436
Views
13
CrossRef citations to date
0
Altmetric
Review

Potential mechanisms for cell-based gene therapy to treat HIV/AIDS

, PhD & (Professor)

Bibliography

  • UNAIDS. Reports on the global AIDS epidemic. Joint united nation programme on HIV/AIDS (UNAIDS), WHO library cataloguing-in-publication data. 2013
  • Gray GE, Allen M, Moodie Z, et al. Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1 vaccine in South Africa: a double-blind, randomised, placebo-controlled test-of-concept phase 2b study. Lancet Infect Dis 2011;11:507-15
  • Hammer SM, Sobieszczyk ME, Janes H, et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med 2013;369:2083-92
  • Katlama C, Deeks SG, Autran B, et al. Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet 2013;381:2109-17
  • Llibre JM, Buzon MJ, Massanella M, et al. Treatment intensification with raltegravir in subjects with sustained HIV-1 viraemia suppression: a randomized 48-week study. Antivir Ther 2012;17:355-64
  • Perno CF, Moyle G, Tsoukas C, et al. Overcoming resistance to existing therapies in HIV-infected patients: the role of new antiretroviral drugs. J Med Virol 2008;80:565-76
  • Hutter G, Thiel E. Allogeneic transplantation of CCR5-deficient progenitor cells in a patient with HIV infection: an update after 3 years and the search for patient no. 2. AIDS 2011;25:273-4
  • Hutter G, Nowak D, Mossner M, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009;360:692-8
  • Didigu CA, Wilen CB, Wang J, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood 2014;123(1):61-9
  • Saito N, Chono H, Shibata H, et al. CD4(+) T cells modified by the endoribonuclease MazF are safe and can persist in SHIV-infected rhesus macaques. Mol Ther Nucleic Acids 2014;3:e168
  • Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014;370:901-10
  • Aviran S, Shah PS, Schaffer DV, Arkin AP. Computational models of HIV-1 resistance to gene therapy elucidate therapy design principles. PLoS Comput Biol 2010;6
  • Carter CC, McNamara LA, Onafuwa-Nuga A, et al. HIV-1 utilizes the CXCR4 chemokine receptor to infect multipotent hematopoietic stem and progenitor cells. Cell Host Microbe 2011;9:223-34
  • Sergijenko A, Langford-Smith A, Liao AY, et al. Myeloid/Microglial driven autologous hematopoietic stem cell gene therapy corrects a neuronopathic lysosomal disease. Mol Ther 2013;21:1938-49
  • Mitsuyasu RT, Merigan TC, Carr A, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 2009;15:285-92
  • Murray JM, Fanning GC, MacPherson JL, et al. Mathematical modelling of the impact of haematopoietic stem cell-delivered gene therapy for HIV. J Gene Med 2009;11:1077-86
  • Savkovic B, Nichols J, Birkett D, et al. A quantitative comparison of anti-HIV gene therapy delivered to hematopoietic stem cells versus CD4+ T cells. PLoS Comput Biol 2014;10:e1003681
  • Varela-Rohena A, Molloy PE, Dunn SM, et al. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 2008;14:1390-5
  • Joseph A, Zheng JH, Follenzi A, et al. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol 2008;82:3078-89
  • Berry LJ, Moeller M, Darcy PK. Adoptive immunotherapy for cancer: the next generation of gene-engineered immune cells. Tissue Antigens 2009;74:277-89
  • Bendle GM, Linnemann C, Hooijkaas AI, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med 2010;16:565-70. 1p
  • Walker RE, Bechtel CM, Natarajan V, et al. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 2000;96:467-74
  • Mitsuyasu RT, Anton PA, Deeks SG, et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood 2000;96:785-93
  • Vatakis DN, Arumugam B, Kim SG, et al. Introduction of exogenous T-cell receptors into human hematopoietic progenitors results in exclusion of endogenous T-cell receptor expression. Mol Ther 2013;21:1055-63
