665
Views
17
CrossRef citations to date
0
Altmetric
Review

Transglutaminase as a therapeutic target for celiac disease

, , , &

Bibliography

  • Kaukinen K, Lindfors K, Collin P, et al. Coeliac disease – a diagnostic and therapeutic challenge. Clin Chem Lab Med 2010;48:1205-16
  • Virta LJ, Kaukinen K, Collin P. Incidence and prevalence of diagnosed coeliac disease in Finland: results of effective case finding in adults. Scand J Gastroenterol 2009;44:933-8
  • Myléus A, Ivarsson A, Webb C, et al. Celiac disease revealed in 3% of Swedish 12-year-olds born during an epidemic. J Pediatr Gastroenterol Nutr 2009;49:170-6
  • Mustalahti K, Catassi C, Reunanen A, et al. The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med 2010;42:587-95
  • Oxentenko AS, Murray JA. Celiac disease: ten things that every gastroenterologist should know. Clin Gastroenterol Hepatol 2014. [ Epub ahead of print] 10.1016/j.cgh.2014.07.024
  • Clarke DD, Mycek MJ, Neidle A, et al. The incorporation of amines into proteins. Arch Biochem Biophys 1957;79:338-54
  • Kanaji T, Ozaki H, Takao T, et al. Primary structure of microbial transglutaminase from Streptoverticilium sp. strain S-8112. J Biol Chem 1993;268:11565-72
  • Della Mea M, Caparros-Ruiz D, Claparols I, et al. AtPng1p. The first plant transglutaminase. Plant Physiol 2004;135:2046-54
  • Singh RN, Mehta K. Purification and characterization of a novel transglutaminase from filarial nematode Brugia malayi. Eur J Biochem 1994;225:625-34
  • Grenard P, Bates MK, Aeschlimann D. Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem 2001;276:33066-78
  • Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 2003;4:140-56
  • Naderi M, Dorgalaleh A, Tabibian S, et al. Current understanding in diagnosis and management of factor XIII deficiency. Iran J Ped Hematol Oncol 2013;3:164-72
  • Huber M, Rettler I, Bernasconi K, et al. Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 1995;267:525-8
  • Candi E, Melino G, Lahm A, et al. Transglutaminase 1 mutations in lamellar ichthyosis. Loss of activity due to failure of activation by proteolytic processing. J Biol Chem 1998;273:13693-702
  • Dieterich W, Ehnis T, Bauer M, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997;3:797-801
  • Elli L, Bergamini C, Bardella M, et al. Transglutaminases in inflammation and fibrosis of the gastrointestinal tract and the liver. Dig Liver Dis 2009;41:541-50
  • Selkoe D, Abraham JC, Ihara Y. Brain transglutaminase: in vitro crosslinking of human neurofilament proteins into insoluble polymers. Proc Natl Acad Sci USA 1980;79:6070-4
  • Karpuj M, Garren Slunt VH, et al. Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington’s disease brain nuclei. Proc Natl Acad Sci USA 1999;96:7388-93
  • Junn E, Ronchetti RD, Quezado MM, et al. Tissue transglutaminase-induced aggregation of alpha-synuclein: implications for Lewy body formation in Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 2003;100:2047-52
  • Kotsakis P, Griffin M. Tissue transglutaminase in tumour progression: friend or foe? Amino Acids 2007;33:373-84
  • Kumar S, Mehta K. Tissue transglutaminase, inflammation, and cancer: how intimate is the relationship? Amino Acids 2013;44:81-8
  • Sardy M, Karpati S, Merkl B, et al. Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med 2002;195:747-57
  • Jiang W, Ye GL, Sanders AJ, et al. Prostate transglutaminase (TGase-4, TGaseP) enhances the adhesion of prostate cancer cells to extracellular matrix, the potential role of TGase-core domain. J Transl Med 2013;11:269
  • Cassidy AJ, van Steensel MA, Steijlen PM, et al. A homozygous missense mutation in TGM5 abolishes epidermal transglutaminase 5 activity and causes acral peeling skin syndrome. Am J Hum Genet 2005;77:909-17
  • Hadjivassiliou M, Aeschlimann P, Strigun A, et al. Autoantibodies in gluten ataxia recognize a novel neuronal transglutaminase. Ann Neurol 2008;64:332-43
  • Wang J, Yang X, Xia K, et al. TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. Brain 2010;133:3510-18
  • Guan WJ, Xia KD, Ma YT, et al. Transglutaminase 6 interacts with polyQ proteins and promotes the formation of polyQ aggregates. Biochem Biophys Res Commun 2013;437:94-100
