312
Views
13
CrossRef citations to date
0
Altmetric
Review

Are big potassium-type Ca2+-activated potassium channels a viable target for the treatment of epilepsy?

, , , , MD (Professor, Chair of Pharmacology) &

Bibliography

  • Sah P. Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 1996;19:150-4
  • Vergara C, Latorre R, Marrion NV, Adelman JP. Calcium-activated potassium channels. Curr Opin Neurobiol 1998;8:321-9
  • Martire M, Barrese V, D’Amico M, et al. Pre-synaptic BK channels selectively control glutamate versus GABA release from cortical and hippocampal nerve terminals. J Neurochem 2010;115:411-22
  • Raffaelli G, Saviane C, Mohajerani MH, et al. BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus. J Physiol 2004;557:147-57
  • Jensen BS, Strobaek D, Olesen SP, Christophersen P. The Ca2+-activated K+ channel of intermediate conductance: a molecular target for novel treatments? Curr Drug Targets 2001;2:401-22
  • Bentzen BH, Olesen SP, Ronn LC, Grunnet M. BK channel activators and their therapeutic perspectives. Front Physiol 2014;5:389
  • N’Gouemo P. Targeting BK (big potassium) channels in epilepsy. Expert Opin Ther Targets 2011;15:1283-95
  • Singh H, Stefani E, Toro L. Intracellular BK(Ca) (iBK(Ca)) channels. J Physiol 2012;590:5937-47
  • Lee US, Cui J. BK channel activation: structural and functional insights. Trends Neurosci 2010;33:415-23
  • Faber ES, Sah P. Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 2003;9:181-94
  • Salkoff L, Butler A, Ferreira G, et al. High-conductance potassium channels of the SLO family. Nat Rev Neurosci 2006;7:921-31
  • Yang J, Yang H, Sun X, et al. Interaction between residues in the Mg2+-binding site regulates BK channel activation. J Gen Physiol 2013;141:217-28
  • Hou S, Heinemann SH, Hoshi T. Modulation of BKCa channel gating by endogenous signaling molecules. Physiology (Bethesda) 2009;24:26-35
  • Xiong ZQ, Saggau P, Stringer JL. Activity-dependent intracellular acidification correlates with the duration of seizure activity. J Neurosci 2000;20:1290-6
  • Shipston MJ. Regulation of large conductance calcium- and voltage-activated potassium (BK) channels by S-palmitoylation. Biochem Soc Trans 2013;41:67-71
  • Shi J, Krishnamoorthy G, Yang Y, et al. Mechanism of magnesium activation of calcium-activated potassium channels. Nature 2002;418:876-80
  • Alioua A, Li M, Wu Y, et al. Unconventional myristoylation of large-conductance Ca(2)(+)-activated K(+) channel (Slo1) via serine/threonine residues regulates channel surface expression. Proc Natl Acad Sci USA 2011;108:10744-9
  • Toro L, Li M, Zhang Z, et al. MaxiK channel and cell signalling. Pflugers Arch 2014;466:875-86
  • Cui J, Yang H, Lee US. Molecular mechanisms of BK channel activation. Cell Mol Life Sci 2009;66:852-75
  • Du W, Bautista JF, Yang H, et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 2005;37:733-8
  • Peng Z, Sakai Y, Kurgan L, et al. Intrinsic disorder in the BK channel and its interactome. PLoS One 2014;9:e94331
  • Ahluwalia J, Tinker A, Clapp LH, et al. The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature 2004;427:853-8
  • Zhang L, Li X, Zhou R, Xing G. Possible role of potassium channel, big K in etiology of schizophrenia. Med Hypotheses 2006;67:41-3
  • Laumonnier F, Roger S, Guerin P, et al. Association of a functional deficit of the BKCa channel, a synaptic regulator of neuronal excitability, with autism and mental retardation. Am J Psychiatry 2006;163:1622-9
  • Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011;10:173-86
  • Jehi LE, Vezzani A. Novel concepts in epileptogenesis and its prevention. Neurotherapeutics 2014;11:229-30