  • Baltimore D. Gene therapy. Intracellular immunization. Nature 1988;335:395-6
  • Malim MH, Bohnlein S, Hauber J, Cullen BR. Functional dissection of the HIV-1 Rev trans-activator – derivation of a trans-dominant repressor of Rev function. Cell 1989;58:205-14
  • Malim MH, Freimuth WW, Liu J, et al. Stable expression of transdominant Rev protein in human T cells inhibits human immunodeficiency virus replication. J Exp Med 1992;176:1197-201
  • Bahner I, Sumiyoshi T, Kagoda M, et al. Lentiviral vector transduction of a dominant-negative Rev gene into human CD34+ hematopoietic progenitor cells potently inhibits human immunodeficiency virus-1 replication. Mol Ther 2007;15:76-85
  • Morgan RA, Walker R, Carter CS, et al. Preferential survival of CD4+ T lymphocytes engineered with anti-human immunodeficiency virus (HIV) genes in HIV-infected individuals. Hum Gene Ther 2005;16:1065-74
  • Ranga U, Woffendin C, Verma S, et al. Enhanced T cell engraftment after retroviral delivery of an antiviral gene in HIV-infected individuals. Proc Natl Acad Sci USA 1998;95:1201-6
  • Apolloni A, Lin MH, Sivakumaran H, et al. A mutant Tat protein provides strong protection from HIV-1 infection in human CD4+ T cells. Hum Gene Ther 2013;24:270-82
  • Cara A, Rybak SM, Newton DL, et al. Inhibition of HIV-1 replication by combined expression of gag dominant negative mutant and a human ribonuclease in a tightly controlled HIV-1 inducible vector. Gene Ther 1998;5:65-75
  • Trono D, Feinberg MB, Baltimore D. HIV-1 Gag mutants can dominantly interfere with the replication of the wild-type virus. Cell 1989;59:113-20
  • Porcellini S, Alberici L, Gubinelli F, et al. The F12-Vif derivative Chim3 inhibits HIV-1 replication in CD4+ T lymphocytes and CD34+-derived macrophages by blocking HIV-1 DNA integration. Blood 2009;113:3443-52
  • Walker RCJr, Khan MA, Kao S, et al. Identification of dominant negative human immunodeficiency virus type 1 Vif mutants that interfere with the functional inactivation of APOBEC3G by virus-encoded Vif. J Virol 2010;84:5201-11
  • Luis AJ, Gonzalez MA, del Real RG, et al. Novel interfering bifunctional molecules against the CCR5 coreceptor are efficient inhibitors of HIV-1 infection. Mol Ther 2003;8:475-84
  • Cano J, Kalpana GV. Inhibition of early stages of HIV-1 assembly by INI1/hSNF5 transdominant negative mutant S6. J Virol 2011;85:2254-65
  • Reddy TR, Xu W, Mau JK, et al. Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Nat Med 1999;5:635-42
  • Marsh K, Soros V, Cochrane A. Selective translational repression of HIV-1 RNA by Sam68DeltaC occurs by altering PABP1 binding to unspliced viral RNA. Retrovirology 2008;5:97
  • Sorin M, Cano J, Das S, et al. Recruitment of a SAP18-HDAC1 complex into HIV-1 virions and its requirement for viral replication. PLoS Pathog 2009;5:e1000463
  • Cordelier P, Zern MA, Strayer DS. HIV-1 proprotein processing as a target for gene therapy. Gene Ther 2003;10:467-77
  • Goncalves J, Silva F, Freitas-Vieira A, et al. Functional neutralization of HIV-1 Vif protein by intracellular immunization inhibits reverse transcription and viral replication. J Biol Chem 2002;277:32036-45
  • Kitamura Y, Ishikawa T, Okui N, et al. Inhibition of replication of HIV-1 at both early and late stages of the viral life cycle by single-chain antibody against viral integrase. J Acquir Immune Defic Syndr Hum Retrovirol 1999;20:105-14
  • Levy-Mintz P, Duan L, Zhang H, et al. Intracellular expression of single-chain variable fragments to inhibit early stages of the viral life cycle by targeting human immunodeficiency virus type 1 integrase. J Virol 1996;70:8821-32
