670
Views
68
CrossRef citations to date
0
Altmetric
Review

Dopamine heteroreceptor complexes as therapeutic targets in Parkinson’s disease

, MD PhD (Professor) , , PhD, , MD PhD (Professor) & , PhD MBA

Bibliography

  • Carlsson A. Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. J Neural Transm 2002;109(5-6):777-87
  • Carlsson A, Lindqvist M, Magnusson T, et al. On the presence of 3-hydroxytyramine in brain. Science 1958;1271(3296):471
  • Dahlstroem A, Fuxe K. Evidence for the Existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 1964(Suppl 232):231-55
  • Anden NE, Carlsson A, Dahlstroem A, et al. Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci 1964;3:523-30
  • Cotzias GC, Papavasiliou PS, Gellene R. Experimental treatment of parkinsonism with L-Dopa. Neurology 1968;18(3):276-7
  • Cotzias GC. Levodopa in the treatment of Parkinsonism. JAMA 1971;218(13):1903-8
  • Fuxe K, Anden NE. Studies on central monoamine neurons with special reference to the nigro-striatal dopamine neuron systems. In: Costa E, Cote LJ, Yahr MD, editors. Biochemistry and Pharmacology of the basal ganglia. Raven Press; New York: 1966. p. 123-9
  • Battista A, Fuxe K, Goldstein M, et al. Mapping of central monoamine neurons in the monkey. Experientia 1972;28(6):688-90
  • Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med 2004;351(24):2498-508
  • Fuxe K. Dopamine receptor agonists in brain research and as therapeutic agents. Trends Neurosci 1979;2:1-4
  • Volume transmission in the brain. Novel mechanisms for neural transmission. Fuxe K, Agnati LF, editors. Raven Press; New York: 1991
  • Ernst AM. Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia 1967;10(4):316-23
  • Anden NE, Rubenson A, Fuxe K, et al. Evidence for dopamine receptor stimulation by apomorphine. J Pharm Pharmacol 1967;19(9):627-9
  • Millan MJ, Maiofiss L, Cussac D, et al. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther 2002;303(2):791-804
  • Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 1968;5(1):107-10
  • Ungerstedt U, Arbuthnott GW. Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 1970;24(3):485-93
  • Corrodi H, Fuxe K, Ungerstedt U. Evidence for a new type of dopamine receptor stimulating agent. J Pharm Pharmacol 1971;23(12):989-91
  • Corrodi H, Farnebo LO, Fuxe K, et al. ET495 and brain catecholamine mechanisms: evidence for stimulation of dopamine receptors. Eur J Pharmacol 1972;20(2):195-204
  • Goldstein M, Battista AF, Ohmoto T, et al. Tremor and involuntary movements in monkeys: effect of L-dopa and of a dopamine receptor stimulating agent. Science 1973;179(4075):816-17
  • Chase TN, Woods AC, Glaubiger GA. Parkinson disease treated with a suspected dopamine receptor agonist. Arch Neurol 1974;30(5):383-6
  • Ziegler M, Castro-Caldas A, Del Signore S, et al. Efficacy of piribedil as early combination to l-DOPA in patients with stable Parkinson’s disease: a 6-month, randomized, placebo-controlled study. Mov Disord 2003;18(4):418-25
  • Brocco M, Dekeyne A, Papp M, et al. Antidepressant-like properties of the anti-Parkinson agent, piribedil, in rodents: mediation by dopamine D2 receptors. Behav Pharmacol 2006;17(7):559-72
  • Corrodi H, Fuxe K, Hokfelt T, et al. Effect of ergot drugs on central catecholamine neurons: evidence for a stimulation of central dopamine neurons. J Pharm Pharmacol 1973;25(5):409-12
  • Fuxe K, Corrodi H, Hokfelt T, et al. Ergocornine and 2-Br-alpha-ergocryptine. Evidence for prolonged dopamine receptor stimulation. Med Biol 1974;52(2):121-32
  • Fuxe K. Cellular localization of monoamines in the median eminence and in the infundibular stem of some mammals. Acta Physiol Scand 1963;58:383-4
  • Fuxe K. Cellular localization of monoamines in the median eminence and the infundibular stem of some mammals. Z Zellforsch Mikrosk Anat 1964;61:710-24
  • Fuxe K, Hokfelt T, Nilsson O. Activity changes in the tubero-infundibular dopamine neurons of the rat during various states of the reproductive cycle. Life Sci 1967;6(19):2057-61