  • Pan LL, Huang YM, Wang M, et al. Positional cloning and next-generation sequencing identified a TGM6 mutation in a large Chinese pedigree with acute myeloid leukaemia. Eur J Hum Genet 2014. [ Epub ahead of print] 10.1038/ejhg.2014.67
  • Jiang W, Ablin GR, Douglas-Jones A, et al. Expression of transglutaminases in human breast cancer and their possible clinical significance. Oncol Rep 2003;10:2039-44
  • Bouhassira E, Schwartz RS, Yawata Y, et al. An alanine-to-threonine substitution in protein 4.2 cDNA is associated with a Japanese form of hereditary hemolytic anemia. Blood 1992;79:1846-54
  • Griffin M, Casadio R, Bergamini CM. Transglutaminases: nature’s biological glues. Biochem J 2002;368:377-96
  • Yee VC, Pedersen LC, Le Trong I, et al. Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII. Proc Natl Acad Sci USA 1994;91:7296-300
  • Liu S, Cerione RA, Clardy J. Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 2002;99:2743-7
  • Ahvazi B, Kim HC, Kee SH, et al. Three-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions changes structure for activation. EMBO J 2002;21:2055-67
  • Pisano JJ, Finlayson JS, Peyton MP. Cross-link in fibrin polymerized by factor 13: epsilon-(gamma-glutamyl)lysine. Science 1968;160:892-3
  • Shan L, Molberg O, Parrot I, et al. Structural basis for gluten intolerance in celiac sprue. Science 2002;297:2275-9
  • Folk JE, Park MH, Chung SI, et al. Polyamines as physiological substrates for transglutaminases. J Biol Chem 1980;255:3695-700
  • Nemes Z, Marekov LN, Fesus L, et al. A novel function for transglutaminase 1: attachment of long-chain omega- hydroxyceramides to involucrin by ester bond formation. Proc Natl Acad Sci USA 1999;96:8402-7
  • Satchwell TJ, Shoemark DK, Sessions RB, et al. Protein 4.2: a complex linker. Blood Cells Mol Dis 2009;42:201-10
  • Janiak A, Zemskov EA, Belkin AM. Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway. Mol Biol Cell 2006;17:1606-19
  • Akimov SS, Krylov D, Fleischman LF, et al. Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol 2000;148:825-38
  • Lai TS, Greenberg CS. TGM2 and implications for human disease: role of alternative splicing. Front Biosci 2013;18:504-19
  • Thomazy V, Fesus L. Differential expression of tissue transglutaminase in human cells. An immunohistochemical study. Cell Tissue Res 1989;255:215-24
  • Fesus L, Piacentini M. Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 2002;27:534-9
  • Villanacci V, Not T, Sblattero D, et al. Mucosal tissue transglutaminase expression in celiac disease. J Cell Mol Med 2009;13:334-40
  • Zemaitaitis MO, Lee JM, Troncoso JC, et al. Transglutaminase-induced cross-linking of tau proteins in progressive supranuclear palsy. J Neuropathol Exp Neurol 2000;59:983-9
  • Zhang J, Lesort M, Guttmann RP, et al. Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J Biol Chem 1998;273:2288-95
  • Pinkas DM, Strop P, Brunger AT, et al. Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 2007;5:e327
  • Gentile V, Saydak M, Chiocca EA, et al. Isolation and characterization of cDNA clones to mouse macrophage and human endothelial cell tissue transglutaminases. J Biol Chem 1991;266:478-83
  • Zemskov EA, Mikhailenko I, Hsia RC, et al. Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. PLoS One 2011;6:e19414
  • Siegel M, Strnad P, Watts RE, et al. Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One 2008;3:e1861
  • Stamnaes J, Pinkas DM, Fleckenstein B, et al. Redox regulation of ransglutaminase 2 activity. J Biol Chem 2010;285:25402-9
  • Jin X, Stamnaes J, Klock C, et al. Activation of extracellular transglutaminase 2 by thioredoxin. J Biol Chem 2011;286:37866-73
  • Belkin AM. Extracellular TG2: emerging functions and regulation. FEBS J 2011;278:4704-16
  • Telci D, Wang Z, Li X, et al. Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and beta1 integrin co-signaling. J Biol Chem 2008;283:20937-47
  • Akimov SS, Belkin AM. Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFbeta-dependent matrix deposition. J Cell Sci 2001;114:2989-3000
  • Haroon ZA, Hettasch JM, Lai TS, et al. Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis. FASEB J 1999;13:1787-95