  • Schmidt D, Friedman D, Dichter MA. Anti-epileptogenic clinical trial designs in epilepsy: issues and options. Neurotherapeutics 2014;11:401-11
  • French JA, White HS, Klitgaard H, et al. Development of new treatment approaches for epilepsy: unmet needs and opportunities. Epilepsia 2013;54(Suppl 4):3-12
  • Wang B, Rothberg BS, Brenner R. Mechanism of beta4 subunit modulation of BK channels. J Gen Physiol 2006;127:449-65
  • Yan J, Aldrich RW. BK potassium channel modulation by leucine-rich repeat-containing proteins. Proc Natl Acad Sci USA 2012;109:7917-22
  • Zhang J, Yan J. Regulation of BK channels by auxiliary gamma subunits. Front Physiol 2014;5:401
  • Meera P, Wallner M, Song M, Toro L. Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc Natl Acad Sci USA 1997;94:14066-71
  • Wang L, Sigworth FJ. Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 2009;461:292-5
  • Wu Y, Yang Y, Ye S, Jiang Y. Structure of the gating ring from the human large-conductance Ca(2+)-gated K(+) channel. Nature 2010;466:393-7
  • Meera P, Wallner M, Toro L. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci USA 2000;97:5562-7
  • Jiang Y, Lee A, Chen J, et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 2002;417:515-22
  • Zhang G, Yang H, Liang H, et al. A charged residue in S4 regulates coupling among the activation gate, voltage, and Ca2+ sensors in BK channels. J Neurosci 2014;34:12280-8
  • Yang H, Shi J, Zhang G, et al. Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and the RCK1 domains. Nat Struct Mol Biol 2008;15:1152-9
  • Yuan P, Leonetti MD, Pico AR, et al. Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution. Science 2010;329:182-6
  • Yuan P, Leonetti MD, Hsiung Y, MacKinnon R. Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 2012;481:94-7
  • Yi L, Morgan JT, Ragsdale SW. Identification of a thiol/disulfide redox switch in the human BK channel that controls its affinity for heme and CO. J Biol Chem 2010;285:20117-27
  • Contreras GF, Neely A, Alvarez O, et al. Modulation of BK channel voltage gating by different auxiliary beta subunits. Proc Natl Acad Sci USA 2012;109:18991-6
  • Wallner M, Meera P, Toro L. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Proc Natl Acad Sci USA 1999;96:4137-42
  • Berkefeld H, Sailer CA, Bildl W, et al. BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 2006;314:615-20
  • Isaacson JS, Murphy GJ. Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca(2+)-activated K+ channels. Neuron 2001;31:1027-34
  • Hu H, Shao LR, Chavoshy S, et al. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 2001;21:9585-97
  • Fahanik-Babaei J, Eliassi A, Saghiri R. How many types of large conductance Ca(+)(2)-activated potassium channels exist in brain mitochondrial inner membrane: evidence for a new mitochondrial large conductance Ca(2)(+)-activated potassium channel in brain mitochondria. Neuroscience 2011;199:125-32
  • Liu HW, Hou PP, Guo XY, et al. Structural basis for calcium and magnesium regulation of a large conductance calcium-activated potassium channel with beta1 subunits. J Biol Chem 2014;289:16914-23
  • Bentrop D, Beyermann M, Wissmann R, Fakler B. NMR structure of the “ball-and-chain” domain of KCNMB2, the beta 2-subunit of large conductance Ca2+- and voltage-activated potassium channels. J Biol Chem 2001;276:42116-21
  • Sanchez M, McManus OB. Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel. Neuropharmacology 1996;35:963-8
  • Tao J, Zhou ZL, Wu B, et al. Recombinant expression and functional characterization of martentoxin: a selective inhibitor for BK channel (alpha + beta4). Toxins (Basel) 2014;6:1419-33
  • Nardi A, Olesen SP. BK channel modulators: a comprehensive overview. Curr Med Chem 2008;15:1126-46
  • Gu N, Vervaeke K, Storm JF. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 2007;580:859-82