  • Mhashilkar AM, Bagley J, Chen SY, et al. Inhibition of HIV-1 Tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain intrabodies. EMBO J 1995;14:1542-51
  • Shaheen F, Duan L, Zhu M, et al. Targeting human immunodeficiency virus type 1 reverse transcriptase by intracellular expression of single-chain variable fragments to inhibit early stages of the viral life cycle. J Virol 1996;70:3392-400
  • Braun SE, Taube R, Zhu Q, et al. In vivo selection of CD4(+) T cells transduced with a gamma-retroviral vector expressing a single-chain intrabody targeting HIV-1 tat. Hum Gene Ther 2012;23:917-31
  • BouHamdan M, Strayer DS, Wei D, et al. Inhibition of HIV-1 infection by down-regulation of the CXCR4 co-receptor using an intracellular single chain variable fragment against CXCR4. Gene Ther 2001;8:408-18
  • Falkenhagen A, Ameli M, Asad S, et al. Gene therapy using a secreted single chain variable fragment targeting CCR5 to inhibit HIV infection. J Antivir Antiretrovir 2013;5:85-91
  • Swan CH, Buhler B, Steinberger P, et al. T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery. Gene Ther 2006;13:1480-92
  • Egelhofer M, Brandenburg G, Martinius H, et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J Virol 2004;78:568-75
  • Perez EE, Riley JL, Carroll RG, et al. Suppression of HIV-1 infection in primary CD4 T cells transduced with a self-inactivating lentiviral vector encoding a membrane expressed gp41-derived fusion inhibitor. Clin Immunol 2005;115:26-32
  • van Lunzen J, Glaunsinger T, Stahmer I, et al. Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Mol Ther 2007;15:1024-33
  • Egerer L, Volk A, Kahle J, et al. Secreted antiviral entry inhibitory (SAVE) peptides for gene therapy of HIV infection. Mol Ther 2011;19:1236-44
  • Eggink D, Berkhout B, Sanders RW. Inhibition of HIV-1 by fusion inhibitors. Curr Pharm Des 2010;16:3716-28
  • Eggink D, Langedijk JP, Bonvin AM, et al. Detailed mechanistic insights into HIV-1 sensitivity to three generations of fusion inhibitors. J Biol Chem 2009;284:26941-50
  • Coffey MJ, Woffendin C, Phare SM, et al. RANTES inhibits HIV-1 replication in human peripheral blood monocytes and alveolar macrophages. Am J Physiol 1997;272:L1025-9
  • Schroers R, Davis CM, Wagner HJ, Chen SY. Lentiviral transduction of human T-lymphocytes with a RANTES intrakine inhibits human immunodeficiency virus type 1 infection. Gene Ther 2002;9:889-97
  • Simmons G, Reeves JD, Hibbitts S, et al. Co-receptor use by HIV and inhibition of HIV infection by chemokine receptor ligands. Immunol Rev 2000;177:112-26
  • Yang AG, Zhang X, Torti F, Chen SY. Anti-HIV type 1 activity of wild-type and functional defective RANTES intrakine in primary human lymphocytes. Hum Gene Ther 1998;9:2005-18
  • Chan E, Towers GJ, Qasim W. Gene therapy strategies to exploit TRIM derived restriction factors against HIV-1. Viruses 2014;6:243-63
  • Anderson J, Akkina R. Human immunodeficiency virus type 1 restriction by human-rhesus chimeric tripartite motif 5alpha (TRIM 5alpha) in CD34(+) cell-derived macrophages in vitro and in T cells in vivo in severe combined immunodeficient (SCID-hu) mice transplanted with human fetal tissue. Hum Gene Ther 2008;19:217-28
  • Neagu MR, Ziegler P, Pertel T, et al. Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components. J Clin Invest 2009;119:3035-47
  • Lahouassa H, Daddacha W, Hofmann H, et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2012;13:223-8
  • Goldstone DC, Ennis-Adeniran V, Hedden JJ, et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 2011;480:379-82
