008. p. 3-35
  • Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med 1999;341(7):491-7
  • Dinh QQ, Sinclair R. Female pattern hair loss: current treatment concepts. Clin Interv Aging 2007;2(2):189
  • Stough D, Stenn K, Haber R, et al. Psychological effect, pathophysiology, and management of androgenetic alopecia in men. Mayo Clin Proc 2005;80(10):1316-22
  • Tsuboi R. Growth factors and hair growth. J Invest Dermatol 1997;4(2):103-8
  • Kamimura A, Takahashi T. Procyanidin B-3, isolated from barley and identified as a hair-growth stimulant, has the potential to counteract inhibitory regulation by TGF-beta1. Exp Dermatol 2002;11(6):532-41
  • Price VH. Androgenetic alopecia in women. J Investig Dermatol Symp Proc 2003;18:24-7
  • Ellis JA, Sinclair R, Harrap SB. Androgenetic alopecia: pathogenesis and potential for therapy. Expert Rev Mol Med 2002;2(1):1-11
  • Itami S, Inui S. Role of androgen in mesenchymal epithelial interactions in human hair follicle. J Investig Dermatol Symp Proc 2005;10(3):209-11
  • DeVillez RL, Jacobs JP, Szpunar CA, Warner ML. Androgenetic alopecia in the female: treatment with 2% topical minoxidil solution. Arch Dermatol 1994;130(3):303
  • Hamada K, Thornton MJ, Laing I, et al. The metabolism of testosterone by dermal papilla cells cultured from human pubic and axillary hair follicles concurs with hair growth in 5α-reductase deficiency. J Invest Dermatol 1996;106(5):1017-22
  • Kwack MH, Sung YK, Chung EJ, et al. Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J Invest Dermatol 2007;128(2):262-9
  • Azzouni F, Godoy A, Li Y, Mohler J. The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol 2011;2012, article ID 530121, 18 pages
  • Iino M, Ehama R, Nakazawa Y, et al. Adenosine stimulates fibroblast growth factor-7 gene expression via adenosine A2b receptor signaling in dermal papilla cells. J Invest Dermatol 2007;127(6):1318-25
  • Takahashi T, Kamimura A, Hamazono-Matsuoka T, Honda S. Phosphatidic acid has a potential to promote hair growth in vitro and in vivo, and activates mitogen-activated protein kinase/extracellular signal-regulated kinase kinase in hair epithelial cells. J Invest Dermatol 2003;121(3):448-56
  • Kumar T, Chaiyasut C, Rungseevijitprapa W, Suttajit M. Screening of steroid 5alpha-reductase inhibitory activity and total phenolic content of Thai plants. J Med Plant Res 2011;5:1265-71
  • Battmann T, Bonfils A, Branche C, et al. RU 58841, a new specific topical antiandrogen: a candidate of choice for the treatment of acne, androgenetic alopecia and hirsutism. J Steroid Biochem Mol Biol 1994;48(1):55-60
  • Hiipakka RA, Zhang H-Z, Dai W, et al. Structure–activity relationships for inhibition of human 5alpha-reductases by polyphenols. Biochem Pharmacol 2002;63(6):1165-76
  • Chen W, Orfanos C. The 5alpha-recluctase system and its inhibitors. Dermatology 1996;193(3):177-84
  • Bayne E, Flanagan J, Einstein M, et al. Immunohistochemical localization of types 1 and 2 5alpha-reductase in human scalp. Br J Dermatol 1999;141:481-91
  • Murata K, Noguchi K, Kondo M, et al. Inhibitory activities of Puerariae Flos against testosterone 5alpha-reductase and its hair growth promotion activities. J Nat Med 2012;66(1):158-65
  • Raynaud J-P, Cousse H, Martin P-M. Inhibition of type 1 and type 2 5alpha-reductase activity by free fatty acids, active ingredients of Permixon®. J Steroid Biochem Mol Biol 2002;82(2):233-9
  • Liu J, Kurashiki K, Shimizu K, Kondo R. Structure–activity relationship for inhibition of 5alpha-reductase by triterpenoids isolated from Ganoderma lucidum. Bioorg Med Chem 2006;14:8654-60
  • Pais P. Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5alpha-reductase II. Adv Ther 2010;27(8):555-63
  • Kim Y-U, Son HK, Song HK, et al. Inhibition of 5alpha-reductase activity by diarylheptanoids from Alpinia officinarum. Planta Med 2003;69(01):72-4
  • Seo E-K, Kim KH, Kim MK, et al. Inhibitors of 5alpha-reductase type I in LNCaP cells from the roots of Angelica koreana. Planta Med 2002;68(02):162-3
  • Park W-S, Lee C-H, Lee B-G, Chang I-S. The extract of Thujae occidentalis semen inhibited 5α-reductase and androchronogenetic alopecia of B6CBAF1/j hybrid mouse. J Dermatol Sci 2003;31(2):91-8