  • Velumian AA, Carlen PL. Differential control of three after-hyperpolarizations in rat hippocampal neurones by intracellular calcium buffering. J Physiol 1999;517(Pt 1):201-16
  • Alix P, Venkatesan K, Scuvee-Moreau J, et al. Mechanism of the medium-duration afterhyperpolarization in rat serotonergic neurons. Eur J Neurosci 2014;39:186-96
  • Brenner R, Chen QH, Vilaythong A, et al. BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat Neurosci 2005;8:1752-9
  • Bond CT, Herson PS, Strassmaier T, et al. Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J Neurosci 2004;24:5301-6
  • Runden-Pran E, Haug FM, Storm JF, Ottersen OP. BK channel activity determines the extent of cell degeneration after oxygen and glucose deprivation: a study in organotypical hippocampal slice cultures. Neuroscience 2002;112:277-88
  • Matthews EA, Disterhoft JF. Blocking the BK channel impedes acquisition of trace eyeblink conditioning. Learn Mem 2009;16:106-9
  • Loot AE, Moneke I, Keseru B, et al. 11,12-EET stimulates the association of BK channel alpha and beta(1) subunits in mitochondria to induce pulmonary vasoconstriction. PLoS One 2012;7:e46065
  • Augustynek B, Kudin AP, Bednarczyk P, et al. Hemin inhibits the large conductance potassium channel in brain mitochondria: a putative novel mechanism of neurodegeneration. Exp Neurol 2014;257:70-5
  • Fahanik-Babaei J, Eliassi A, Jafari A, et al. Electro-pharmacological profile of a mitochondrial inner membrane big-potassium channel from rat brain. Biochim Biophys Acta 2011;1808:454-60
  • Li B, Jie W, Huang L, et al. Nuclear BK channels regulate gene expression via the control of nuclear calcium signaling. Nat Neurosci 2014;17:1055-63
  • Pacheco Otalora LF, Hernandez EF, Arshadmansab MF, et al. Down-regulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy. Brain Res 2008;1200:116-31
  • Ermolinsky B, Arshadmansab MF, Pacheco Otalora LF, et al. Deficit of Kcnma1 mRNA expression in the dentate gyrus of epileptic rats. Neuroreport 2008;19:1291-4
  • Hu S, Labuda MZ, Pandolfo M, et al. Variants of the KCNMB3 regulatory subunit of maxi BK channels affect channel inactivation. Physiol Genomics 2003;15:191-8
  • Lorenz S, Heils A, Kasper JM, Sander T. Allelic association of a truncation mutation of the KCNMB3 gene with idiopathic generalized epilepsy. Am J Med Genet B Neuropsychiatr Genet 2007;144B:10-13
  • Wang B, Rothberg BS, Brenner R. Mechanism of increased BK channel activation from a channel mutation that causes epilepsy. J Gen Physiol 2009;133:283-94
  • Behr J, Gloveli T, Heinemann U. Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons. Brain Res 2000;867:259-64
  • Liu J, Ye J, Zou X, et al. CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. Nat Commun 2014;5:3924
  • Lee US, Cui J. {beta} subunit-specific modulations of BK channel function by a mutation associated with epilepsy and dyskinesia. J Physiol 2009;587:1481-98
  • Bindokas VP, Lee CC, Colmers WF, Miller RJ. Changes in mitochondrial function resulting from synaptic activity in the rat hippocampal slice. J Neurosci 1998;18:4570-87
  • Ben-Menachem E. Medical management of refractory epilepsy--practical treatment with novel antiepileptic drugs. Epilepsia 2014;55(Suppl 1):3-8
  • Johnson BE, Glauser DA, Dan-Glauser ES, et al. Alternatively spliced domains interact to regulate BK potassium channel gating. Proc Natl Acad Sci USA 2011;108:20784-9
  • Ahrendt E, Kyle B, Braun AP, Braun JE. Cysteine string protein limits expression of the large conductance, calcium-activated K(+) (BK) channel. PLoS One 2014;9:e86586
