39
Views
5
CrossRef citations to date
0
Altmetric
Miscellaneous

Targeting HIV-1 integrase

, &
Pages 443-464 | Published online: 25 Feb 2005

Bibliography

  • VARMUS HE, BROWN PO: Retrovirus, American Society for Microbiology Press, Washington, DC. (1989):53–108.
  • BOWERMAN B, BROWN PO, BISHOP JM, VARMUS HE: A nucleoprotein complex mediates the integration of retroviral DNA. Genes Develop. (1989) 3(4):469–478.
  • BURKRINSKY MI, SHAROVA N, McDONALD T: Association of integrase, matrix and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc. Nati Acad. Sci. USA (1993) 90(13):6125–6129.
  • MILLER MD, FARNET CM, BUSHMAN FD: Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. j Viral. (1997) 71(7):5382–5390.
  • FARNET CM, HASELTINE WA: Integration of human immunodeficiency virus type 1 DNA in vitro. Proc. Nati Acad. Li. USA (1990) 87(11):4164–4168.
  • FARNET CM, HASELTINE WA: Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. j Viral. (1991) 65(4):1910–1915.
  • GALLAY P, HOPE T, CHIN D, TRONO D: HIV-1 infection of non-dividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Nati Acad. Sci. USA (1997) 94(18):9825–9830.
  • LAPADAT-TAPOLSKY M, D ROCQUIGNY H, VAN GENT D et al.: Interactions between HIV-1 nucleocapsid protein and virlal DNA may have important functions in the viral life cycle. Nucleic. Acids Res. (1993) 21(4):831–839.
  • CARTEAU S, GORELICK RJ, BUSHMAN FD: Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein. j Viral. (1999) 73(8):6670–6679.
  • DEPIENNE C, MOUSNIER A, LEH H et al.: Characterization of the nuclear import pathway for HIV-1 integrase. I Biol. Chem. (2001) Mar 16 repub ahead of print].
  • FOUCHIER RA, MALIM MH: Nuclear import of human immunodeficiency virus type 1 preintegration complexes. Adv. Virus Res. (1999) 52:275–299.
  • PETIT C, SCHWARTZ O, MAMMANO F: The karyophilic properties of human immunodeficiency virus type 1 integrase are not required for nuclear import of proviral DNA. J Viral. (2000) 74(15):7119–7126.
  • SHERMAN MP, DE NORONHA CM, HEUSCH MI, GREENE S, GREENE WC: Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. j Viral. (2001) 75(3):1522–1532.
  • ZENNOU V, PETIT C, GUETARD D et al.: HIV-1 genome nuclear import is mediated by a central DNA flap. Cell (2000) 101(2):173–185.
  • CHEN H, ENGELMAN A: The barrier-autointegration protein is a host factor for HIV type 1 integration. Proc. Natl. Acad. Li. USA (1998) 95(26):15270–15274.
  • CHEN H, WEI SQ et al.: Multiple integrase functions are required to form the native structure of the human immunodeficiency virus Type I intasome. I Biol. Chem. (1999) 274(24):17358–17364.
  • FARNET CM, BUSHMAN FD: HIV-1 cDNA integration: requirement of HMG 1(Y) protein for function of preintegration complexes in vitro. Cell (1997) 88(4):483–492.
  • LEE SP, CRAIGIE R: Protection of retroviralDNA from autointegration: involvement of a cellular factor. Proc. Nati Acad. Li. USA (1994) 91(21):9823–9827.
  • LI L, YODER K, HANSEN MS: Retroviral cDNA integration: stimulation by HMG I family proteins. j Viral. (2000) 74(23):10965–10974.
  • LI L, FARNET CM, ANDERSON WE, BUSHMAN FD: Modulation of activity of Moloney murine leukemia virus preintegration complexes by host genome in vitro. J Viral. (1998) 72(3):2125–2131.
  • BROWN PO, BOWERMAN B, VARMUS HE, BISHOP JM: Retroviral integration: structure of initial covalent product and its precursor, and a role for the viral IN protein. Proc. Nalt. Acad. Sci. USA (1989) 86(8):2525–2529.
  • FUJIWARA T, MIZUUCHI K: Retroviral integration: structure of an integration intermediate. Cell (1988) 54(4)497–504.
  • ROTH MJ, SCHWARTZENBERG PL, GOFF SP: Structure of the termini of DNA intermediates in the integration of retroviral DNA: dependence of IN function and terminal DNA sequence. Cell (1989) 58(1):47–54.
  • BUSHMAN FD, CRAIGIE R: Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proc. Natl. Acad. Sci. USA (1991) 88(4):1339–1343.
  • BUSHMAN FD, FUJIWARA T, CRAIGIE R: Retroviral DNA integration directed by HIV integration protein in vitro. Science (1990) 249(4976):1555–1558.
  • CRAIGIE R, FUJIWARA T, BUSHMAN FD: The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes the integration in vitro. Ce1162(4):829–837.
  • ENGELMAN A, MIZUUCHI K, CRAIGIE R: HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell (1991) 67(6):1211–1221.
  • CHOW SA, VINCENT KA, ELLISON V, BROWN PO: Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science (1992) 255(5045):723–726.
  • KULKOSKY J, JONES KS, KATZ RA: Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviraliretrotransposon integrases and bacterial insertion sequence transposases. Mal. Cell Biol. (1992) 12 (5):2331–2338.
  • ACEL A, UDASHKIN BE, WAINBERG MA, FAUST EA: Efficient gap repair catalyzed in vitro by an intrinsic DNA polymerase activity of human immunodeficiency virus type 1 integrase. Viral. (1998) 72(3):2062–2071.
  • DANIEL R, KATZ RA, SKALKA MA: A role for DNA-PK in retroviral DNA integration. Science (1999) 284 (5414) : 644–647.
  • GAKEN JA, TAVASSOLI M, GAN SU et al.: Efficient retroviral infection of mammalian cells is blocked by inhibition of poly (ADP-ribose) polymerase activity. Viral. (1996) 70(6):3992–4000.