  • Jones RA, Kotsakis P, Johnson TS, et al. Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ 2006;13:1442-53
  • Wang Z, Perez M, Caja S, et al. A novel extracellular role for tissue transglutaminase in matrix-bound VEGF-mediated angiogenesis. Cell Death Dis 2013;4:e808
  • Piacentini M, Autuori F, Dini L, et al. Tissue transglutaminase is specifically expressed in neonatal rat liver cells undergoing apoptosis upon epidermal growth factor- stimulation. Cell Tissue Res 1991;263:227-35
  • Piacentini M, Fesus L, Farrace MG, et al. The expression of "tissue" transglutaminase in two human cancer cell lines is related with the programmed cell death (apoptosis). Eur J Cell Biol 1991;54:246-54
  • Amendola A, Gougeon ML, Poccia F, et al. Induction of "tissue" transglutaminase in HIV pathogenesis: evidence for high rate of apoptosis of CD4+ T lymphocytes and accessory cells in lymphoid tissues. Proc Natl Acad Sci USA 1996;93:11057-62
  • Oliverio S, Amendola A, Rodolfo C, et al. Inhibition of "tissue" transglutaminase increases cell survival by preventing apoptosis. J Biol Chem 1999;274:34123-8
  • Fesus L, Thomazy V, Falus A. Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett 1987;224:104-8
  • Boehm JE, Singh U, Combs C, et al. Tissue transglutaminase protects against apoptosis by modifying the tumor suppressor protein p110 Rb. J Biol Chem 2002;77:20127-30
  • Tucholski J, Johnson GV. Tissue transglutaminase differentially modulates apoptosis in a stimuli-dependent manner. J Neurochem 2002;81:780-91
  • Citron BA, SantaCruz KS, Davies PJ, Festoff BW. Intron-exon swapping of transglutaminase mRNA and neuronal Tau aggregation in Alzheimer’s disease. J Biol Chem 2001;276:3295-301
  • Antonyak MA, Jansen JM, Miller AM, et al. Two isoforms of tissue transglutaminase mediate opposing cellular fates. Proc Natl Acad Sci USA 2006;103:18609-14
  • Datta S, Antonyak MA, Cerione RA. GTP-binding-defective forms of tissue transglutaminase trigger cell death. Biochemistry 2007;46:14819-29
  • Achyuthan KE, Greenberg CS. Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem 1987;262:1901-6
  • Nakaoka H, Perez DM, Baek KJ, et al. Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 1994;264:1593-6
  • Mian S, Alaoui S, Lawry J, et al. The importance of the GTP-binding protein tissue transglutaminase in the regulation of cell cycle progression. FEBS Lett 1995;370:27-31
  • Feng JF, Rhee SG, Im MJ. Evidence that phospholipase delta1 is the effector in the Gh (transglutaminase II)-mediated signaling. J Biol Chem 1996;271:16451-4
  • Murthy SN, Lomasney JW, Mak EC, et al. Interactions of G(h)/transglutaminase with phospholipase Cdelta1 and with GTP. Proc Natl Acad Sci USA 1999;96:11815-19
  • Baek KJ, Kang S, Damron D, Im M. Phospholipase Cdelta1 is a guanine nucleotide exchanging factor for transglutaminase II (Galpha h) and promotes alpha 1B-adrenoreceptor- mediated GTP binding and intracellular calcium release. J Biol Chem 2001;276:5591-7
  • Hasegawa G, Suwa M, Ichikawa Y, et al. A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 2003;373:793-803
  • Lahav J, Karniel E, Bagoly Z, et al. Coagulation factor XIII serves as protein disulfide isomerase. Thromb Haemost 2009;101:840-4
  • Malorni W, Farrace MG, Rodolfo C, Piacentini M. Type 2 transglutaminase in neurodegenerative diseases: the mitochondrial connection. Curr Pharm Des 2008;14:278-88
  • Malorni W, Farrace MG, Matarrese P, et al. The adenine nucleotide translocator 1 acts as a type 2 transglutaminase substrate: implications for mitochondrial-dependent apoptosis. Cell Death Differ 2009;16:1480-92
  • Mishra S, Murphy LJ. Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 2004;279:23863-8
  • Mishra S, Murphy LJ. The p53 oncoprotein is a substrate for tissue transglutaminase kinase activity. Biochem Biophys Res Commun 2006;339:726-30
  • Mishra S, Saleh A, Espino PS, et al. Phosphorylation of histones by tissue transglutaminase. J Biol Chem 2006;281:5532-8
  • Mishra S, Melino G, Murphy LJ. Transglutaminase 2 kinase activity facilitates protein kinase A-induced phosphorylation of retinoblastoma protein. J Biol Chem 2007;282:18108-15