  • Chen L, Tian L, MacDonald SH, et al. Functionally diverse complement of large conductance calcium- and voltage-activated potassium channel (BK) alpha-subunits generated from a single site of splicing. J Biol Chem 2005;280:33599-609
  • Ermolinsky BS, Skinner F, Garcia I, et al. Upregulation of STREX splice variant of the large conductance Ca2+-activated potassium (BK) channel in a rat model of mesial temporal lobe epilepsy. Neurosci Res 2011;69:73-80
  • Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 2000;52:557-94
  • Dopico AM, Bukiya AN, Singh AK. Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol. Pharmacol Ther 2012;135:133-50
  • Clarke AL, Petrou S, Walsh JVJr, Singer JJ. Modulation of BK(Ca) channel activity by fatty acids: structural requirements and mechanism of action. Am J Physiol Cell Physiol 2002;283:C1441-53
  • Nardi A, Calderone V, Chericoni S, Morelli I. Natural modulators of large-conductance calcium-activated potassium channels. Planta Med 2003;69:885-92
  • O’Malley D, Shanley LJ, Harvey J. Insulin inhibits rat hippocampal neurones via activation of ATP-sensitive K+ and large conductance Ca2+-activated K+ channels. Neuropharmacology 2003;44:855-63
  • Shanley LJ, O’Malley D, Irving AJ, et al. Leptin inhibits epileptiform-like activity in rat hippocampal neurones via PI 3-kinase-driven activation of BK channels. J Physiol 2002;545:933-44
  • Garduno J, Galvan E, Fernandez de Sevilla D, Buno W. 1-Ethyl-2-benzimidazolinone (EBIO) suppresses epileptiform activity in in vitro hippocampus. Neuropharmacology 2005;49:376-88
  • Kobayashi K, Nishizawa Y, Sawada K, et al. K(+)-channel openers suppress epileptiform activities induced by 4-aminopyridine in cultured rat hippocampal neurons. J Pharmacol Sci 2008;108:517-28
  • Wu SN, Li HF. Characterization of riluzole-induced stimulation of large-conductance calcium-activated potassium channels in rat pituitary GH3 cells. J Investig Med 1999;47:484-95
  • Borowicz KK, Sekowski A, Drelewska E, Czuczwar SJ. Riluzole enhances the anti-seizure action of conventional antiepileptic drugs against pentetrazole-induced convulsions in mice. Pol J Pharmacol 2004;56:187-93
  • De Sarro G, Siniscalchi A, Ferreri G, et al. NMDA and AMPA/kainate receptors are involved in the anticonvulsant activity of riluzole in DBA/2 mice. Eur J Pharmacol 2000;408:25-34
  • King JT, Lovell PV, Rishniw M, et al. Beta2 and beta4 subunits of BK channels confer differential sensitivity to acute modulation by steroid hormones. J Neurophysiol 2006;95:2878-88
  • Dick GM, Hunter AC, Sanders KM. Ethylbromide tamoxifen, a membrane-impermeant antiestrogen, activates smooth muscle calcium-activated large-conductance potassium channels from the extracellular side. Mol Pharmacol 2002;61:1105-13
  • Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013;7:115
  • Citraro R, Russo E, Di Paola ED, et al. Effects of some neurosteroids injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy. Neuropharmacology 2006;50:1059-71
  • Zhang H, Xie M, Schools GP, et al. Tamoxifen mediated estrogen receptor activation protects against early impairment of hippocampal neuron excitability in an oxygen/glucose deprivation brain slice ischemia model. Brain Res 2009;1247:196-211
  • Borowicz KK, Luszczki J, Swiader M, et al. Influence of sexual hormone antagonists on the anticonvulsant action of conventional antiepileptic drugs against electrically- and pentylenetetrazol-induced seizures in mice. Eur Neuropsychopharmacol 2004;14:77-85
  • Russo E, Citraro R, Scicchitano F, et al. Effects of early long-term treatment with antiepileptic drugs on development of seizures and depressive-like behavior in a rat genetic absence epilepsy model. Epilepsia 2011;52:1341-50
  • Biton V. Clinical pharmacology and mechanism of action of zonisamide. Clin Neuropharmacol 2007;30:230-40
