884
Views
76
CrossRef citations to date
0
Altmetric
Reviews

Targeting Hsp90 and its co-chaperones to treat Alzheimer’s disease

, MS, , PhD & , PhD

Bibliography

  • Pearl LH, Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 2006;75:271-94
  • Echeverria PC, Bernthaler A, Dupuis P, et al. An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 2011;6(10):e26044
  • Didenko T, Duarte AM, Karagoz GE, Rudiger SG. Hsp90 structure and function studied by NMR spectroscopy. Biochim Biophys Acta 2012;1823(3):636-47
  • Picard D. Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 2002;59(10):1640-8
  • Chen B, Piel WH, Gui L, et al. The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 2005;86(6):627-37
  • Barginear MF, Van Poznak C, Rosen N, et al. The heat shock protein 90 chaperone complex: an evolving therapeutic target. Curr Cancer Drug Targets 2008;8(6):522-32
  • Blagg BS, Kerr TD. Hsp90 inhibitors: small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation. Med Res Rev 2006;26(3):310-38
  • Sreedhar AS, Kalmar E, Csermely P, Shen YF. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 2004;562(1-3):11-15
  • Grad I, Cederroth CR, Walicki J, et al. The molecular chaperone Hsp90alpha is required for meiotic progression of spermatocytes beyond pachytene in the mouse. PLoS One 2010;5(12):e15770
  • Voss AK, Thomas T, Gruss P. Mice lacking HSP90beta fail to develop a placental labyrinth. Development 2000;127(1):1-11
  • Kakeda M, Arock M, Schlapbach C, Yawalkar N. Increased expression of heat shock protein 90 in keratinocytes and mast cells in patients with psoriasis. J Am Acad Dermatol 2014;70(4):683-90; e1
  • Tian WL, He F, Fu X, et al. High expression of heat shock protein 90 alpha and its significance in human acute leukemia cells. Gene 2014;542(2):122-8
  • Quanz M, Herbette A, Sayarath M, et al. Heat shock protein 90alpha (Hsp90alpha) is phosphorylated in response to DNA damage and accumulates in repair foci. J Biol Chem 2012;287(12):8803-15
  • Wang X, Song X, Zhuo W, et al. The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy. Proc Natl Acad Sci USA 2009;106(50):21288-93
  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82(4):239-59
  • Iqbal K, Liu F, Gong CX, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 2010;7(8):656-64
  • Blair LJ, Nordhues BA, Hill SE, et al. Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest 2013;123(10):4158-69
  • Luo W, Dou F, Rodina A, et al. Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci USA 2007;104(22):9511-16
  • Dickey CA, Kamal A, Lundgren K, et al. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 2007;117(3):648-58
  • Zhao H, Michaelis ML, Blagg BS. Hsp90 modulation for the treatment of Alzheimer’s disease. Adv Pharmacol 2012;64:1-25
  • Guerreiro RJ, Gustafson DR, Hardy J. The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiol Aging 2012;33(3):437-56
  • Dewji NN, Do C. Heat shock factor-1 mediates the transcriptional activation of Alzheimer’s beta-amyloid precursor protein gene in response to stress. Brain Res Mol Brain Res 1996;35(1-2):325-8
  • Ansar S, Burlison JA, Hadden MK, et al. A non-toxic Hsp90 inhibitor protects neurons from Abeta-induced toxicity. Bioorg Med Chem Lett 2007;17(7):1984-90
  • Chen Y, Wang B, Liu D, et al. Hsp90 chaperone inhibitor 17-AAG attenuates Abeta-induced synaptic toxicity and memory impairment. J Neurosci 2014;34(7):2464-70
  • Ho SW, Tsui YT, Wong TT, et al. Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) in transgenic mouse models of frontotemporal lobar degeneration and Alzheimer’s disease. Transl Neurodegener 2013;2(1):24
  • Liu L, Chan C. The role of inflammasome in Alzheimer’s disease. Ageing Res Rev 2014;15C:6-15
  • Henderson B, Pockley AG. Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 2010;88(3):445-62