  • Fluckiger E, Lutterbeck PM, Wagner HR, et al. Antagonism of 2-br- -ergokryptine-methanesulfonate (CB 154) to certain endocrine actions of centrally active drugs. Experientia 1972;28(8):924-5
  • Marko M, Fluckiger E. Inhibition of spontaneous and induced ovulation in rats by non-steroidal agents. Experientia 1974;30(10):1174-6
  • Miyamoto T, Battista A, Goldstein M, et al. Long-lasting anti-tremor induced by 2-Br-alpha-ergocryptine in monkeys. J Pharm Pharmacol 1974;26(6):452-4
  • Lieberman A, Zolfaghari M, Boal D, et al. The antiparkinsonian efficacy of bromocriptine. Neurology 1976;26(5):405-9
  • Calne DB, Teychenne PF, Claveria LE, et al. Bromocriptine in Parkinsonism. BMJ 1974;4(5942):442-4
  • Schwarcz R, Fuxe K, Agnati LF, et al. Effects of bromocriptine on 3H-spiroperidol binding sites in rat striatum. Evidence for actions of dopamine receptors not linked to adenylate cyclase. Life Sci 1978;23(5):465-9
  • Fuxe K, Fredholm BB, Ogren SO, et al. Ergot drugs and central monoaminergic mechanisms: a histochemical, biochemical and behavioral analysis. Fed Proc 1978;37(8):2181-91
  • Fuxe K, Fredholm BB, Agnati LF, et al. Interaction of ergot drugs with central monoamine systems. Evidence for a high potential in the treatment of mental and neurological disorders. Pharmacology 1978;16(Suppl 1):99-134
  • Hofmann C, Penner U, Dorow R, et al. Lisuride, a dopamine receptor agonist with 5-HT2B receptor antagonist properties: absence of cardiac valvulopathy adverse drug reaction reports supports the concept of a crucial role for 5-HT2B receptor agonism in cardiac valvular fibrosis. Clin Neuropharmacol 2006;29(2):80-6
  • Unett DJ, Gatlin J, Anthony TL, et al. Kinetics of 5-HT2B receptor signaling: profound agonist-dependent effects on signaling onset and duration. J Pharmacol Exp Ther 2013;347(3):645-59
  • Foley P, Gerlach M, Double KL, et al. Dopamine receptor agonists in the therapy of Parkinson’s disease. J Neural Transm 2004;111(10-11):1375-446
  • Bostwick JM, Hecksel KA, Stevens SR, et al. Frequency of new-onset pathologic compulsive gambling or hypersexuality after drug treatment of idiopathic Parkinson disease. Mayo Clin Proc 2009;84(4):310-16
  • Seedat S, Kesler S, Niehaus DJ, et al. Pathological gambling behaviour: emergence secondary to treatment of Parkinson’s disease with dopaminergic agents. Depress Anxiety 2000;11(4):185-6
  • Millan MJ. From the cell to the clinic: a comparative review of the partial D(2)/D(3)receptor agonist and alpha2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson’s disease. Pharmacol Ther 2010;128(2):229-73
  • Aloisi G, Silvano E, Rossi M, et al. Differential induction of adenylyl cyclase supersensitivity by antiparkinson drugs acting as agonists at dopamine D1/D2/D3 receptors vs D2/D3 receptors only: parallel observations from co-transfected human and native cerebral receptors. Neuropharmacology 2011;60(2-3):439-45
  • Neve KA, Neve RL. Molecular biology of DA receptors. The dopamine receptors. Neve KA, Neve RL, editors. Humana Press; Totawa, JN: 1997
  • Fuxe K, Ferre S, Zoli M, et al. Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia. Brain Res Brain Res Rev 1998;26(2-3):258-73
  • Fuxe K, Agnati LF, Jacobsen K, et al. Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson’s disease. Neurology 2003;61(11 Suppl 6):S19-23
  • Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, et al. Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the g protein-coupled receptor field. Neuropsychopharmacology 2014;39(1):131-55
  • Fuxe K, Tarakanov A, Romero Fernandez W, et al. Diversity and bias through receptor-receptor interactions in GPCR heteroreceptor complexes. Focus on examples from dopamine D2 receptor heteromerization. Front Endocrinol (Lausanne) 2014;5:71
  • Rashid AJ, So CH, Kong MM, et al. D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 2007;104(2):654-9
  • Perreault ML, Hasbi A, O’Dowd BF, et al. Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology 2014;39(1):156-68
  • Agnati LF, Guidolin D, Leo G, et al. Receptor-receptor interactions: a novel concept in brain integration. Prog Neurobiol 2010;90(2):157-75