  • YODER KE, BUSHMAN FD: Repair of gaps in retroviral DNA integration intermediates. j Viral. (2000) 74(23):11191–11200.
  • BAEKELANDT V, CLAEYS A, CHEREPANOV P et al.: DNA-Dependent protein kinase is not required for efficient lentivirus integration. I Viral. (2000) a74(23):11278–11285.
  • HA HC, JULURI K, ZHU Y et al.: Poly(ADP-ribose) polymerase-1 is required for efficient HIV-1 integration. Proc. Natl. Acad. Sci. USA (2001) 98(6):3364–3368.
  • KATZ RA, MERKEL G, KULKOSKY J et al.: The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell (1990) 63(1):87–95.
  • KATZMAN M, KATZ RA, SKALKA AM, LEIS J: The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. I Viral. (1989) 63(12)5319–5327.
  • ENGELMAN A, CRAIGIE R: Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. j Viral. (1992) 66(10:6361–6369.
  • CHAMPOUX JJ: Strand breakage by the DNA untwisting enzyme results in covalent attachment of the enzyme to DNA. Proc. Natl. Acad. Sci. USA (1977) 74(9):3800–3804.
  • MIZUUCHI K, ADZUMA K: Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell (1991) 66(1):129–140.
  • VAN MANSFELD AD, VAN TEEFFELEN HA, BAAS PD, JANSZ HS: Two juxtaposed tyrosyl-OH groups participate in phi X174 gene A protein catalysed cleavage and ligation of DNA. Nucleic Acids Res. (1986) 14(10):4229–4238.
  • SAYASITH K, SAUVE G, YELLE J: Analysis of the DNA substrate structure and number of the processing sites on the activities of HIV-1 integrase in vitro. Mai Cells (2001) 11(2):231–240.
  • BALAKRISHNAN M, JONSSON CB: Functional identification of nucleotides conferring substrate specificity to retroviral integrase reactions. I Viral. (1997) 71(2):1025–1035.
  • SCHIFF RD, GRANGENETT DP: Virus-coded origin of a 32 000-dalton protein from avian retrovirus cores: structural relatedness of p32 and the beta polypeptide of avian retrovirus DNA polymerase. Viral. (1978) 28(1):279–291.
  • ANDRAKE MD, SKALKA AM: Retroviral integrase, putting the pieces together. Biol. Chem. (1996) 271(33):19633–19636.
  • ESPOSITO D, CRAIGIE R: HIV-1 structure and function. Adv. Virus Res. (1999) 52:319–333.
  • ••A comprehensive review of HIV-1 structure and its biological function.
  • RICE P, CRAIGIE R, DAVIES, DR: Retroviral integrases and their cousins. Curr. Opin. Struct. Biol. (1996) 6(1):76–83.
  • VINK C, PLASTERK RHA: The human immunodeficiency virus integrase protein. Trends Genet. (1993) 9 (12) :433–438.
  • JENKINS TM, ENGELMAN A, GHIRLANDO R, CAIGIE R: A soluble active mutant of HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization. Biol. Chem. (1996) 271(13):7712–7718.
  • JENKINS TM, HICKMAN AB, DYDA F et al.: Catalytic domain of human immunodeficiency virus type 1 integrase: identification of a soluble mutant by systematic replacement of hydrophobic residues. Proc. Nat!. Acad. Li. USA (1995) 92 (13):6057–6061
  • JONSSON CB, DONZELLA GA, GAUCAN E et al.: Functional domains of Moloney murine leukemia virus integrase defined by mutation and complementation analysis. I Viral. (1996) 70(7):4585–4597.
  • KHAN E, MACK JP, KATZ RA et al.: Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. (1991) 19(4):851–860.
  • BUSHMAN FD, ENGELMAN A, PALMER I et al.: Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc. Nati Acad. Li. USA (1993) 90(8):3428–3432.
  • LEAVITT AD, ROSE RB, VARMUS HE: Both substrate and target oligonucleotide sequences affect in vitro integration mediated by human immunodeficiency virus type 1 integrase protein produced in Saccharomyces cerevisiae. I Viral. (1992) 66(4):2359–2368.
  • VAN GENT DC, GROENEGER AA, PLASTERK RHA: Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proc. Natl. Acad. Sci. USA (1992) 89(20):9598–602.
  • VINCENT KA, ELLISON V, CHOM SA, BROWN PO: Characterization of human immunodeficiency virus type 1 integrase expressed in Echerichia coli and analysis of variants with amino- terminal mutations. Viral. (1993) 67(1):425–437.
  • BURKE CJ, SANYAL G, BRUNER M et al.: Structural implications of spectroscopic characterization of a putative zinc finger peptide from HIV-1 integras. j Biol. Chem. (1992) 267(14):9639–9644.
  • LEE SP, HAN MK: Zinc stimulates Mg2+ - dependent 3'-processing activity of human immunodeficiency virus type 1 integrase in vitro. Biochemistry (1996) 35(21):3837–3844.
  • LEE SP, XIAO J, KNUTSON JR, LEWIS MS, HAN MK: Zn2+ promotes the self-association of human immunodeficiency virus type-1 integrase in vitro. Biochemistry (1997) 36(1):173–180.
  • ZHENG R, JENKINS TM, CRAIGIE R: Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc. Nati Acad. Sci. USA (1996) 93(24):13659–13664.
  • MAZUMDER A, WANG S, NEAMATI N: Antiretroviral agents as inhibitors of both human immunodeficiency virus type 1 integrase and protease. J. Med. Chem. (1996) 39(13):2472–2481.
  • YI J, ASANTE-APPIAH E, SKALKA AM: Divalent cations stimulate preferential recognition of a viral DNA end by HIV-1 integrase. Biochemistry (1999) 38(26):8458–8468.
  • ENGELMAN A, ENGLUND G, ORENSTEIN JM et al.: Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J. Viral. (1995) 69(5):2729–2736.
  • LAFEMINA RL, SCHNEIDER CL, ROBBINS HL et al.: Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lyphoid cells. J. Viral. (1992) 66(12):7414–7419.