  • Huang CW, Huang CC, Wu SN. Activation by zonisamide, a newer antiepileptic drug, of large-conductance calcium-activated potassium channel in differentiated hippocampal neuron-derived H19-7 cells. J Pharmacol Exp Ther 2007;321:98-106
  • Russo E, Constanti A. Topiramate hyperpolarizes and modulates the slow poststimulus AHP of rat olfactory cortical neurones in vitro. Br J Pharmacol 2004;141:285-301
  • Thiry A, Dogne JM, Supuran CT, Masereel B. Anticonvulsant sulfonamides/sulfamates/sulfamides with carbonic anhydrase inhibitory activity: drug design and mechanism of action. Curr Pharm Des 2008;14:661-71
  • Tricarico D, Barbieri M, Mele A, et al. Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats. FASEB J 2004;18:760-1
  • Citraro R, Leo A, Marra R, et al. Antiepileptogenic effects of the selective COX-2 inhibitor etoricoxib, on the development of spontaneous absence seizures in WAG/Rij rats. Brain Res Bull 2015. [Epub ahead of print]
  • Vezzani A, Friedman A, Dingledine RJ. The role of inflammation in epileptogenesis. Neuropharmacology 2013;69:16-24
  • Rojas A, Jiang J, Ganesh T, et al. Cyclooxygenase-2 in epilepsy. Epilepsia 2014;55:17-25
  • Lu T, Wang XL, He T, et al. Impaired arachidonic acid-mediated activation of large-conductance Ca2+-activated K+ channels in coronary arterial smooth muscle cells in Zucker Diabetic Fatty rats. Diabetes 2005;54:2155-63
  • Kim DW, Lee SY, Shon YM, Kim JH. Effects of new antiepileptic drugs on circulatory markers for vascular risk in patients with newly diagnosed epilepsy. Epilepsia 2013;54:e146-9
  • Chuang YC, Chuang HY, Lin TK, et al. Effects of long-term antiepileptic drug monotherapy on vascular risk factors and atherosclerosis. Epilepsia 2012;53:120-8
  • Citraro R, Chimirri S, Aiello R, et al. Protective effects of some statins on epileptogenesis and depressive-like behavior in WAG/Rij rats, a genetic animal model of absence epilepsy. Epilepsia 2014;55:1284-91
  • Russo E, Donato di Paola E, Gareri P, et al. Pharmacodynamic potentiation of antiepileptic drugs’ effects by some HMG-CoA reductase inhibitors against audiogenic seizures in DBA/2 mice. Pharmacol Res 2013;70:1-12
  • Stepien KM, Tomaszewski M, Luszczki JJ, Czuczwar SJ. The interactions of atorvastatin and fluvastatin with carbamazepine, phenytoin and valproate in the mouse maximal electroshock seizure model. Eur J Pharmacol 2012;674:20-6
  • Hoshi T, Tian Y, Xu R, et al. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA. Proc Natl Acad Sci USA 2013;110:4822-7
  • Taha AY, Jeffrey MA, Taha NM, et al. Acute administration of docosahexaenoic acid increases resistance to pentylenetetrazol-induced seizures in rats. Epilepsy Behav 2010;17:336-43
  • Wu SN, Li HF, Chiang HT. Vinpocetine-induced stimulation of calcium-activated potassium currents in rat pituitary GH3 cells. Biochem Pharmacol 2001;61:877-92
  • Vas A, Gulyas B. Eburnamine derivatives and the brain. Med Res Rev 2005;25:737-57
  • Revel L, Colombo S, Ferrari F, et al. CR 2039, a new bis-(1H-tetrazol-5-yl)phenylbenzamide derivative with potential for the topical treatment of asthma. Eur J Pharmacol 1992;229:45-53
  • Persiani S, D’Amato M, Makovec F, et al. Pharmacokinetics of andolast after administration of single escalating doses by inhalation in mild asthmatic patients. Biopharm Drug Dispos 2001;22:73-81
  • Czuczwar SJ, Gasior M, Kozicka M, et al. A potential anti-asthmatic drug, CR 2039, enhances the anticonvulsive activity of some antiepileptic drugs against pentetrazol in mice. Eur Neuropsychopharmacol 1998;8:233-8
  • Czuczwar SJ, Gasior M, Kozicka M, et al. Influence of a potential anti-asthmatic drug, CR 2039, upon the anticonvulsive activity of conventional antiepileptics against maximal electroshock-induced seizures in mice. J Neural Transm 1996;103:1371-9