  • Borroto-Escuela DO, Romero-Fernandez W, Garriga P, et al. G protein-coupled receptor heterodimerization in the brain. Methods Enzymol 2013;521:281-94
  • Borroto-Escuela DO, Brito I, Romero-Fernandez W, et al. The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int J Mol Sci 2014;15(5):8570-90
  • Jeffery CJ. Moonlighting proteins. Trends Biochem Sci 1999;24(1):8-11
  • Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, et al. On the existence of a possible A2A-D2-beta-Arrestin2 complex: A2A agonist modulation of D2 agonist-induced beta-arrestin2 recruitment. J Mol Biol 2011;406(5):687-99
  • Herrick-Davis K, Grinde E, Cowan A, et al. Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol Pharmacol 2013;84(4):630-42
  • Teichmann A, Gibert A, Lampe A, et al. The specific monomer/dimer equilibrium of the corticotropin-releasing factor receptor type 1 is established in the endoplasmic reticulum. J Biol Chem 2014;289(35):24250-62
  • George SR, O’Dowd BF. A novel dopamine receptor signaling unit in brain: heterooligomers of D1 and D2 dopamine receptors. ScientificWorldJournal 2007;7:58-63
  • Lee SP, So CH, Rashid AJ, et al. Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 2004;279(34):35671-8
  • Hasbi A, O’Dowd BF, George SR. Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol Brain 2011;4:26
  • Perreault ML, Fan T, Alijaniaram M, et al. Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2. PLoS One 2012;7(3):e33348
  • Pei L, Li S, Wang M, et al. Uncoupling the dopamine D1-D2 receptor complex exerts antidepressant-like effects. Nat Med 2010;16(12):1393-5
  • Hasbi A, Perreault ML, Shen MY, et al. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. FASEB J 2014. [ Epub ahead of print]
  • O’Dowd BF, Ji X, O’Dowd PB, et al. Disruption of the mu-delta opioid receptor heteromer. Biochem Biophys Res Commun 2012;422(4):556-60
  • Ciruela F, Burgueno J, Casado V, et al. Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal Chem 2004;76(18):5354-63
  • Woods AS. The mighty arginine, the stable quaternary amines, the powerful aromatics, and the aggressive phosphate: their role in the noncovalent minuet. J Proteome Res 2004;3(3):478-84
  • Evans AH, Katzenschlager R, Paviour D, et al. Punding in Parkinson’s disease: its relation to the dopamine dysregulation syndrome. Mov Disord 2004;19(4):397-405
  • Stoessl J. Potential therapeutic targets for Parkinson’s disease. Expert Opin Ther Targets 2008;12(4):425-36
  • Marcellino D, Ferre S, Casado V, et al. Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem 2008;283(38):26016-25
  • Fiorentini C, Busi C, Gorruso E, et al. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol Pharmacol 2008;74(1):59-69
  • Fiorentini C, Busi C, Spano P, et al. Dimerization of dopamine D1 and D3 receptors in the regulation of striatal function. Curr Opin Pharmacol 2010;10(1):87-92
  • Surmeier DJ, Song WJ, Yan Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 1996;16(20):6579-91
  • Ridray S, Griffon N, Mignon V, et al. Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: opposite and synergistic functional interactions. Eur J Neurosci 1998;10(5):1676-86
  • Bordet R, Ridray S, Schwartz JC, et al. Involvement of the direct striatonigral pathway in l-DOPA-induced sensitization in 6-hydroxydopamine-lesioned rats. Eur J Neurosci 2000;12(6):2117-23
  • Fiorentini C, Savoia P, Savoldi D, et al. Receptor heteromers in Parkinson’s disease and L-DOPA-induced dyskinesia. CNS Neurol Disord Drug Targets 2013;12(8):1101-13
  • Bezard E, Ferry S, Mach U, et al. Attenuation of l-DOPA-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med 2003;9(6):762-7
  • Cenci MA, Lindgren HS. Advances in understanding L-DOPA-induced dyskinesia. Curr Opin Neurobiol 2007;17(6):665-71
  • Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neuroscience 2008;9(9):665-77
  • Berthet A, Porras G, Doudnikoff E, et al. Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia. J Neurosci 2009;29(15):4829-35
  • Santini E, Valjent E, Usiello A, et al. Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci 2007;27(26):6995-7005