  • MASUDA T, PLANELLES V, KROGSTAD P, CHEN ISY: Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain. J. Viral. (1995) 69(11):6687–6696.
  • LIU H, WU X, XIAO H, KAPPES JC: Targeting human immunodeficiency virus (HIV) type 2 integrase protein into HIV type 1.1 Viral. (1999) 73(10):8831–8836.
  • VAN DEN ENT FMI, VOS A, PLASTERK RHA: Dissecting the role the N-terminal domain of human immunodeficiency virus type 1 integrase by trans-complementation analysis. J. Viral. (1999) 73(4):3176–3183.
  • CAI M, ZHENG R, CAFFREY M et al.: Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat. Struct. Biol. (1997) 4(7):567–577.
  • •First reported crystal structure of HIV-1 integrase N-terminal domain by NMR.
  • EIJKELENBOOM AP VAN DEN ENT FM, VOS A et al.: The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Curr. Biol. (1997) 7(10):739–746.
  • •First reported crystal structure of HIV-2 integrase N-terminal by NMR.
  • FAYET O, RAMOND P, POLARD P et al.: Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mal. Microbial. (1990) 4(10):1771–1777.
  • SAYASITH K, SAUVE G, YELLE J: Characterization of mutant HIV-1 integrase carrying amino acid changes in the catalytic domain. Mai Cells (2000) 10(5):525–532.
  • GAUR M, LEAVITT AD: Mutations in thehuman immunodeficiency virus type 1 integrase D,D(35)E motif do not eliminate provirus formation. J. Viral. (1998) 72(6):4678–4685.
  • LEAVITT AD, ROBLES G, ALESANDRO N, VARMUS HE. Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J. Viral. (1996) 70(2):721–728.
  • DRELICH M, WILHELM R, MOUS J: Identification of amino acid residues critical for endonuclease and integration activities of HIV-1 IN protein in vitro. Virology (1992) 188(2):459–468.
  • JENKINS TM, ESPOSITO D, ENGELMAN A, CRAIGIE R: Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking. EMBO J. (1997) 16(22):6849–6859.
  • SHIN CG, TADDEO B, HASELTINE WA, FARNET CM: Genetic analysis of the human immunodeficiency virus type 1 integrase protein. J. Viral. (1994) 68(3):1633–1642.
  • ASANTE-APPIAH E, SKALKA AM: A met al-induced conformational change and activation of HIV-1 integrase. I Biol. Chem. (1997) 272(26):16196–161205.
  • ASANTE-APPIAH E, MERKEL G, SKALKA AM: Purification of untagged retroviral integrases by immobilized met al ion affinity chromatography. Protein Expr. Purif (1998) 12(1):105–110.
  • WOLFE AL, FELOCK PJ, HASTINGS JC, BLAU CU, HAZUDA DJ: The role of manganese in promoting multimerization and assembly of human immunodeficiency virus type 1 integrase as a catalytically active complex on immobilized long terminal repeat substrate. J. Viral. (1996) 70(3):1424–1432.
  • ELLISON V, GERTON J, VINCENT KA, BROWN PO: An essential interaction between distinct domains of HIV-1 integrase mediates assembly of the active multimer. J. Biol. Chem. (1995) 270(7):3320–3326.
  • BUJACZ G, JASKOLSKI M, ALEXANDRATOS J et al.: The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations. Structure (1996) 4(1):89–96.
  • •First reported crystal structure of ASV integrase catalytic core domain.
  • BUJACZ G, ALEXANDRATOS J, QING ZL, CLEMENT-MELLA C, WLODAWER A: The catalytic domain of human immunodeficiency virus integrase: ordered active site in the F185H mutant. FEBS Lett. (1996) 398(2-3):175–178.
  • DYDA F, HICKMAN AB, JENKIN TM et al.: Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science (1994) 266(5193):1981–1986.
  • •First reported crystal structure of HIV-1 integrase catalytic core domain.
  • YANG W, STEITZ TA: Recombining the structures of HIV integrase, RuvC and Rnase H. Structure (1995) 3(2):131–134.
  • •Compares the reported crystal structure of HIV-1 integrase core domain with the related proteins.
  • MIZUUCHI K: Polynucleotidyl transfer reactions in site-specific DNA recombination. Genes Cells (1997) 2(1):1–12.
  • GOLDGUR Y, DYDA F, HICKMAN AB et al.: Protein, structure three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc. Natl. Acad. Sci. USA (1998) 95(16):9150–9154.
  • •Demonstration of the improved crystal structure of HIV-1 integrase catalytic core domain.
  • MAIGNAN S, GUILLOTEAU JP, QING ZL et al.: Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its met al cofactor: igh level of similarity of the active site with the other viral integrases. j Ma Biol. (1998) 282(2):359–368.
  • •First reported crystal structure of HIV-1 integrase core domain with divalent cation.
  • GERTON JL, BROWN PO: The core domain of HIV-1 integrase recognizes key features of its DNA substrates. J. Biol. Chem. (1997) 272(40:25809–25815.
  • GERTON JL, OHGI S, OLSEN M, DERISI J, BROWN PO: Effects of mutations in residues near the active site of human immunodeficiency virus type 1 integrase on specific enzyme-substrate interactions. J. Viral. (1998) 72(6):5046–5055.
  • KULKOSKY J, KATZ RA, MERKEL G, SKALKA AM: Activities and substrate specificity of the evolutionarily conserved central domain of retroviral integrase.
  • ENGELMAN A, HICKMAN AB, CRAIGIE R: The core and carboxyl-terminal domains of the integrase protein of human immunodeficiency virus type 1 each contribute to nonspecific DNA binding. J.
  • BUSHMAN FD, WANG B: Rous sarcoma virus integrase protein: mapping functions for catalysis and substrate binding. J. Viral. (1994) 68(4):2215–2223. (1996) 70(7):4484–4494.