  • Baldauf HM, Pan X, Erikson E, et al. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 2012;18:1682-7
  • Allouch A, David A, Amie SM, et al. p21-mediated RNR2 repression restricts HIV-1 replication in macrophages by inhibiting dNTP biosynthesis pathway. Proc Natl Acad Sci USA 2013;110:E3997-4006
  • Zhang J, Scadden DT, Crumpacker CS. Primitive hematopoietic cells resist HIV-1 infection via p21. J Clin Invest 2007;117:473-81
  • Lieber MR. The mechanism of human nonhomologous DNA end joining. J Biol Chem 2008;283:1-5
  • Perez EE, Wang J, Miller JC, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 2008;26:808-16
  • Wilen CB, Wang J, Tilton JC, et al. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog 2011;7:e1002020
  • Yuan J, Wang J, Crain K, et al. Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4(+) T cell resistance and enrichment. Mol Ther 2012;20:849-59
  • Qu X, Wang P, Ding D, et al. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res 2013;41:7771-82
  • Badia R, Pauls E, Riveira-Munoz E, et al. Zinc-finger endonuclease targeting PSIP-1 inhibits HIV-1 integration. Antimicrob Agents Chemother 2014;58(8):4318-27
  • Maier DA, Brennan AL, Jiang S, et al. Efficient clinical scale gene modification via zinc finger nuclease-targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther 2013;24:245-58
  • Kiem HP, Jerome KR, Deeks SG, Mccune JM. Hematopoietic-stem-cell-based gene therapy for HIV disease. Cell Stem Cell 2012;10:137-47
  • Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 2010;48:419-36
  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013;14:49-55
  • Mussolino C, Morbitzer R, Lutge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 2011;39:9283-93
  • Holkers M, Maggio I, Liu J, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 2013;41:e63
  • Fadel HJ, Morrison JH, Saenz DT, et al. TALEN knockout of the PSIP1 gene in human cells: analyses of HIV-1 replication and allosteric integrase inhibitor mechanism. J Virol 2014;88(17):9704-17
  • van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 2014;12:479-92
  • Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013;339:823-6
  • Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013;3:2510
  • Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013;31:230-2
  • Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-21
  • Sarkar I, Hauber I, Hauber J, Buchholz F. HIV-1 proviral DNA excision using an evolved recombinase. Science 2007;316:1912-15
  • Hauber I, Hofmann-Sieber H, Chemnitz J, et al. Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice. PLoS Pathog 2013;9:e1003587
  • van Lunzen J, Fehse B, Hauber J. Gene therapy strategies: can we eradicate HIV? Curr HIV/AIDS Rep 2011;8:78-84
  • Sajic R, Lee K, Asai K, et al. Use of modified U1 snRNAs to inhibit HIV-1 replication. Nucleic Acids Res 2007;35:247-55
  • Knoepfel SA, Abad A, Abad X, et al. Design of modified U1i molecules against HIV-1 RNA. Antiviral Res 2012;94:208-16
  • Marshall KA, Ellington AD. In vitro selection of RNA aptamers. Methods Enzymol 2000;318:193-214
  • Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Analysis of trans-acting response decoy RNA-mediated inhibition of human immunodeficiency virus type 1 transactivation. J Virol 1991;65:6811-16
  • Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 1990;63:601-8
  • Lee TC, Sullenger BA, Gallardo HF, et al. Overexpression of RRE-derived sequences inhibits HIV-1 replication in CEM cells. New Biol 1992;4:66-74
  • Michienzi A, Li S, Zaia JA, Rossi JJ. A nucleolar TAR decoy inhibitor of HIV-1 replication. Proc Natl Acad Sci USA 2002;99:14047-52
  • Bai J, Banda N, Lee NS, et al. RNA-based anti-HIV-1 gene therapeutic constructs in SCID-hu mouse model. Mol Ther 2002;6:770-82