  • Westin JE, Vercammen L, Strome EM, et al. Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry 2007;62(7):800-10
  • Antonelli T, Fuxe K, Agnati L, et al. Experimental studies and theoretical aspects on A2A/D2 receptor interactions in a model of Parkinson’s disease. Relevance for L-dopa induced dyskinesias. J Neurol Sci 2006;248(1-2):16-22
  • Fuxe K, Agnati LF, Borroto-Escuela DO. The impact of receptor-receptor interactions in heteroreceptor complexes on brain plasticity. Expert Rev Neurother 2014;14(7):719-21
  • Scarselli M, Novi F, Schallmach E, et al. D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J Biol Chem 2001;276(32):30308-14
  • Maggio R, Millan MJ. Dopamine D2-D3 receptor heteromers: pharmacological properties and therapeutic significance. Curr Opin Pharmacol 2010;10(1):100-7
  • Maggio R, Scarselli M, Novi F, et al. Potent activation of dopamine D3/D2 heterodimers by the antiparkinsonian agents, S32504, pramipexole and ropinirole. J Neurochem 2003;87(3):631-41
  • Novi F, Millan MJ, Corsini GU, et al. Partial agonist actions of aripiprazole and the candidate antipsychotics S33592, bifeprunox, N-desmethylclozapine and preclamol at dopamine D(2L) receptors are modified by co-transfection of D(3) receptors: potential role of heterodimer formation. J Neurochem 2007;102(4):1410-24
  • Borroto-Escuela DO, Van Craenenbroeck K, Romero-Fernandez W, et al. Dopamine D2 and D4 receptor heteromerization and its allosteric receptor-receptor interactions. Biochem Biophys Res Commun 2011;404(4):928-34
  • Gonzalez S, Rangel-Barajas C, Peper M, et al. Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain. Mol Psychiatry 2012;17(6):650-62
  • Rivera A, Cuellar B, Giron FJ, et al. Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J Neurochem 2002;80(2):219-29
  • Van Craenenbroeck K, Borroto-Escuela DO, Romero-Fernandez W, et al. Dopamine D4 receptor oligomerization--contribution to receptor biogenesis. FEBS J 2011;278(8):1333-44
  • Fuxe K, Ungerstedt U. Action of caffeine and theophyllamine on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with DOPA and dopamine receptor agonists. Med Biol 1974;52(1):48-54
  • Fredholm BB, Fuxe K, Agnati L. Effect of some phosphodiesterase inhibitors on central dopamine mechanisms. Eur J Pharmacol 1976;38(1):31-8
  • Fuxe K, Agnati LF, Benfenati F, et al. Evidence for the existence of receptor–receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neural Transm Suppl 1983;18:165-79
  • Ferre S, von Euler G, Johansson B, et al. Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci USA 1991;88(16):7238-41
  • Fuxe K, Agnati LF, von Euler G, et al. Neuropeptides, excitatory amino acid and adenosine A2 receptors regulate D2 receptors via intramembrane receptor-receptor interactions. Relevance for Parkinson’s disease and schizophrenia. Neurochem Int 1992;20(Suppl):215S-24S
  • Ferre S, Fuxe K. Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum. Brain Res 1992;594(1):124-30
  • Fuxe K, Ferre S, Snaprud P, et al. Antagonistic A2A/D2 receptor interactions in the striatum as a basis for adenosine - dopamine interactions for the central nervous system. Drug Dev Res 1993;28:374-80
  • Schiffmann SN, Jacobs O, Vanderhaeghen JJ. Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 1991;57(3):1062-7
  • Rosin DL, Hettinger BD, Lee A, et al. Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology 2003;61(11 Suppl 6):S12-18
  • Tozzi A, de Iure A, Di Filippo M, et al. The distinct role of medium spiny neurons and cholinergic interneurons in the D(2)/A(2)A receptor interaction in the striatum: implications for Parkinson’s disease. J Neurosci 2011;31(5):1850-62
  • Fuxe K, Marcellino D, Genedani S, et al. Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson’s disease. Mov Disord 2007;22(14):1990-2017
  • Fuxe K, Ferre S, Genedani S, et al. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav 2007;92(1-2):210-17
  • Hillion J, Canals M, Torvinen M, et al. Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 2002;277(20):18091-7