  • Shruti S, Clem RL, Barth AL. A seizure-induced gain-of-function in BK channels is associated with elevated firing activity in neocortical pyramidal neurons. Neurobiol Dis 2008;30:323-30
  • Sheehan JJ, Benedetti BL, Barth AL. Anticonvulsant effects of the BK-channel antagonist paxilline. Epilepsia 2009;50:711-20
  • Borowicz KK, Banach M. Antiarrhythmic drugs and epilepsy. Pharmacol Rep 2014;66:545-51
  • De Sarro G, De Sarro A, Federico F, Meldrum BS. Anticonvulsant properties of some calcium antagonists on sound-induced seizures in genetically epilepsy prone rats. Gen Pharmacol 1990;21:769-78
  • Harper AA, Catacuzzeno L, Trequattrini C, et al. Verapamil block of large-conductance Ca-activated K channels in rat aortic myocytes. J Membr Biol 2001;179:103-11
  • Asadi-Pooya AA, Razavizadegan SM, Abdi-Ardekani A, Sperling MR. Adjunctive use of verapamil in patients with refractory temporal lobe epilepsy: a pilot study. Epilepsy Behav 2013;29:150-4
  • Crunelli V, Leresche N. Block of Thalamic T-Type Ca(2+) channels by ethosuximide is not the whole story. Epilepsy Curr 2002;2:53-6
  • Szaflarski JP, Martina Bebin E. Cannabis, cannabidiol, and epilepsy - from receptors to clinical response. Epilepsy Behav 2014;41:277-82
  • Iannotti FA, Hill CL, Leo A, et al. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci 2014;5(11):1131-41
  • Citraro R, Russo E, Scicchitano F, et al. Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-alpha receptor activation in a genetic model of absence epilepsy. Neuropharmacology 2013;69:115-26
  • Sasso O, La Rana G, Vitiello S, et al. Palmitoylethanolamide modulates pentobarbital-evoked hypnotic effect in mice: involvement of allopregnanolone biosynthesis. Eur Neuropsychopharmacol 2010;20:195-206
  • de Novellis V, Luongo L, Guida F, et al. Effects of intra-ventrolateral periaqueductal grey palmitoylethanolamide on thermoceptive threshold and rostral ventromedial medulla cell activity. Eur J Pharmacol 2012;676:41-50
  • Mattace Raso G, Russo R, Calignano A, Meli R. Palmitoylethanolamide in CNS health and disease. Pharmacol Res 2014;86:32-41
  • LoVerme J, Russo R, La Rana G, et al. Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-alpha. J Pharmacol Exp Ther 2006;319:1051-61
  • Shirazi-zand Z, Ahmad-Molaei L, Motamedi F, Naderi N. The role of potassium BK channels in anticonvulsant effect of cannabidiol in pentylenetetrazole and maximal electroshock models of seizure in mice. Epilepsy Behav 2013;28:1-7
  • Kasteleijn-Nolst Trenite DG, Biton V, French JA, et al. Kv7 potassium channel activation with ICA-105665 reduces photoparoxysmal EEG responses in patients with epilepsy. Epilepsia 2013;54:1437-43
  • Herrero AI, Del Olmo N, Gonzalez-Escalada JR, Solis JM. Two new actions of topiramate: inhibition of depolarizing GABA(A)-mediated responses and activation of a potassium conductance. Neuropharmacology 2002;42:210-20
  • Poolos NP, Migliore M, Johnston D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci 2002;5:767-74
  • White HS, Smith MD, Wilcox KS. Mechanisms of action of antiepileptic drugs. Int Rev Neurobiol 2007;81:85-110
  • Wickenden AD. Potassium channels as anti-epileptic drug targets. Neuropharmacology 2002;43:1055-60
  • Ehling P, Cerina M, Meuth P, et al. Ca(2+)-dependent large conductance K(+) currents in thalamocortical relay neurons of different rat strains. Pflugers Arch 2012;465(4):469-80
  • Sha Y, Tashima T, Mochizuki Y, et al. Compounds structurally related to tamoxifen as openers of large-conductance calcium-activated K+ channel. Chem Pharm Bull (Tokyo) 2005;53:1372-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.