  • Banerjea A, Li MJ, Remling L, et al. Lentiviral transduction of Tar Decoy and CCR5 ribozyme into CD34+ progenitor cells and derivation of HIV-1 resistant T cells and macrophages. AIDS Res Ther 2004;1:2
  • Kohn DB, Bauer G, Rice CR, et al. A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 1999;94:368-71
  • Hotchkiss G, Maijgren-Steffensson C, Ahrlund-Richter L. Efficacy and mode of action of hammerhead and hairpin ribozymes against various HIV-1 target sites. Mol Ther 2004;10:172-80
  • Yamada O, Kraus G, Luznik L, et al. A chimeric human immunodeficiency virus type 1 (HIV-1) minimal Rev response element-ribozyme molecule exhibits dual antiviral function and inhibits cell-cell transmission of HIV-1. J Virol 1996;70:1596-601
  • Amado RG, Mitsuyasu RT, Rosenblatt JD, et al. Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients. Hum Gene Ther 2004;15:251-62
  • MacPherson JL, Boyd MP, Arndt AJ, et al. Long-term survival and concomitant gene expression of ribozyme-transduced CD4+ T-lymphocytes in HIV-infected patients. J Gene Med 2005;7:552-64
  • Michienzi A, Castanotto D, Lee N, et al. RNA-mediated inhibition of HIV in a gene therapy setting. Ann N Y Acad Sci 2003;1002:63-71
  • Wong-Staal F, Poeschla EM, Looney DJ. A controlled, Phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA. Hum Gene Ther 1998;9:2407-25
  • DiGiusto DL, Krishnan A, Li L, et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2010;2:36-43
  • Veres G, Escaich S, Baker J, et al. Intracellular expression of RNA transcripts complementary to the human immunodeficiency virus type 1 gag gene inhibits viral replication in human CD4+ lymphocytes. J Virol 1996;70:8792-800
  • Lu X, Yu Q, Binder GK, et al. Antisense-mediated inhibition of human immunodeficiency virus (HIV) replication by use of an HIV type 1-based vector results in severely attenuated mutants incapable of developing resistance. J Virol 2004;78:7079-88
  • Humeau LM, Binder GK, Lu X, et al. Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther 2004;9:902-13
  • Vickers T, Baker BF, Cook PD, et al. Inhibition of HIV-LTR gene expression by oligonucleotides targeted to the TAR element. Nucleic Acids Res 1991;19:3359-68
  • Berkhout B. Structural features in TAR RNA of human and simian immunodeficiency viruses: a phylogenetic analysis. Nucleic Acids Res 1992;20:27-31
  • Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Hovorun DM. Phylogenetic study on structural elements of HIV-1 poly(A) region. 2. USE domain and TAR hairpin. Biopolymers Cell 2014;30:29-36
  • Levine BL, Humeau LM, Boyer J, et al. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA 2006;103:17372-7
  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494-8
  • Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002;296:550-3
  • Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides 2003;13:303-12
  • Chang LJ, Liu X, He J. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther 2005;12:1133-44
  • Eekels JJ, Geerts D, Jeeninga RE, Berkhout B. Long-term inhibition of HIV-1 replication with RNA interference against cellular co-factors. Antiviral Res 2011;89:43-53
  • Surabhi RM, Gaynor RB. RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication. J Virol 2002;76:12963-73
  • von Eije KJ, Ter Brake O, Berkhout B. Stringent testing identifies highly potent and escape-proof anti-HIV short hairpin RNAs. J Gene Med 2009;11:459-67
  • Westerhout EM, Vink M, Haasnoot PC, et al. A conditionally replicating HIV-based vector that stably expresses an antiviral shRNA against HIV-1 replication. Mol Ther 2006;14:268-75