  • Canals M, Marcellino D, Fanelli F, et al. Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 2003;278(47):46741-9
  • Kamiya T, Saitoh O, Yoshioka K, et al. Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem Biophys Res Commun 2003;306(2):544-9
  • Trifilieff P, Rives ML, Urizar E, et al. Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. Biotechniques 2011;51(2):111-18
  • Stromberg I, Popoli P, Muller CE, et al. Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum. Eur J Neurosci 2000;12(11):4033-7
  • Azdad K, Gall D, Woods AS, et al. Dopamine D2 and adenosine A2A receptors regulate NMDA-mediated excitation in accumbens neurons through A2A-D2 receptor heteromerization. Neuropsychopharmacology 2009;34(4):972-86
  • Shen W, Flajolet M, Greengard P, et al. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 2008;321(5890):848-51
  • Fuxe K, Marcellino D, Rivera A, et al. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res Rev 2008;58(2):415-52
  • Fuxe K, Marcellino D, Guidolin D, et al. Heterodimers and receptor mosaics of different types of G-protein-coupled receptors. Physiology (Bethesda) 2008;23:322-32
  • Ferraro L, Beggiato S, Tomasini MC, et al. A(2A)/D(2) receptor heteromerization in a model of Parkinson’s disease. Focus on striatal aminoacidergic signaling. Brain Res 2012;1476:96-107
  • Tanganelli S, Sandager Nielsen K, Ferraro L, et al. Striatal plasticity at the network level. Focus on adenosine A2A and D2 interactions in models of Parkinson’s Disease. Parkinsonism Relat Disord 2004;10(5):273-80
  • Chase TN, Bibbiani F, Bara-Jimenez W, et al. Translating A2A antagonist KW6002 from animal models to parkinsonian patients. Neurology 2003;61(11 Suppl 6):S107-11
  • Bara-Jimenez W, Sherzai A, Dimitrova T, et al. Adenosine A(2A) receptor antagonist treatment of Parkinson’s disease. Neurology 2003;61(3):293-6
  • Ekstrand MI, Terzioglu M, Galter D, et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA 2007;104(4):1325-30
  • Marcellino D, Lindqvist E, Schneider M, et al. Chronic A2A antagonist treatment alleviates parkinsonian locomotor deficiency in MitoPark mice. Neurobiol Dis 2010;40(2):460-6
  • Pinna A. Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 2014;28(5):455-74
  • Ramirez-Zamora A, Molho E. Treatment of motor fluctuations in Parkinson’s disease: recent developments and future directions. Expert Rev Neurother 2014;14(1):93-103
  • Cabello N, Gandia J, Bertarelli DC, et al. Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. J Neurochem 2009;109(5):1497-507
  • Fuxe K, Celani MF, Martire M, et al. l-Glutamate reduces the affinity of [3H]N-propylnorapomorphine binding sites in striatal membranes. Eur J Pharmacol 1984;100(1):127-30
  • Ferre S, Karcz-Kubicha M, Hope BT, et al. Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci USA 2002;99(18):11940-5
  • Ciruela F, Gomez-Soler M, Guidolin D, et al. Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. Biochim Biophys Acta 2011;1808(5):1245-55
  • Popoli P, Pezzola A, Torvinen M, et al. The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology 2001;25(4):505-13
  • Diaz-Cabiale Z, Vivo M, Del Arco A, et al. Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors. Neurosci Lett 2002;324(2):154-8
  • Coccurello R, Breysse N, Amalric M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 2004;29(8):1451-61
  • Kachroo A, Orlando LR, Grandy DK, et al. Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J Neurosci 2005;25(45):10414-19
  • Conn PJ, Battaglia G, Marino MJ, et al. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 2005;6(10):787-98
  • Schwarzschild MA, Agnati L, Fuxe K, et al. Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 2006;29(11):647-54
  • Vallano A, Fernandez-Duenas V, Garcia-Negredo G, et al. Targeting striatal metabotropic glutamate receptor type 5 in Parkinson’s disease: bridging molecular studies and clinical trials. CNS Neurol Disord Drug Targets 2013;12(8):1128-42
  • Fuxe K, Dahlstrom AB, Jonsson G, et al. The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 2010;90(2):82-100