  • De Laurenzi V, Melino G. Gene disruption of tissue transglutaminase. Mol Cell Biol 2001;21:148-55
  • Nanda N, Iismaa SE, Owens WA, et al. Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 2001;276:20673-8
  • Szondy Z, Sarang Z, Molnar P, et al. Transglutaminase 2-/- mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci USA 2003;100:7812-17
  • Mastroberardino PG, Farrace MG, Viti I, et al. Tissue transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochim Biophys Acta 2006;1757:1357-65
  • Bernassola F, Federici M, Corazzari M, et al. Role of transglutaminase 2 in glucose tolerance: knockout mice studies and a putative mutation in a MODY patient. FASEB J 2002;16:1371-8
  • Iismaa SE, Aplin M, Holman S, et al. Glucose homeostasis in mice is transglutaminase 2 independent. PLoS One 2013;8:e63346
  • Siegel M, Khosla C. Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther 2007;115:232-45
  • Jeitner TM, Delikatny EJ, Ahlqvist J, et al. Mechanism for the inhibition of transglutaminase 2 by cystamine. Biochem Pharmacol 2005;69:961-70
  • Jeon JH, Lee HJ, Jang GY, et al. Different inhibition characteristics of intracellular transglutaminase activity by cystamine and cysteamine. Exp Mol Med 2004;36:576-81
  • Lesort M, Lee M, Tucholski J, et al. Cystamine inhibits caspase activity. Implications for the treatment of polyglutamine disorders. J Biol Chem 2003;278:3825-30
  • Badarau E, Collighan RJ, Griffin M. Recent advances in the development of tissue transglutaminase (TG2) inhibitors. Amino Acids 2013;44:119-27
  • Lai TS, Slaughter TF, Peoples KA, et al. Regulation of human tissue transglutaminase function by magnesium- nucleotide complexes. Identification of distinct binding sites for Mg- GTP and Mg-ATP. J Biol Chem 1998;273:1776-81
  • Klock C, Jin X, Choi K, et al. Acylideneoxoindoles: a new class of reversible inhibitors of human transglutaminase 2. Bioorg Med Chem Lett 2011;21:2692-6
  • Pardin C, Pelletier J, Lubell W, et al. Cinnamoyl inhibitors of tissue transglutaminase. J Org Chem 2008;73:5766-75
  • Duval E, Case A, Stein RL, et al. Structure-activity relationship study of novel tissue transglutaminase inhibitors. Bioorg Med Chem Lett 2005;15:1885-9
  • Candi E, Paradisi A, Terrinoni A, et al. Transglutaminase 5 is regulated by guanine-adenine nucleotides. Biochem J 2004;381:313-19
  • Thomas H, Beck K, Adamczyk M, et al. Transglutaminase 6: a protein associated with central nervous system development and motor function. Amino Acids 2013;44:161-77
  • Pardin C, Roy I, Chica RA, et al. Photolabeling of tissue transglutaminase reveals the binding mode of potent cinnamoyl inhibitors. Biochemistry 2009;48:3346-53
  • Choi K, Siegel M, Piper JL, et al. Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol 2005;12:469-75
  • Hausch F, Halttunen T, Maki M, et al. Design, synthesis, and evaluation of gluten peptide analogs as selective inhibitors of human tissue transglutaminase. Chem Biol 2003;10:225-31
  • Verhaar R, Jongenelen CA, Gerard M, et al. Blockade of enzyme activity inhibits tissue transglutaminase-mediated transamidation of alpha-synuclein in a cellular model of Parkinson’s disease. Neurochem Int 2011;58:785-93
  • Watts RE, Siegel EM, Khosla C. Structure-activity relationship analysis of the selective inhibition of transglutaminase 2 by dihydroisoxazoles. J Med Chem 2006;49:7493-501
  • Dafik L, Albertelli M, Stamnaes J, et al. Activation and inhibition of transglutaminase 2 in mice. PLoS One 2012;7:e30642
  • Griffin M, Mongeot A, Collighan R, et al. Synthesis of potent water-soluble tissue transglutaminase inhibitors. Bioorg Med Chem Lett 2008;18:5559-62
  • Wang Z, Griffin M. The role of TG2 in regulating S100A4-mediated mammary tumour cell migration. PLoS One 2013;8:e57017
  • Hils M, Weber J, Buechold C, et al. Selective blockers of tissue transglutaminase for coeliac disease therapy [abstract]. 26th AOECS general assembly, international coeliac disease scientific conference – better life for coeliacs; Helsinki, Finland; 2012
  • Karell K, Louka AS, Moodie SJ, et al. HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results from the European genetics cluster on celiac disease. Hum Immunol 2003;64:469-77