  • Jain R, Monthakantirat O, Tengamnuay P, De-Eknamkul W. Avicequinone C isolated from Avicennia marina exhibits 5α-reductase-type 1 inhibitory activity using an androgenic alopecia relevant cell-based assay system. Molecules 2014;19(5):6809-21
  • Aggarwal S, Thareja S, Verma A, et al. An overview on 5alpha-reductase inhibitors. Steroids 2010;75(2):109-53
  • Yamana K, Labrie F. Human type 3 5alpha-reductase is expressed in peripheral tissues at higher levels than types 1 and 2 and its activity is potently inhibited by finasteride and dutasteride. Horm Mol Biol Clin Invest 2010;2(3):293-9
  • Occhiato EG, Guarna A, Danza G, Serio M. Selective non-steroidal inhibitors of 5α-reductase type 1. J Steroid Biochem Mol Biol 2004;88(1):1-16
  • Hirosumi J, Nakayama O, Fagan T, et al. FK143, a novel nonsteroidal inhibitor of steroid 5α-reductase: in vitro effects on human and animal prostatic enzymes. J Steroid Biochem Mol Biol 1995;52(4):357-63
  • Matsuda H, Yamazaki M, Naruto S, et al. Anti-androgenic and hair growth promoting activities of Lygodii spora (spore of Lygodium japonicum) I. Active constituents inhibiting testosterone 5alpha-reductase. Biol Pharm Bull 2002;25(5):622-6
  • Li Y-H, Yang Y-F, Li K, et al. 5 alpha-reductase and aromatase inhibitory constituents from Brassica rapa L. pollen. Chem Pharm Bull (Toyko) 2009;57(4):401-4
  • Shimizu K, Kondo R, Sakai K, et al. Steroid 5alpha-reductase inhibitory activity and hair regrowth effects of an extract from Boehmeria nipononivea. Biosci Biotechnol Biochem 2000;64(4):875-7
  • Pandit S, Chauhan NS, Dixit V. Effect of Cuscuta reflexa Roxb on androgen-induced alopecia. J Cosmet Dermatol 2008;7(3):199-204
  • Park WS, Son ED, Nam GW, et al. Torilin from Torilis japonica, as a new inhibitor of testosterone 5alpha-reductase. Planta Med 2003;69(05):459-61
  • Roell D, Baniahmad A. The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth. Mol Cell Endocrinol 2011;332(1):1-8
  • Roh S-S, Kim CD, Lee M-H, et al. The hair growth promoting effect of Sophora flavescens extract and its molecular regulation. J Dermatol Sci 2002;30(1):43-9
  • Bovee TF, Schoonen WG, Hamers AR, et al. Screening of synthetic and plant-derived compounds for (anti) estrogenic and (anti) androgenic activities. Anal Bioanal Chem 2008;390(4):1111-19
  • Le HT, Schaldach CM, Firestone GL, Bjeldanes LF. Plant-derived 3, 3′-diindolylmethane is a strong androgen antagonist in human prostate cancer cells. J Biol Chem 2003;278(23):21136-45
  • Fang H, Tong W, Branham WS, et al. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor. Chem Res Toxicol 2003;16(10):1338-58
  • Wakeling A, Furr B, Glen A, Hughes L. Receptor binding and biological activity of steroidal and nonsteroidal antiandrogens. J Steroid Biochem 1981;15:355-9
  • Starka L, Hampl R, Bičíková M, et al. Steroids with modified ring A or B. screening for potential antiandrogenic and synandrogenic activity. J Steroid Biochem 1980;13(4):455-60
  • Wong C-I, Kelce WR, Sar M, Wilson EM. Androgen receptor antagonist versus agonist activities of the fungicide vinclozolin relative to hydroxyflutamide. J Biol Chem 1995;270(34):19998-20003
  • Papaioannou M, Schleich S, Roell D, et al. NBBS isolated from Pygeum africanum bark exhibits androgen antagonistic activity, inhibits AR nuclear translocation and prostate cancer cell growth. Invest New Drugs 2010;28(6):729-43
  • Li H, Ren X, Leblanc E, et al. Identification of novel androgen receptor antagonists using structure-and ligand-based methods. J Chem Inf Model 2013;53(1):123-30
  • Cha T-L, Qiu L, Chen C-T, et al. Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Res 2005;65(6):2287-95
  • Stan SD, Singh SV. Transcriptional repression and inhibition of nuclear translocation of androgen receptor by diallyl trisulfide in human prostate cancer cells. Clin Cancer Res 2009;15(15):4895-903
  • Park SY, Kwack MH, Chung EJ, et al. Establishment of SV40T-transformed human dermal papilla cells and identification of dihydrotestosterone-regulated genes by cDNA microarray. J Dermatol Sci 2007;47(3):201-8