  • Fuxe K, Marcellino D, Borroto-Escuela DO, et al. Adenosine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010;16(3):e18-42
  • Liu XY, Chu XP, Mao LM, et al. Modulation of D2R-NR2B interactions in response to cocaine. Neuron 2006;52(5):897-909
  • Steece-Collier K, Chambers LK, Jaw-Tsai SS, et al. Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-methyl-d-aspartate receptors. Exp Neurol 2000;163(1):239-43
  • Loschmann PA, De Groote C, Smith L, et al. Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp Neurol 2004;187(1):86-93
  • Addy C, Assaid C, Hreniuk D, et al. Single-dose administration of MK-0657, an NR2B-selective NMDA antagonist, does not result in clinically meaningful improvement in motor function in patients with moderate Parkinson’s disease. J Clin Pharmacol 2009;49(7):856-64
  • Gardoni F, Picconi B, Ghiglieri V, et al. A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J Neurosci 2006;26(11):2914-22
  • Gines S, Hillion J, Torvinen M, et al. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 2000;97(15):8606-11
  • Toda S, Alguacil LF, Kalivas PW. Repeated cocaine administration changes the function and subcellular distribution of adenosine A1 receptor in the rat nucleus accumbens. J Neurochem 2003;87(6):1478-84
  • Franco R, Lluis C, Canela EI, et al. Receptor-receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. J Neural Transm 2007;114(1):93-104
  • Torvinen M, Gines S, Hillion J, et al. Interactions among adenosine deaminase, adenosine A(1) receptors and dopamine D(1) receptors in stably cotransfected fibroblast cells and neurons. Neuroscience 2002;113(3):709-19
  • Rimondini R, Ferre S, Gimenez-Llort L, et al. Differential effects of selective adenosine A1 and A2A receptor agonists on dopamine receptor agonist-induced behavioural responses in rats. Eur J Pharmacol 1998;347(2-3):153-8
  • Popoli P, Gimenez-Llort L, Pezzola A, et al. Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents. Neurosci Lett 1996;218(3):209-13
  • Ferre S, O’Connor WT, Snaprud P, et al. Antagonistic interaction between adenosine A2A receptors and dopamine D2 receptors in the ventral striopallidal system. Implications for the treatment of schizophrenia. Neuroscience 1994;63(3):765-73
  • Lee FJ, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002;111(2):219-30
  • Woods AS, Ciruela F, Fuxe K, et al. Role of electrostatic interaction in receptor-receptor heteromerization. J Mol Neurosci 2005;26(2-3):125-32
  • Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 1999;23(3):435-47
  • Cepeda C, Levine MS. Where do you think you are going? The NMDA-D1 receptor trap. Sci STKE 2006;2006(333):pe20
  • Fiorentini C, Gardoni F, Spano P, et al. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 2003;278(22):20196-202
  • Pei L, Lee FJ, Moszczynska A, et al. Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 2004;24(5):1149-58
  • Scott L, Zelenin S, Malmersjo S, et al. Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc Natl Acad Sci USA 2006;103(3):762-7
  • Luginger E, Wenning GK, Bosch S, et al. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord 2000;15(5):873-8
  • Thomas A, Iacono D, Luciano AL, et al. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry 2004;75(1):141-3
  • Farnebo LO, Fuxe K, Goldstein M, et al. Dopamine and noradrenaline releasing action of amantadine in the central and peripheral nervous system: a possible mode of action in Parkinson’s disease. Eur J Pharmacol 1971;16(1):27-38
  • Ahlskog JE. Beating a dead horse: dopamine and Parkinson disease. Neurology 2007;69(17):1701-11
  • Rascol O, Brooks DJ, Korczyn AD, et al. Development of dyskinesias in a 5-year trial of ropinirole and L-dopa. Mov Disord 2006;21(11):1844-50
  • Constantinescu R, Romer M, McDermott MP, et al. Impact of pramipexole on the onset of l-DOPA-related dyskinesias. Mov Disord 2007;22(9):1317-19
  • Hauser RA, Rascol O, Korczyn AD, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or l-DOPA. Mov Disord 2007;22(16):2409-17