  • BIZUB-BENDER D, KULKOSKY J, SKALKA AM: Monoclonal antibodies against HIV type 1 integrase: clues to molecular structure. AIDS Res. Hum. Retroviruses (1994) 10(9):1105–1115.
  • NILSEN BM, HAUGAN IR, BERG K et al.: Monoclonal antibodies against human immunodeficiency virus type 1 integrase: epitope mapping and differential effect on 21(6):1419–1425.
  • VINK C, OUDE GROENEGER AM, PLASTERK RH: Identification of catalytic and DNA-binding region of human immunodeficiency virus type 1 integrase protein. Nucleic Acid Res. (1993) 21(6):1419–1425.
  • PURAS-LUTZKE RA, VINK C, PLASTERK RHA: Characterization of the minimal DNA-binding domain of the HIV integrase protein. Nucleic Acids Res. (1994) 22(20):4125–4131.
  • LODI PJ, ERNST JA, KUSZEWSKI J et al.: Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry (1995) 34(30:9826–9833.
  • •Describes the binding of HIV-1 integrase with its DNA substrate.
  • EIJKELENBOOM AP, PURAS-LUTZKE RA, BOELEN R et al.: The DNA-binding domain of HIV-1 integrase has an 5H3-like fold. Nat. Struct. Biol. (1995) 2(9):807–810.
  • PURAS-LUTZKE RA, PLASTERK RHA: Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: Critical residues for protein oligomerization and DNA binding. J. Viral. (1998) 72(6):4841–4848.
  • WOENER AM, KLUCTH M, LEVIN JG, MARKUS-SEKURAS CJ: Localization of DNA binding activity of HIV-1 integrase to the C-terminal half of the protein. AIDS Res. Hum. Retroviruses (1992) 8(2):2433–2437.
  • WOENER AM, MARKUS-SEKURAS CJ: Characterization of a DNA binding domain in the C-terminal of HIV-1 integrase by deletion mutagenesis. Nucleic Acid Res. (1993) 21(15):3504–3511.
  • ESPOSITO D, CRAIGIE R: Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction. EMBO J. (1998) 17(19):5832–5843.
  • HEUER TS, BROWN PO: Mapping features of HIV-1 integrase near selected sites on viral and target DNA molecules in an active enzyme-DNA complex by photo-cross- linking. Biochemistry (1997) 36(35):10655–10665.
  • CHEN JC, KRUCINSKI J, MIERCKE LJ et al.: Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc. Natl. Acad. Sci. USA (2000) 97(15):8233–8238.
  • •First report of crystal structure of the HIV-1 integrase core and C-terminal domains.
  • CHEN O, NEAMATI N, NICKLAUS MC et al.: Identification of HIV-1 integrase inhibitors via three-dimensional database searching using ASV and HIV-1 integrases as targets. Bioorg. Med. Chem. (2000) 8(10):2385–2398.
  • ••Report of database searching by docking the compounds on the integrase crystal structure.
  • YANG ZN, MUESER TC, BUSHMAN FD, CRAIG H et al. Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase. j Ma Biol. (2000) 296 (2) :535–548.
  • ENGELMAN A, BUSHMAN FD, CRAIGIE R: Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J. (1993) 12(8):3269–3275.
  • VAN GENT DCV, GROENEGER AAMO, PLASTERK RHA: Complementation between HIV integrase proteins mutated in different domains. EMBO J. (1993) 12(8):3261–3267.
  • JONES KS, COLEMAN J, MERKEL GW et al.: Retroviral integrase functions as a multimer and can turn over catalytically. Biol. Chem. (1992) 267(23):16037–16040.
  • PETIT C, SCHWARTZ O, MAMMANO F et al.: Oligomerization within virions and subcellular localization of human immunodeficiency virus type 1 integrase. Viral. (1999) 73(6):5079–5088.
  • SHERMAN PA, DICKSON ML, FYFE JA: Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions. J. Viral. (1992) 66(6):3593–3601.
  • LAFEMINA RU, CALLAHAN PL, CORDINGLEY MG: Substrate specificity of recombinant human immunodeficiency virus integrase protein. J. Viral. (1991) 65(10):5624–5630.
  • CHIU R, GRANDGENETT DP: Avian retrovirus DNA internal attachment site requirements for full-site integration in vitro. J. Viral. (2000) 74(18):8292–8298.
  • BROWN HE, CHEN H, ENGELMAN A: Structure-based mutagenesis of the human immunodeficiency virus type 1 DNA attachment site: effects on integration and cDNA synthesis. J. Viral. (1999) 73(10:9011–9020.
  • MASUDA T, KURODA MJ, HAZUDA S: Specific and independent recognition of U3 and U5 att sites by human immunodeficiency virus type 1 integrase in vivo. J. Viral. (1998) 72(10):8396–8402.
  • ELLISON V, BROWN PO: A stable complex between integrase and viral DNA ends mediates human immunodeficiency virus integration in vitro. Proc. Natl. Acad. Sci. USA (1994) 91(15):7316–7320.
  • VAN DEN ENT FMI, VINK C, PLASTERK RHA: DNA substrate requirements for different activities of human immunodeficiency virus type 1 integrase protein. 1. Viral. (1994) 68(12):7825–7832.
  • VINK C, VAN DER LINDEN KH et al.: Activities of the feline immunodeficiency virus integrase protein produced in Escherichia coll. J. Viral. (1994) 68(3):1468–1474.
  • MORGAN AL, KATZMAN M: Subterminal viral DNA nucleotides as specific recognition signals for human immunodeficiency virus type 1 and visna virus integrases under magnesium-dependent conditions. 1. Gen. Viral. (2000) 81(3):839–849.
  • KATZMAN M, SUDOL M: Nonspecific alcoholysis, a novel endonuclease activity of human immunodeficiency virus type 1 and other retroviral integrases. j Viral. (1996) 70(4):2598–2604.
  • ELLISON VH, ABRAMS H, ROE T et al: Human immunodeficiency virus type 1 integration in cell-free system. 1. Viral. (1990) 64(2):2711–2715.