  • Buchman TG, Abello PA, Smith EH, Bulkley GB. Induction of heat shock response leads to apoptosis in endothelial cells previously exposed to endotoxin. Am J Physiol 1993;265(1 Pt 2):H165-70
  • Triantafilou M, Sawyer D, Nor A, et al. Cell surface molecular chaperones as endogenous modulators of the innate immune response. Novartis Found Symp 2008;291:74-9; discussion 79-85, 137-40
  • Yang K, Shi H, Qi R, et al. Hsp90 regulates activation of interferon regulatory factor 3 and TBK-1 stabilization in Sendai virus-infected cells. Mol Biol Cell 2006;17(3):1461-71
  • Li Z, Menoret A, Srivastava P. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 2002;14(1):45-51
  • Broemer M, Krappmann D, Scheidereit C. Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation. Oncogene 2004;23(31):5378-86
  • Yang Y, Liu B, Dai J, et al. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 2007;26(2):215-26
  • Bae J, Munshi A, Li C, et al. Heat shock protein 90 is critical for regulation of phenotype and functional activity of human T lymphocytes and NK cells. J Immunol 2013;190(3):1360-71
  • Wang C, Wu L, Bulek K, et al. The psoriasis-associated D10N variant of the adaptor Act1 with impaired regulation by the molecular chaperone hsp90. Nat Immunol 2013;14(1):72-81
  • Metz K, Ezernieks J, Sebald W, Duschl A. Interleukin-4 upregulates the heat shock protein Hsp90alpha and enhances transcription of a reporter gene coupled to a single heat shock element. FEBS Lett 1996;385(1-2):25-8
  • Ambade A, Catalano D, Lim A, Mandrekar P. Inhibition of heat shock protein (molecular weight 90 kDa) attenuates proinflammatory cytokines and prevents lipopolysaccharide-induced liver injury in mice. Hepatology 2012;55(5):1585-95
  • Zhao Y, Huang ZJ, Rahman M, et al. Radicicol, an Hsp90 inhibitor, inhibits intestinal inflammation and leakage in abdominal sepsis. J Surg Res 2013;182(2):312-18
  • Rice JW, Veal JM, Fadden RP, et al. Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 2008;58(12):3765-75
  • Lisi L, McGuire S, Sharp A, et al. The novel HSP90 inhibitor, PU-H71, suppresses glial cell activation but weakly affects clinical signs of EAE. J Neuroimmunol 2013;255(1-2):1-7
  • Walsby EJ, Lazenby M, Pepper CJ, et al. The HSP90 inhibitor NVP-AUY922-AG inhibits the PI3K and IKK signalling pathways and synergizes with cytarabine in acute myeloid leukaemia cells. Br J Haematol 2013;161(1):57-67
  • Meraz-Rios MA, Toral-Rios D, Franco-Bocanegra D, et al. Inflammatory process in Alzheimer’s Disease. Front Integr Neurosci 2013;7:59
  • Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000;21(3):383-421
  • Parachikova A, Agadjanyan MG, Cribbs DH, et al. Inflammatory changes parallel the early stages of Alzheimer disease. Neurobiol Aging 2007;28(12):1821-33
  • Karagoz GE, Duarte AM, Akoury E, et al. Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell 2014;156(5):963-74
  • Li J, Buchner J. Structure, function and regulation of the hsp90 machinery. Biomed J 2013;36(3):106-17
  • Jinwal UK, Koren J III, Dickey CA. Reconstructing the Hsp90/Tau Machine. Curr Enzym Inhib 2013;9(1):41-5
  • Caplan AJ. What is a co-chaperone? Cell Stress Chaperones 2003;8(2):105-7
  • Conde R, Belak ZR, Nair M, et al. Modulation of Hsf1 activity by novobiocin and geldanamycin. Biochem Cell Biol 2009;87(6):845-51
  • Whitesell L, Mimnaugh EG, De Costa B, et al. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994;91(18):8324-8
  • Petrucelli L, Dickson D, Kehoe K, et al. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 2004;13(7):703-14
  • Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003;425(6956):407-10
  • He H, Zatorska D, Kim J, et al. Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90. J Med Chem 2006;49(1):381-90