  • Rasmusson GH, Reynolds GF, Steinberg NG, et al. Azasteroids: structure-activity relationships for inhibition of 5. alpha.-reductase and of androgen receptor binding. J Med Chem 1986;29(11):2298-315
  • Cho C-H, Bae J-S, Kim Y-U. 5alpha-reductase inhibitory components as antiandrogens from herbal medicine. J Acupunct Meridian Stud 2010;3(2):116-18
  • Kumar N, Rungseevijitprapa W, Narkkhong N-A, et al. 5alpha-reductase inhibition and hair growth promotion of some Thai plants traditionally used for hair treatment. J Ethnopharmacol 2012;139(3):765-71
  • Hirata N, Tokunaga M, Naruto S, et al. Testosterone 5alpha-reductase inhibitory active constituents of Piper nigrum leaf. Biol Pharm Bull 2007;30(12):2402-5
  • Roh S-S, Park M-K, Kim Y-U. Abietic acid from Resina pini of Pinus species as a testosterone 5alpha-reductase inhibitor. J Health Sci 56(4):451-5
  • Lesuisse D, Berjonneau J, Ciot C, et al. Determination of oenothein B as the active 5-α-reductase-inhibiting principle of the folk medicine Epilobium parviflorum. J Nat Prod 1996;59: 5 490-2
  • Shimizu K, Fukuda M, Kondo R, Sakai K. The 5alpha-reductase inhibitory components from heartwood of Artocarpus incisus: structure-activity investigations. Planta Med 2000;66(1):16-19
  • Ishiguro K, Oku H, Kato T. Testosterone 5alpha-reductase inhibitor bisnaphthoquinone derivative from Impatiens balsamina. Phytother Res 2000;14(1):54-6
  • Sawaya ME. Alopecia-the search for novel agents continues. Expert Opin Ther Pat 1997;7(8):859-72
  • Singh SM, Gauthier S, Labrie F. Androgen receptor antagonists (antiandrogens) structure-activity relationships. Curr Med Chem 2000;7(2):211-47
  • Térouanne B, Paris F, Servant N, et al. Evidence that chlormadinone acetate exhibits antiandrogenic activity in androgen-dependent cell line. Mol Cell Endocrinol 2002;198(1):143-7
  • Paris F, Rabeolina F, Balaguer P, et al. Antiandrogenic activity of norgestimate in a human androgen-dependent stable-transfected cell line. Gynecol Endocrinol 2007;23(4):193-7
  • Mitchell LH, Hu L-Y, Nguyen M, et al. Diphenyl ethers as androgen receptor antagonists for the topical suppression of sebum production. Bioorg Med Chem Lett 2009;19(8):2176-8
  • Mitchell L, Wang Z, Hu L-Y, et al. 4-(Alkylthio)-and 4-(arylthio)-benzonitrile derivatives as androgen receptor antagonists for the topical suppression of sebum production. Bioorg Med Chem Lett 2009;19(5):1310-13
  • Sexton KE, Barrett S, Bridgwood K, et al. Pantolactams as androgen receptor antagonists for the topical suppression of sebum production. Bioorg Med Chem Lett 2011;21(18):5230-3
  • Van Camp JA, Hu L-Y, Kostlan C, et al. Preparation of 4-aryl-2-trifluoromethylbenzonitrile derivatives as androgen receptor antagonists for topical suppression of sebum production. Bioorg Med Chem Lett 2007;17(20):5529-32
  • Battmann T, Branche C, Bouchoux F, et al. Pharmacological profile of RU 58642, a potent systemic antiandrogen for the treatment of androgen-dependent disorders. J Steroid Biochem Mol Biol 1998;64(1-2):103-11
  • Liu J, Shimizu K, Konishi F, et al. The anti-androgen effect of ganoderol B isolated from the fruiting body of Ganoderma lucidum. Bioorg Med Chem 2007;15(14):4966-72
  • Siddique HR, Mishra SK, Karnes RJ, Saleem M. Lupeol, a novel androgen receptor inhibitor: implications in prostate cancer therapy. Clin Cancer Res 2011;17(16):5379-91
  • Paris F, Balaguer P, Térouanne B, et al. Phenylphenols, biphenols, bisphenol-A and 4-tert-octylphenol exhibit alpha and beta estrogen activities and antiandrogen activity in reporter cell lines. Mol Cell Endocrinol 2002;193(1):43-9
  • Zierau O, Morrissey C, Watson RWG, et al. Antiandrogenic activity of the phytoestrogens naringenin, 6-(1, 1-dimethylallyl) naringenin and 8-prenylnaringenin. Planta Med 2003;69(9):856-8
  • Guo J, Jiang C, Wang Z, et al. A novel class of pyranocoumarin anti–androgen receptor signaling compounds. Mol Cancer Ther 2007;6(3):907-17
  • Lee HJ, Chattopadhyay S, Gong E-Y, et al. Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol Sci 2003;75(1):40-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.