  • Ter Brake O, Berkhout B. Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions. J Gene Med 2007;9:743-50
  • Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013;341:1233158
  • Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441:537-41
  • Herrera-Carrillo E, Harwig A, Liu YP, Berkhout B. Probing the shRNA characteristics that hinder Dicer recognition and consequently allow Ago-mediated processing and AgoshRNA activity. RNA 2014;20:1410-18
  • Liu YP, Schopman NC, Berkhout B. Dicer-independent processing of short hairpin RNAs. Nucleic Acids Res 2013;41:3723-33
  • Bridge AJ, Pebernard S, Ducraux A, et al. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 2003;34:263-4
  • Berkhout B, Liu YP. Towards improved shRNA and miRNA reagents as inhibitors of HIV-1 replication. Future Microbiol 2014;9:561-71
  • Schopman NC, Ter Brake O, Berkhout B. Anticipating and blocking HIV-1 escape by second generation antiviral shRNAs. Retrovirology 2010;7:52
  • Ter Brake O, Konstantinova P, Ceylan M, Berkhout B. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 2006;14:883-92
  • ter Brake O, ’t Hooft K, Liu YP, et al. Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther 2008;16:557-64
  • Liu YP, Haasnoot J, Ter Brake O, et al. Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res 2008;36:2811-24
  • Snyder LL, Ahmed I, Steel LF. RNA polymerase III can drive polycistronic expression of functional interfering RNAs designed to resemble microRNAs. Nucleic Acids Res 2009;37:e127
  • Liu YP, von Eije KJ, Schopman NC, et al. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther 2009;17:1712-23
  • Liu YP, Haasnoot J, Berkhout B. Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res 2007;35:5683-93
  • Konstantinova P, de Vries W, Haasnoot J, et al. Inhibition of human immunodeficiency virus type 1 by RNA interference using long-hairpin RNA. Gene Ther 2006;13:1403-13
  • Saayman S, Arbuthnot P, Weinberg MS. Deriving four functional anti-HIV siRNAs from a single Pol III-generated transcript comprising two adjacent long hairpin RNA precursors. Nucleic Acids Res 2010;38:6652-63
  • Liu YP, Berkhout B. Combinatorial RNAi strategies against HIV-1 and other escape-prone viruses. Int J BioSci Technol 2008;1:1-10
  • Boutimah F, Eekels JJ, Liu YP, Berkhout B. Antiviral strategies combining antiretroviral drugs with RNAi-mediated attack on HIV-1 and cellular co-factors. Antiviral Res 2013;98:121-9
  • Schopman NC, Braun A, Berkhout B. Directed HIV-1 evolution of protease inhibitor resistance by second-generation short hairpin RNAs. Antimicrob Agents Chemother 2012;56:479-86
  • DiGiusto DL, Krishnan A, Li L, et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2010;2:36ra43
  • Westerhout EM, Ooms M, Vink M, et al. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 2005;33:796-804
  • Westerhout EM, Berkhout B. A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res 2007;35:4322-30
  • Low JT, Knoepfel SA, Watts JM, et al. SHAPE-directed discovery of potent shRNA inhibitors of HIV-1. Mol Ther 2012;20:820-8
  • Centlivre M, Legrand N, Klamer S, et al. Preclinical in vivo evaluation of the safety of a multi-shRNA-based gene therapy against HIV-1. Mol Ther Nucleic Acids 2013;2:e120
  • Herrera-Carrillo E, Liu YP, Berkhout B. The impact of unprotected T cells in RNAi-based gene therapy for HIV-AIDS. Mol Ther 2014;22:596-606
  • Liu YP, Vink MA, Westerink JT, et al. Titers of lentiviral vectors encoding shRNAs and miRNAs are reduced by different mechanisms that require distinct repair strategies. RNA 2010;16:1328-39
  • Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013;341:864