  • Ma J, Farmer KL, Pan P, et al. Heat shock protein 70 is necessary to improve mitochondrial bioenergetics and reverse diabetic sensory neuropathy following KU-32 therapy. J Pharmacol Exp Ther 2014;348(2):281-92
  • Mahanta S, Pilla S, Paul S. Design of novel Geldanamycin analogue hsp90 alpha-inhibitor in silico for breast cancer therapy. Med Hypotheses 2013;81(3):463-9
  • Gupta UK, Mahanta S, Paul S. In silico design of small peptide-based Hsp90 inhibitor: a novel anticancer agent. Med Hypotheses 2013;81(5):853-61
  • Ernst JT, Neubert T, Liu M, et al. Identification of novel HSP90alpha/beta isoform selective inhibitors using structure-based drug design. Demonstration of potential utility in treating CNS disorders such as Huntington’s disease. J Med Chem 2014;57(8):3382-400
  • Chan CT, Reeves RE, Geller R, et al. Discovery and validation of small-molecule heat-shock protein 90 inhibitors through multimodality molecular imaging in living subjects. Proc Natl Acad Sci USA 2012;109(37):E2476-85
  • Duerfeldt AS, Peterson LB, Maynard JC, et al. Development of a Grp94 inhibitor. J Am Chem Soc 2012;134(23):9796-804
  • Patel PD, Yan P, Seidler PM, et al. Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat Chem Biol 2013;9(11):677-84
  • Suntharalingam A, Abisambra JF, O’Leary JC III, et al. Glucose-regulated protein 94 triage of mutant myocilin through endoplasmic reticulum-associated degradation subverts a more efficient autophagic clearance mechanism. J Biol Chem 2012;287(48):40661-9
  • Llauger-Bufi L, Felts SJ, Huezo H, et al. Synthesis of novel fluorescent probes for the molecular chaperone Hsp90. Bioorg Med Chem Lett 2003;13(22):3975-8
  • Kim J, Felts S, Llauger L, et al. Development of a fluorescence polarization assay for the molecular chaperone Hsp90. J Biomol Screen 2004;9(5):375-81
  • Stepanova L, Leng X, Parker SB, Harper JW. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 1996;10(12):1491-502
  • Blatch GL, Lassle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 1999;21(11):932-9
  • Mayer MP, Nikolay R, Bukau B. Aha, another regulator for hsp90 chaperones. Mol Cell 2002;10(6):1255-6
  • Kosik KS, Ahn J, Stein R, Yeh LA. Discovery of compounds that will prevent tau pathology. J Mol Neurosci 2002;19(3):261-6
  • Kosik KS. Tau protein and neurodegeneration. Mol Neurobiol 1990;4(3-4):171-9
  • Sahara N, Murayama M, Mizoroki T, et al. In vivo evidence of CHIP up-regulation attenuating tau aggregation. J Neurochem 2005;94(5):1254-63
  • Jinwal UK, Koren J III, Borysov SI, et al. The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 2010;30(2):591-9
  • Jinwal UK, Trotter JH, Abisambra JF, et al. The Hsp90 kinase co-chaperone Cdc37 regulates tau stability and phosphorylation dynamics. J Biol Chem 2011;286(19):16976-83
  • Vasko RC, Rodriguez RA, Cunningham CN, et al. Mechanistic studies of Sansalvamide A-amide: an allosteric modulator of Hsp90. ACS Med Chem Lett 2010;1(1):4-8
  • Kunicki JB, Petersen MN, Alexander LD, et al. Synthesis and evaluation of biotinylated sansalvamide A analogs and their modulation of Hsp90. Bioorg Med Chem Lett 2011;21(16):4716-19
  • Li J, Richter K, Reinstein J, Buchner J. Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nat Struct Mol Biol 2013;20(3):326-31
  • Wang X, Venable J, LaPointe P, et al. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 2006;127(4):803-15
  • Zhang T, Hamza A, Cao X, et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 2008;7(1):162-70
  • Yu Y, Hamza A, Zhang T, et al. Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 2010;79(4):542-51
  • Grover A, Agrawal V, Shandilya A, et al. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A. BMC Bioinformatics 2011;12(Suppl 13):S22
  • Jinwal UK, Miyata Y, Koren J III, et al. Chemical manipulation of hsp70 ATPase activity regulates tau stability. J Neurosci 2009;29(39):12079-88