  • LEE SP, KIM HG, CENSULLO ML, HAN MK: Characterization of Mg2+ - dependent 3'-processing activity of human immunodeficiency virus type 1 in vitro real time kinetic studies using fluorescence resonance energy transfer. Biochemistry (1995) 34(32):10205–10214.
  • SAYASITH K, SAUVE G, YELLE J: (unpublished data)
  • HOLMES-SON ML, APPA RS, CHOW SA: Molecular genetics and target site specificity of retroviral integration. Adv. Genet. (2001) 43:33–69.
  • ••An excellent review on HIV-1 integraseand its sites of integration.
  • WITHERS-WARD ES, KITAMURA Y, BARNES JP, COFFIN JM. Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev. (1994) 8(12):1473–1487.
  • GERTON JL, HERSCHLAG D, BROWN PO: Stereospecificity of reactions catalyzed by HIV-1 integrase. j Biol. Chem. (1999) 274(47):33480–33487.
  • DRAKE RR, NEAMATI N, HONG H et al.: Identification of a nucleotide binding site in HIV-1 integrase. Proc. Nati Acad. Sci. USA (1998) 95(8):4170–4175.
  • ••Report of mononucleotide based drug- binding site on HIV-1 integrase.
  • LIN RD, BRIGGS JM, STRAATSMA TP et al: Molecular dynamics studies on the HIV-1 integrase catalytic domain. Biophys. 1(1999) 76(6):2999–3011.
  • LIN YC, BECK Z, LEE T et al.: Alteration of substrate and inhibitor specificity of feline immunodeficiency virus protease. 1. Viral. (2000) 74(10):4710–4720.
  • KATZMAN M, SUDOL M, PUFNOCK JS et al.: Mapping target site selection for the non-specific nuclease activities of retroviral integrase. Virus Res. (2000) 66(1):87–100.
  • SHIBAGAKI Y, CHOW SA: Central core domain of retroviral integrase is responsible for target site selection. I Biol. Chem. (1997) 272(13):8361–8359.
  • HEUER TS, BROWN PO: Photo-cross-linking studies suggest a model for the architecture of an active human immunodeficiency virus type 1 integrase-DNA complex. Biochemistry (1998) 37(19):6667–6678.
  • LODI PJ, ERNST JA, KUSZEWSKI J et al.: Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry (1995) 34(31):826–9833.
  • CHANG YC, CHING TT, SYU WJ: Assaying the activity of HIV-1 integrase with DAN-coated plates. 1. Viral. Methods (1996) 59(1–2):135–140.
  • CRAIGIE R, MIZUUCHI K, BUSHMAN FD, ENGELMAN A: A rapid in vitro assay for HIV-1 DNA integration. Nucleic Acid Res. (1991) 19(10):2729–2734.
  • HAZUDA DJ, HASTING JC, WOLFE AL, EMINI EA: A novel assay for the DNA strand-transfer reaction of HIV-1 integrase. Nucleic acid Res. (1994) 22(26):1121–1122.
  • MULLER B, JONES KS, MERKEL GW, SKALKA AM: Rapid solution assays for retroviral integration reactions and their use in kinetic analyses of wild-type and mutant Rous sarcoma virus integrases. Proc. Natl. Acad. Sci. USA (1992) 90(24):11633–11637.
  • SAYASITH K, SAUVE G, YELLE J: Analysis of the three enzymatic activities of HIV-1 integrase in vitro using minigels for detection of the reaction products. Anal. Biochem. (1999) 269(1):189–192.
  • SAYASITH K, SAUVE G, YELLE J: A biotin-conjugated substrate facilitating analysis of HIV-1 integrase activity on minigels. Anal. Biochem. (2000) 284(1):169–172.
  • HANSEN MS, SMITH GL 3111, KAFRI T et al.: Integration complexes derived from HIV vectors for rapid assays in vitro. Nature Biatechnol. (1999) 17(6):578–582.
  • HANSEN MS, BUSHMAN FD: Human immunodeficiency virus type 2 preintegration complexes: activities in vitro and response to inhibitors. I Viral. (1997) 71(4):3351–3356.
  • FARNET CM, WANG B, LIPFORD JR, BUSHMAN FD: Differential inhibition of HIV-1 preintegration complexes and purified integrase protein by small molecules. Proc. Nail. Acad. Sci. USA (1996) 93(18):9742–9747.
  • FESEN MR, POMMIER Y, LETEURTRE F: Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem. Pharmacal. (1994) 48(3):595–608.
  • ROBINSON WE, CORDEIRO M, ABDEL-MALECK S et al.: Dicaffeoylquinic acid inhibitors of human immunodeficiency virus integrase: inhibition of the core catalytic domain of human immunodeficiency virus type 1 integrase. Mai Pharm. (1996) 50(4):846–855.
  • MAZUDER A, GAZIT A, LEVITZKI A et al.: Effect of tyrphostins, protein kinase inhibitors, on human immunodeficiency virus type 1 integrase. Biochemistry (1995) 34(46):15111–15121.
  • FARNET CM, WANG B, HANSEN Met al.: Human immunodeficiency virus type 1 cDNA integration: new aromatic hydroxylated inhibitors and studies of the inhibition mechanism. Antimicrob. Agents Chemother. (1998) 42(9):2245–2253.
  • NEAMATI N, SUNDERS, POMMIER Y: Design and discovery of HIV-1 integrase inhibitors. Drug Discovery Today (1997) 2:487–498.
  • KING PJ, MA G, MIAO W et al: Structure-activity relationships: analogues of the dicaffeoylquinic and dicaffeoyltartaric acids as potent inhibitors of human immunodeficiency virus type 1 integrase and replication. I Med. Chem. (1999) 42(3):497–509.
  • MAZUMDER A, NEAMATI N, SUNDER S et al.: Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. I Med. Chem. (1997) 40(19):3057–3063.
  • ZHAO H, NEAMATI N, HONG H et al.: Coumarin-based inhibitors of HIV-1 integrase. J. Med. Chem. (1997) 40(2):242–249.