  • Romanos J, Rosén A, Kumar V, et al. Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut 2014;63:415-22
  • Hausch F, Shan L, Santiago NA, et al. Intestinal digestive resistance of immunodominant gliadin peptides. Am J Physiol Gastrointest Liver Physiol 2002;283:G996-G1003
  • Lammers KM, Lu R, Brownley J, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 2008;135:194-204
  • Rauhavirta T, Qiao SW, Jiang Z, et al. Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin A. Clin Exp Immunol 2011;164:127-36
  • Ménard S, Lebreton C, Schumann M, et al. Paracellular versus transcellular intestinal permeability to gliadin peptides in active celiac disease. Am J Pathol 2012;180:608-15
  • van de Wal Y, Kooy YM, Drijfhout JW, et al. Peptide binding characteristics of the coeliac disease-associated DQ(alpha1*0501, beta1*0201) molecule. Immunogenetics 1996;44:246-53
  • Molberg O, Mcadam SN, Körner R, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 1998;4:713-17
  • Sollid LM, Molberg O, McAdam S, et al. Autoantibodies in coeliac disease: tissue transglutaminase – guilt by association? Gut 1997;41:851-2
  • Hue S, Mention JJ, Monteiro RC, et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004;21:367-77
  • Dickson BC, Streutker CJ, Chetty R. Coeliac disease: an update for pathologists. J Clin Pathol 2006;59:1008-16
  • Molberg O, McAdam S, Lundin KE, et al. T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol 2001;31:1317-23
  • Maiuri L, Ciacci C, Ricciardelli I, et al. Unexpected role of surface transglutaminase type II in celiac disease. Gastroenterology 2005;129:1400-13
  • Rauhavirta T, Oittinen M, Kivistö R, et al. Are transglutaminase 2 inhibitors able to reduce gliadin-induced toxicity related to celiac disease? A proof-of-concept study. J Clin Immunol 2013;33:134-42
  • Lebreton C, Ménard S, Abed J, et al. Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology 2012;143:698-707
  • Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med 2008;205:143-54
  • Baranger K, Zani ML, Labas V, et al. Secretory leukocyte protease inhibitor (SLPI) is, like its homologue trappin-2 (pre-elafin), a transglutaminase substrate. PLoS One 2011;6:e20976
  • Galipeau HJ, Wiepjes M, Motta JP, et al. Novel role of the serine protease inhibitor elafin in gluten-related disorders. Am J Gastroenterol 2014;109:748-56
  • Motta JP, Bermúdez-Humarán LG, Deraison C, et al. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci Transl Med 2012;4:158ra144
  • Motta JP, Magne L, Descamps D, et al. Modifying the protease, antiprotease pattern by elafin overexpression protects mice from colitis. Gastroenterology 2011;140:1272-82
  • Zani ML, Tanga A, Saidi A, et al. SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions. Biochem Soc Trans 2011;39:1441-6
  • Alam SR, Newby DE, Henriksen PA. Role of the endogenous elastase inhibitor, elafin, in cardiovascular injury: from epithelium to endothelium. Biochem Pharmacol 2012;83:695-704
  • Kirkpatrick DL, Kuperus M, Dowdeswell M, et al. Mechanisms of inhibition of the thioredoxin growth factor system by antitumor 2-imidazolyl disulfides. Biochem Pharmacol 1998;55:987-94
  • Baker AF, Dragovich T, Tate WR, et al. The antitumor thioredoxin-1 inhibitor PX-12 (1-methylpropyl 2-imidazolyl disulfide) decreases thioredoxin-1 and VEGF levels in cancer patient plasma. J Lab Clin Med 2006;147:83-90
  • Ramanathan RK, Stephenson JJ, Weiss GJ, et al. A phase I trial of PX-12, a small-molecule inhibitor of thioredoxin-1, administered as a 72-hour infusion every 21 days in patients with advanced cancers refractory to standard therapy. Invest New Drugs 2012;30:1591-6
  • Ramanathan RK, Abbruzzese J, Dragovich T, et al. A randomized phase II study of PX-12, an inhibitor of thioredoxin in patients with advanced cancer of the pancreas following progression after a gemcitabine-containing combination. Cancer Chemother Pharmacol 2011;67:503-9
  • DiRaimondo TR, Plugis NM, Jin X, et al. Selective inhibition of extracellular thioredoxin by asymmetric disulfides. J Med Chem 2013;56:1301-10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.