  • Westerheide SD, Bosman JD, Mbadugha BN, et al. Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 2004;279(53):56053-60
  • Jinwal UK, Abisambra JF, Zhang J, et al. Cdc37/Hsp90 protein complex disruption triggers an autophagic clearance cascade for TDP-43 protein. J Biol Chem 2012;287(29):24814-20
  • Sinadinos C, Quraishe S, Sealey M, et al. Low endogenous and chemical induced heat shock protein induction in a 0N3Rtau-expressing Drosophila larval model of Alzheimer’s disease. J Alzheimers Dis 2013;33(4):1117-33
  • Carrigan PE, Nelson GM, Roberts PJ, et al. Multiple domains of the co-chaperone Hop are important for Hsp70 binding. J Biol Chem 2004;279(16):16185-93
  • Pimienta G, Herbert KM, Regan L. A compound that inhibits the HOP-Hsp90 complex formation and has unique killing effects in breast cancer cell lines. Mol Pharm 2011;8(6):2252-61
  • Dickey CA, Ash P, Klosak N, et al. Pharmacologic reductions of total tau levels; implications for the role of microtubule dynamics in regulating tau expression. Mol Neurodegener 2006;1:6
  • Dickey CA, Yue M, Lin WL, et al. Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 2006;26(26):6985-96
  • Arndt V, Daniel C, Nastainczyk W, et al. BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol Biol Cell 2005;16(12):5891-900
  • Alberti S, Bohse K, Arndt V, et al. The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Mol Biol Cell 2004;15(9):4003-10
  • Carrettiero DC, Hernandez I, Neveu P, et al. The cochaperone BAG2 sweeps paired helical filament- insoluble tau from the microtubule. J Neurosci 2009;29(7):2151-61
  • Sullivan WP, Owen BA, Toft DO. The influence of ATP and p23 on the conformation of hsp90. J Biol Chem 2002;277(48):45942-8
  • McLaughlin SH, Sobott F, Yao ZP, et al. The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Biol 2006;356(3):746-58
  • Chadli A, Felts SJ, Wang Q, et al. Celastrol inhibits Hsp90 chaperoning of steroid receptors by inducing fibrillization of the Co-chaperone p23. J Biol Chem 2010;285(6):4224-31
  • Patwardhan CA, Fauq A, Peterson LB, et al. Gedunin inactivates the co-chaperone p23 protein causing cancer cell death by apoptosis. J Biol Chem 2013;288(10):7313-25
  • Tebbenkamp AT, Borchelt DR. Analysis of chaperone mRNA expression in the adult mouse brain by meta analysis of the Allen Brain Atlas. PLoS One 2010;5(10):e13675
  • Moffatt NS, Bruinsma E, Uhl C, et al. Role of the cochaperone Tpr2 in Hsp90 chaperoning. Biochemistry 2008;47(31):8203-13
  • Brychzy A, Rein T, Winklhofer KF, et al. Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J 2003;22(14):3613-23
  • Smith CC, Yu YX, Kulka M, Aurelian L. A novel human gene similar to the protein kinase (PK) coding domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine-threonine PK and is expressed in melanoma cells. J Biol Chem 2000;275(33):25690-9
  • Lu PJ, Wulf G, Zhou XZ, et al. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 1999;399(6738):784-8
  • Giustiniani J, Sineus M, Sardin E, et al. Decrease of the immunophilin FKBP52 accumulation in human brains of Alzheimer’s disease and FTDP-17. J Alzheimers Dis 2012;29(2):471-83
  • Chambraud B, Sardin E, Giustiniani J, et al. A role for FKBP52 in Tau protein function. Proc Natl Acad Sci USA 2010;107(6):2658-63
  • Giustiniani J, Chambraud B, Sardin E, et al. Immunophilin FKBP52 induces Tau-P301L filamentous assembly in vitro and modulates its activity in a model of tauopathy. Proc Natl Acad Sci USA 2014;111(12):4584-9
  • Zuo Z, Dean NM, Honkanen RE. Serine/threonine protein phosphatase type 5 acts upstream of p53 to regulate the induction of p21(WAF1/Cip1) and mediate growth arrest. J Biol Chem 1998;273(20):12250-8
  • Chen MS, Silverstein AM, Pratt WB, Chinkers M. The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. J Biol Chem 1996;271(50):32315-20