  • LAFEMINA RL, GRAHAM PL, LEGROW K et al.: Inhibition of human immunodeficiency virus integrase by bis-catechols. Antimicrob. Agents Chemother. (1995) 39(2):320–324.
  • ETCH E, PERTZ H, KALOGA M et al.: 0-Arctigenin as a lead structure for inhibitors of human immunodeficiency virus type-1 integrase. I Med. Chem. (1996) 39(1):86–95.
  • CUSHMAN M, GOLEBIEWSKI WM, POMMIER Y et al.: Cosalane analogues with enhanced potencies as inhibitors of HIV-1 protease and integrase. I Med. Chem. (1995) 38(3):443–452.
  • BURKE TR, FESEN M, MAZUMDER A et al.: Hydroylated aromatic inhibitors of HIV-1 integrase. I Med. Chem. (1995) 38(21):4171–4178.
  • NEAMATI N, HONG H, OWEN JM et al.: Salicylhydrazine-containing inhibitors of HIV-1 integrase: implication for a selective chelation in the integrase active site. j Med. Chem. (1998) 41(17):3202–3209.
  • POMMIER Y, NEAMATI N: Inhibitors of human immunodeficiency virus integrase. Adv. Virus Res. (1999) 52:427–458.
  • ••Detail analysis of HIV-1 integrase functionand drug design.
  • ROBINSON WE, REINECKE MG, ABDEL-MALECK S, SHOW SA: Inhibitors of HIV-1 replication that inhibit HIV integrase. Proc. Nati Acad. Sci. USA (1996) 93(13):6326–6331.
  • ZHU K, CORDEIRO ML, ATIENZA et al.: Irreversible inhibition of human immunodeficiency virus type 1 integrase by dicaffeoylquinic acids. I Viral. (1999) 73(4):3309–3316.
  • MCDOUGALL B, KING PJ, WU BW et al.: Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase. Antimicrob. Agents Chemother. (1998) 42(1):140–146.
  • KING PJ, ROBINSON WE: Resistance to the anti-human immunodeficiency virus type 1 compound L-chicoric acid results from a single mutation at amino acid 140 of integrase. I Viral. (1998) 72(10):8420–8424.
  • PLUYMERS W, NEAMATI N, PANNECOUQUE C et al.: Viral entry as the primary target for the anti-HIV activity of chicoric acid and its tetra-acetyl esters. Pharmacal. (2000) 58(3):641–648.
  • •Describes the mechanism of L-chicoric acids at the viral entry, but not at HIV-1 integration.
  • ZOUHIRI F, MOUSCADET JF, MEKOUAR K et al.: Structure-activity relationships and binding mode of styrylquinoline as potent of HIV-1 in cell culture. I Med. Chem. (2000) 43(8):1533–1540.
  • MEKOUAR K, MOUSCADET JF, DESMAELE D et al.: Styrylquinoline derivatives: a new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. I Med. Chem. (1998) 41(15):2846–2857.
  • ROBINSON WE: L-chicoric acid, an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase, improves on the in vitro anti-HIV-1 effect of Zidovudine plus a protease inhibitor (AG1350). Antiviral Res. (1998) 39(2):101–111.
  • BEALE la, ROBINSON WE: Combinations of reverse transcriptase, protease, and integrase inhibitors can be synergistic in vitro against drug-sensitive and RT inhibitor-resistant molecular clones of HIV-1. Antiviral Res. (2000) 46(3):223–232.
  • BILLICH A, SCHAUER M, FRANK S et al.: HIV-1 integrase; high level production and screening assay for the endonucleolytic activity. Antiviral Chem. Chemother. (1992) 3:113–119.
  • CARTEAU S, MOUSCADET JF, GOULAOUIC H et al.: Inhibitory effect of the polyanionic drug suramin on the in vitro HIV DNA integration reaction. Arch. Biochem. Biophys. (1993) 305(2):606–610.
  • NEAMATI N, MAZUMDER A, SUNDER S et al.: 2-Mercaptobenzenesulphonamides as novel inhibitors of human immunodeficiency virus type 1 integrase and replication. Antiviral Chem. Chemother. (1997) 8(6):485–495.
  • ESTE JA, SCHOLS D, DE VREESE K et al.: Development of resistance of human immunodeficiency virus type 1 to dextran sulfate associated with the emergence of specific mutations in the envelope gp120 glycoprotein. Mol. Pharmacal. (1997) 52:98–104.
  • MITCHELL SS, RHODES D, BUSHMAN FD, FAULKNER DJ: Cyclodidemniserinol trisulfate, a sulfated serinolipid from the Palauan ascidian Didemnum guttatum that inhibits HIV-1 integrase. Org. Lett. (2000) 2 (11) :1605–1677.
  • NEAMATI N, TURPIN JA, WINSLOW HE et al.: Thiazolothiazepine inhibitors of HIV-1 integrase. I Med. Chem. (1999) 42(17):3334–3341.
  • REDDY MV, RAO MR, RHODES D et al.: Lamellarin alpha 20-sulfate, an inhibitor of HIV-1 integrase active against HIV-1 virus in cell culture. I Med. Chem. (1999) 42(11):1901–1907.
  • FESEN MR, KOHN KW, LETEURTRE F, POMMIER Y: Inhibitors of human immunodeficiency virus integrase. Proc. Natl. Acad. Sci. USA (1993) 90(6):2399–4203.
  • CARTEAU S, MOUSCADET JF, GOULAOUIC H et al.: Inhibition of the in vitro integration of Moloney murine leukemia virus DNA by the DNA minor groove binder netropsin. Biochem. Pharmacal. (1994) 4(10):1821–1826.
  • MAZUMDER A, GUPTA M, PERRIN DM et al.: Inhibition of human immunodeficiency virus type 1 integrase by a hydrophobic cation: the phenanthroline-cuprous complex. AIDS Res. Hum. Retroviruses (1995) 11(1):115–125.