  • Aiuti A, Biasco L, Scaramuzza S, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 2013;341:865
  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009;326:818-23
  • Tebas P, Stein D, Binder-Scholl G, et al. Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV. Blood 2013;121:1524-33
  • Johnston LJ, Horning SJ. Autologous hematopoietic cell transplantation in Hodgkin’s disease. Biol Blood Marrow Transplant 2000;6:289-300
  • Daw S, Wynn R, Wallace H. Management of relapsed and refractory classical Hodgkin lymphoma in children and adolescents. Br J Haematol 2011;152:249-60
  • Baker KS, Gordon BG, Gross TG, et al. Autologous hematopoietic stem-cell transplantation for relapsed or refractory Hodgkin’s disease in children and adolescents. J Clin Oncol 1999;17:825-31
  • Tong J, Sun Z, Liu H, et al. A myeloablative conditioning regimen with fludarabine demonstrates good results in UCBT for 30 pediatric patients with hematologic malignancies, especially acute lymphoblastic leukemia. Neoplasma 2014;61:593-600
  • Deeks SG, Autran B, Berkhout B, et al. Towards an HIV cure: a global scientific strategy. Nat Rev Immunol 2012;12:607-14
  • Le Douce V, Cherrier T, Riclet R, et al. The many lives of CTIP2: from AIDS to cancer and cardiac hypertrophy. J Cell Physiol 2014;229:533-7
  • Le Douce V, Colin L, Redel L, et al. LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing. Nucleic Acids Res 2012;40:1904-15
  • Le Douce V, Janossy A, Hallay H, et al. Achieving a cure for HIV infection: do we have reasons to be optimistic? J Antimicrob Chemother 2012;67:1063-74
  • Marban C, Suzanne S, Dequiedt F, et al. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 2007;26:412-23
  • Pasternak AO, Adema KW, Bakker M, et al. Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA. J Clin Microbiol 2008;46:2206-11
  • Pasternak AO, Lukashov VV, Berkhout B. Cell-associated HIV RNA: a dynamic biomarker of viral persistence. Retrovirology 2013;10:41
  • Saez-Cirion A, Bacchus C, Hocqueloux L, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog 2013;9:e1003211
  • Faria NR, Rambaut A, Suchard MA, et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science 2014;346:56-61
  • Ter Brake O, Hooft K, Liu YP, et al. Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther 2008;16:557-64
  • Daar ES, Ho DD. Relative resistance of primary HIV-1 isolates to neutralization by soluble CD4. Am J Med 1991;90:22S-6S
  • Morgan RA, Baler-Bitterlich G, Ragheb JA, et al. Further evaluation of soluble CD4 as an anti-HIV type 1 gene therapy: demonstration of protection of primary human peripheral blood lymphocytes from infection by HIV type 1. AIDS Res Hum Retroviruses 1994;10:1507-15
  • Zhou N, Fang J, Mukhtar M, et al. Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4. Gene Ther 2004;11:1703-12
  • Pearson L, Garcia J, Wu F, et al. A transdominant tat mutant that inhibits tat-induced gene expression from the human immunodeficiency virus long terminal repeat. Proc Natl Acad Sci USA 1990;87:5079-83
  • Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 2002;76:9225-31
  • Capodici J, Kariko K, Weissman D. Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. J Immunol 2002;169:5196-201
  • Kang EM, De WM, Malech H, et al. Gene therapy-based treatment for HIV-positive patients with malignancies. J Hematother Stem Cell Res 2002;11:809-16
  • Savkovic B, MacPherson JL, Zaunders J, et al. T-lymphocyte perturbation following large-scale apheresis and hematopoietic stem cell transplantation in HIV-infected individuals. Clin Immunol 2012;144:159-71
  • Available from: http://clinicaltrials.gov/ [Accessed 15th July 2014]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.