  • von Kriegsheim A, Pitt A, Grindlay GJ, et al. Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nat Cell Biol 2006;8(9):1011-16
  • Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 2005;22(8):1942-50
  • Yang J, Roe SM, Cliff MJ, et al. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO J 2005;24(1):1-10
  • Harris KA, Oyler GA, Doolittle GM, et al. Okadaic acid induces hyperphosphorylated forms of tau protein in human brain slices. Ann Neurol 1993;33(1):77-87
  • Zhang Z, Simpkins JW. An okadaic acid-induced model of tauopathy and cognitive deficiency. Brain Res 2010;1359:233-46
  • Barrientos SA, Martinez NW, Yoo S, et al. Axonal degeneration is mediated by the mitochondrial permeability transition pore. J Neurosci 2011;31(3):966-78
  • Halestrap AP, Davidson AM. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 1990;268(1):153-60
  • Touma C, Gassen NC, Herrmann L, et al. FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol Psychiatry 2011;70(10):928-36
  • O’Leary JC III, Dharia S, Blair LJ, et al. A new anti-depressive strategy for the elderly: ablation of FKBP5/FKBP51. PLoS One 2011;6(9):e24840
  • Baughman G, Wiederrecht GJ, Campbell NF, et al. FKBP51, a novel T-cell-specific immunophilin capable of calcineurin inhibition. Mol Cell Biol 1995;15(8):4395-402
  • Rulten SL, Kinloch RA, Tateossian H, et al. The human FK506-binding proteins: characterization of human FKBP19. Mamm Genome 2006;17(4):322-31
  • Schulke JP, Wochnik GM, Lang-Rollin I, et al. Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors. PLoS One 2010;5(7):e11717
  • Tatro ET, Everall IP, Kaul M, Achim CL. Modulation of glucocorticoid receptor nuclear translocation in neurons by immunophilins FKBP51 and FKBP52: implications for major depressive disorder. Brain Res 2009;1286:1-12
  • Peattie DA, Harding MW, Fleming MA, et al. Expression and characterization of human FKBP52, an immunophilin that associates with the 90-kDa heat shock protein and is a component of steroid receptor complexes. Proc Natl Acad Sci USA 1992;89(22):10974-8
  • De Leon JT, Iwai A, Feau C, et al. Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells. Proc Natl Acad Sci USA 2011;108(29):11878-83
  • Sabbagh JJ, Kinney JW, Cummings JL. Animal systems in the development of treatments for Alzheimer’s disease: challenges, methods, and implications. Neurobiol Aging 2013;34(1):169-83
  • O’Leary JC III, Li Q, Marinec P, et al. Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol Neurodegener 2010;5:45
  • Pacey S, Banerji U, Judson I, Workman P. Hsp90 inhibitors in the clinic. Handb Exp Pharmacol 2006;172:331-58
  • van Veelen W, Korsse SE, van de Laar L, Peppelenbosch MP. The long and winding road to rational treatment of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling. Oncogene 2011;30(20):2289-303
  • Dickey CA, Dunmore J, Lu B, et al. HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. Faseb J 2006;20(6):753-5
  • Genin E, Reboud-Ravaux M, Vidal J. Proteasome inhibitors: recent advances and new perspectives in medicinal chemistry. Curr Top Med Chem 2010;10(3):232-56
  • Zhou D, Liu Y, Ye J, et al. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors. Toxicol Appl Pharmacol 2013;273(2):401-9
  • Riggs DL, Cox MB, Tardif HL, et al. Noncatalytic role of the FKBP52 peptidyl-prolyl isomerase domain in the regulation of steroid hormone signaling. Mol Cell Biol 2007;27(24):8658-69
  • Wang Y, Kirschner A, Fabian AK, et al. Increasing the efficiency of ligands for FK506-binding protein 51 by conformational control. J Med Chem 2013;56(10):3922-35
  • Kozany C, Marz A, Kress C, Hausch F. Fluorescent probes to characterise FK506-binding proteins. Chembiochem 2009;10(8):1402-10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.