  • Nyholm D. Enteral l-DOPA/carbidopa gel infusion for the treatment of motor fluctuations and dyskinesias in advanced Parkinson’s disease. Expert Rev Neurother 2006;6(10):1403-11
  • Kvernmo T, Hartter S, Burger E. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther 2006;28(8):1065-78
  • Luquin MR, Laguna J, Obeso JA. Selective D2 receptor stimulation induces dyskinesia in parkinsonian monkeys. Ann Neurol 1992;31(5):551-4
  • Rascol O, Nutt JG, Blin O, et al. Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to l-DOPA in patients with Parkinson disease. Arch Neurol 2001;58(2):249-54
  • Lindgren HS, Ohlin KE, Cenci MA. Differential involvement of D1 and D2 dopamine receptors in L-DOPA-induced angiogenic activity in a rat model of Parkinson’s disease. Neuropsychopharmacology 2009;34(12):2477-88
  • Antonini A, Tolosa E. Apomorphine and l-DOPA infusion therapies for advanced Parkinson’s disease: selection criteria and patient management. Expert Rev Neurother 2009;9(6):859-67
  • Stockwell KA, Scheller D, Rose S, et al. Continuous administration of rotigotine to MPTP-treated common marmosets enhances anti-parkinsonian activity and reduces dyskinesia induction. Exp Neurol 2009;219(2):533-42
  • Ballion B, Frenois F, Zold CL, et al. D2 receptor stimulation, but not D1, restores striatal equilibrium in a rat model of Parkinsonism. Neurobiol Dis 2009;35(3):376-84
  • Flajolet M, Wang Z, Futter M, et al. FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat Neurosci 2008;11(12):1402-9
  • Borroto-Escuela DO, Corrales F, Narvaez M, et al. Dynamic modulation of FGFR1-5-HT1A heteroreceptor complexes. Agonist treatment enhances participation of FGFR1 and 5-HT1A homodimers and recruitment of beta-arrestin2. Biochem Biophys Res Commun 2013;441(2):387-92
  • Borroto-Escuela DO, Flajolet M, Agnati LF, et al. Bioluminescence resonance energy transfer methods to study G protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes. Methods Cell Biol 2013;117:141-64
  • Borroto-Escuela DO, Romero-Fernandez W, Mudo G, et al. Fibroblast growth factor receptor 1- 5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity. Biol Psychiatry 2012;71(1):84-91
  • Wang C, Buck DC, Yang R, et al. Dopamine D2 receptor stimulation of mitogen-activated protein kinases mediated by cell type-dependent transactivation of receptor tyrosine kinases. J Neurochem 2005;93(4):899-909
  • Rylander D, Recchia A, Mela F, et al. Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 2009;330(1):227-35
  • Hauser RA, Shulman LM, Trugman JM, et al. Study of istradefylline in patients with Parkinson’s disease on l-DOPA with motor fluctuations. Mov Disord 2008;23(15):2177-85
  • Pinna A, Morelli M. A critical evaluation of behavioral rodent models of motor impairment used for screening of antiparkinsonian activity: the case of adenosine A(2A) receptor antagonists. Neurotox Res 2014;25(4):392-401
  • Brotchie JM. Nondopaminergic mechanisms in l-DOPA-induced dyskinesia. Mov Disord 2005;20(8):919-31
  • Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 2003;349(20):1925-34
  • Guridi J, Obeso JA, Rodriguez-Oroz MC, et al. L-dopa-induced dyskinesia and stereotactic surgery for Parkinson’s disease. Neurosurgery 2008;62(2):311-23; discussion 323-315
  • Fahn S. Deep-brain stimulation extends relief from Parkinson’s. Electrodes deep in the brain continue relieving Parkinson’s disease symptoms for five years. Health news 2004;10(1):6-7
  • O’Dowd BF, Ji X, Nguyen T, et al. Two amino acids in each of D1 and D2 dopamine receptor cytoplasmic regions are involved in D1-D2 heteromer formation. Biochem Biophys Res Commun 2011;417(1):23-8
  • Nai Q, Li S, Wang SH, et al. Uncoupling the D1-N-methyl-D-aspartate (NMDA) receptor complex promotes NMDA-dependent long-term potentiation and working memory. Biol Psychiatry 2009;67(3):246-54
  • Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, et al. Characterization of the A2AR-D2R interface: focus on the role of the C-terminal tail and the transmembrane helices. Biochem Biophys Res Commun 2010;402(4):801-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.