  • BRODIN P, PINSKAYA M, VOLKOV S et al.: Branched oligonucleotide-intercalator conjugate forming a parallel stranded structure inhibits HIV-1 integrase. FEBS Lett. (1999) 460(2):270–274.
  • GOTTIKH MB, VOLKOV EM, ROMANOVA EA et al.: Synthesis of oligonucleotide-intercalator conjugates capable to inhibit HIV-1 DNA integration. Nucleosides Nucleotides. (1999) 18(6-7):1645–1646.
  • BOUZIANE M, CHERNY DI, MOUSCADET JF, AUCLAIR C: Alternate strand DNA triple-helix-mediated inhibition of HIV-1 U5 long terminal repeat integration in vitro. I Biol. Chem. (1996) 271(17):10359–10364.
  • MOUSCADET JF, CARTEAU S, GOULAOUIC H et al.: Triplex-mediated inhibition of HIV DNA integration in vitro. Biol. Chem. (1994) 269(34): 2846–2857.
  • MAZUMDER A, COONEY D, AGBARIA R et al.: Inhibition of human immunodeficiency virus type 1 integrase by 3'-azido-3'-deoxythymidylate. Proc. Nail. Acad. Sci. USA (1994) 91(13):5771–5775.
  • NEAMATI N, HONG H, MAZUMDER A et al.: Depside and depsidones as inhibitors of HIV-1 integrase: discovery of novel inhibitors through 3D database searching. I Med. Chem. (1997) 40(6):942–951.
  • DRAKE R, NEAMATI N, SUNTHANKAR P et al.: Identification of the antiviral nucleoside drug binding site of HIV-1 integrase by proteolytic peptide mapping. Antivral Res. (1998) 34:A42.
  • TAKTAKISHIVILI M, NEAMATI N, Y, NAIR V: Recognition and inhibition of HIV integrase by a novel dinucleotide. Bioarg. Med. Chem. Lett. (2000) 10(3):249–251.
  • •Identification of HIV-1 integrase inhibitor and its binding site on the enzyme.
  • JING N, DE CLERCQ E, RANDO RF et al.: Stability-activity relationships of a family of G-tetrad forming oligonucleotides as potent HIV inhibitors. A basis for anti-HIV drug design. I Biol. Chem. (2000) 275(5):3421–3430.
  • RANDO RF, OJWANG J, ELBAGGARI A et al.: Suppression of human immunodeficiency virus type 1 activity in vitro by oligonucleotides which form intramolecular tetrads. j Biol. Chem. (1995) 270(4):1754–1760.
  • OJWANG JO, BUCKHEIT RW, POMMIER Y et al.: T30177, an oligonucleotide stabilized by an intramolecular guanosine octet, is a potent inhibitor of laboratory strains and clinical isolates of human immunodeficiency virus type 1. Antimicrob. Agents Chemother. (1995) 39(11):2426–2435.
  • JING N, GAO X, RANDO RF, HOGAN ME: Potassium-induced loop conformational transition of a potent anti-HIV oligonucleotide. I Biome]. Struct. Dpi. (1997) 15(3):573–585.
  • ESTE JA, CABRERA C, SCHOLS D et al.: Human immunodeficiency virus glycoprotein gp120 as the primary target for the antiviral action of AR177 (Zinteyir). Pharmacal. (1998) 53(2):340–345.
  • STEIN CA, TONKINSON JL, YAKUBOV L: Phosphorothioate oligodeoxynucleotides--anti-sense inhibitors of gene expression? Pharmacal. Ther. (1991) 52(3):365–384.
  • TRAMONTANO E, COLLA PL, CHENG Y-C: Biochemical characterization of the HIV-1 integrase 3'-processing activity and its inhibition by phosphorothioate oligonucleotides. Biochemistry (1998) 37(20):7237–7243.
  • CAUMONT A, JAMIESON G, SOULTRAIT VR et al.: High affinity interaction of HIV-1 integrase with specific and non- specific single-stranded short oligonucleotides. FEBS Lett. (1999) 455(1-2):154–158.
  • •Details of the interaction of HIV-1 integrase and oligonucleotide-based inhibitors.
  • PURAS-LUTZKE RA, EPPENS NA, WEBER PA, HOUGHTEN RA, PLASTERK RHA: Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library. Proc. Natl. Acad. Sci. USA (1995) 92(25):11456–11460.
  • SOURGEN F, MAROUN RG, FRERE V et al.: A synthetic peptide from the human immunodeficiency virus type-1 integrase exhibits coiled-coil properties and interferes with the in vitro integration activity of the enzyme. Correlated biochemical and spectroscopic results. Eur. j Biochem. (1996) 240(3):765–773.
  • KREB D, MAROUN RG, SOURGEN F et al.: Helical and coiled-coil-forming properties of peptides derived from and inhibiting human immunodeficiency virus type 1 integrase assessed by 1H-NMR--use of NH temperature coefficients to probe coiled-coil structures. Eur. j Biochem. (1998) 253(1):236–244.
  • MAROUN RG, KREB D, ELANTRI S et al.: Self-association and domains of interactions of an amphipathic helix peptide inhibitor of HIV-1 integrase assessed by analytical ultracentrifugation and NMR experiments in tritluoroethanol/H(2)0 mixtures. j Biol. Chem. (1999) 274(48):34174–34185.
  • MAROUN RG, KREBS D, ROSHANI M et al.: Conformational aspects of HIV-1 integrase inhibition by a peptide derived from the enzyme central domain and by antibodies raised against this peptide. Eur. Biochem. (1999) 260(1):145–155.
  • OKUI N, KOBAYASHI N, KITAMURA Y: Production of uninfectious human immunodeficiency virus type 1 containing viral protein R fused to a single-chain antibody against viral integrase. I Viral. (1998) 72(8):6960–6964.
  • LEVY-MINTZ P, DUAN L, ZHANG H et al.: Intracellular expression of single-chain variable fragments to inhibit early stages of the viral life cycle by targeting human immunodeficiency virus type 1 integrase. Viral. (1996) 70(12):8821–8832.
  • YI J, ARTHUR JW, DUNBRACK RL, SKALKA AM: An inhibitory monoclonal antibody binds at the turn of the helix-turn-helix motif in the N-terminal domain of HIV-1 integrase. I Biol. Chem. (2000) 275(49):38739–38748.
  • FERMANDJIAN S, MAROUN RS, AMEKRAZ B, JANKOWSKI CK: Self-association of an amphipathic helix peptide inhibitor of HIV-1 integrase assessed by electrospray ionization mass spectrometry in trifluoroethanoliwater mixtures. Rapid Commun. Mass Spectrom. (2001) 15(5):320–324.
  • KITAMURA Y, ISHIKAWA T, OKUI N et al.: Inhibition of replication of HIV-1 at both early and late stages of the viral life cycle by single-chain antibody against viral integrase. JAIDS Hum. Retrovirol. (1999) 20(2):105–114.
  • BOUHAMDAN M, DUAN XL, POMERANTZ RJ, STRAYER DS: Inhibition of HIV-1 by an anti-integrase single-chain variable fragment (SFv): delivery by 5V40 provides durable protection against HIV-1 and does not require selection. Gene Ther. (1999) 6(4):660–666.
  • BOUHAMDAN M, KULKOSKY J, DUAN XL, POMERANTZ RJ: Inhibition of HIV-1 replication and infectivity by expression of a fusion protein, VPR-anti-integrase single-chain variable fragment (SFv): intravirion molecular therapies. Hum. Viral. (2000) 3(1):6–15.
  • WANG T, BALAKRISHNAN M, JONSSON CB: Major and minor groove contacts in retroviral integrase-LTR interactions. Biochemistry (1999) 38(12):3624–3632.
  • LEE-HUANG S, HUANG PL, BOURINBAIAR AS et al.: Inhibition of immunodeficiency virus (HIV) type 1 by anti-HIV plant protein MAP30 and GAP31. Proc. Nati Acad. Sri. USA (1995) 87(19):8818–8822.
  • LEE-HUANG S, HUANG PL, KUNG HF et al.: TAP 29: an anti-human immunodeficiency virus protein from Trichosanthes kirilowiithat is nontoxic to intact cells. Proc. Nati Acad. Li. USA (1991) 88(15):6570–6574.
  • FERRARI P, TRABAUD MA, ROMMAIN M et al.: Toxicity and activity of purified trichosanthin. AIDS(1991) 5(7):865–870.
  • LEE-HUANG S, HUANG PL, NARA PL etMAP 30: a new inhibitor of HIV-1 infection and replication. FEBS Lett. (1990) 272(1-2):12–18.
  • MCGRATH MS, HWANG KM, CALDWELL SE et al: GLQ223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc. Natl. Acad. Sci. USA (1989) 86(8):2844–2848.
  • AU TK, COLLINS RA, LAM TL et al.: The plant ribosomes inactivating proteins luffin and saporin are potent inhibitors of HIV-1 integrase. FEBS Lett. (2000) 471(2-3):169–172.
  • •Describes two new potent HIV-1 integrase inhibitors.
  • HAZUDA DJ, FELOCK P, WITMER M et al.: Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science (2000) 287(5453)646–650.
  • ••Reports the first bona fide inhibitor ofHIV-1 integrase and validates integrase as the target for diketo acids.
  • ESPESETH AS, FELOCK P, WOLFE A et al.: HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc. Nail. Acad. Sci. USA (2000) 97(21):11244–11249.
  • •Describes the mechanism of HIV-1 integrase inhibition by diketo acids.
  • GOLDGUR Y, CRAIGIE R, COHEN GH et al.: Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proc. Natl. Acad. Sci. USA (1999) 96(23):13040–13043.
  • ••Report of crystal structure of an inhibitorwith HIV-1 integrase.
  • HAZUDA DJ, BLAU CU, FELOCK P et al.: Isolation and characterization of novel human immunodeficiency virus integrase inhibitors from fungal metabolites. Antiviral Chem. Chemother (1999) 10(2):63–70.
  • SING SD, FELOCK P, HAZUDA DJ: Chemical and enzymatic modifications of integric acid and HIV-1 integrase inhibitory activity. Bioarg. Med. Chem. Lett. (2000) 10(3):235–238.
  • LEAVITT AD, SHIUE L, VARMUS HE: Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. j. Biol. Chem. (1993) 268(3):2113–2119.
  • CANNON PM, WILSON W, BYLES E et al.: Human immunodeficiency virus type 1 integrase: effect on viral replication of mutations at highly conserved residues. j. Viral. (1994) 68(8):4768–4775.
  • ENGELMAN A, LIU Y, CHEN H, FARZAN M, DYDA F: Structure-based mutagenesis of the catalytic domain of human immunodeficiency virus type 1 integrase.Viral. (1997) 71(5):3507–3514.
  • WISKERCHEN M, MUESING MA: Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. j. Viral. (1995) 69(1):376–386.
  • TADDEO B, HASELTINE WA, FARNET CM: Integrase mutants of human immunodeficiency virus type 1 with a specific defect in integration. j. Viral. (1994) 68(12):8401–8405.
  • TADDEO B, CARLINI E VERANI P, ENGELMAN A: Reversion of a human immunodeficiency virus type 1 integrase mutant at a second site restores enzyme function and virus infectivity. j. Viral. (1996) 70(12):8277–8284.
  • LUTZKE RA, PLASTERK RH: Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: critical residues for protein oligomerization and DNA binding. j. Viral. (1998) 72(6):4841–4848.
  • CANNON PM, BYLES ED, KINGSMAN SM, KINGSMAN AJ: Conserved sequences in the carboxyl terminus of integrase that are essential for human immunodeficiency virus type 1 replication. j. Viral. (1996) 70(1):651–657.
  • NEAMATI N, MAZUMDER A, SUNDER S et al.: Highly potent synthetic polyamides, bisdistamycins, and lexitropsins as inhibitors of human immunodeficiency virus type 1 integrase. Mol. Pharmacol. (1998) 54(2):280–290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.