26
Views
9
CrossRef citations to date
0
Altmetric
Miscellaneous

Microbial genomics – new targets, new drugs

Pages 465-475 | Published online: 25 Feb 2005

Bibliography

  • LEVY SB: The challenge of antibiotic resistance. Scientific American (1998) 278:46–53.
  • •General article on problems with antibiotic use, and the threat of drug-resistant microbes.
  • BASEMAN JB, TULLY JG: Mycoplasmas:sophisticated, reemerging, and burdened by their notoriety. Emerg. Infect. Dis. (1997) 3:21–32.
  • FRASER CM, GOCAYNE JD, WHITE 0et al.: The minimal gene complement of Mycoplasma genitalium. Science (1995) 270:397–403.
  • STOVER CK, PHAM XQ, ERWIN AL et al.: Complete genome sequence of Pseudonyms aeruginosa PA01, an opportunistic pathogen. Nature (2000) 406:959–964.
  • ALM RA, LING LS, MOIR DT et al.: Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature (1999) 397:176–180.
  • PERNA NT, PLUNKETT G, BURLAND V et al.: Genome sequence of enterohaemorrhagic Eschetichia coil 0157:H7. Nature (2001) 409:529–533.
  • MANILOFF J: The minimal cell genome: on being the right size. Proc. Natl. Acad. Sd. USA (1996) 93:10004–10006.
  • MUSHEGIAN A, KOONIN E: A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Li. USA (1996) 93:10268–10273.
  • ARIGONI F, TALABOT F, PEITSCH M et al.: A genome-based approach for the identification of essential bacterial genes. Nature Biotech. (1998) 16:851-856. Expert Op/n. Ther. Targets (2001) 5(4)
  • •Experimental testing of in silico predictions of essential genes of E. coil, using markerless knock-outs and conditional mutants.
  • KOONIN EV: Genome sequences: genome sequence of a model prokaryote. Curl: Biol. (1997) 7:R656–R659.
  • SCHMID MB: New targets and strategies for identification of novel classes of antibiotics. In: Antibiotic Resistance and Antibiotic Development. Hughes D, Andersson DI (Ed.), Harwood Academic Publishers, London (2000).
  • VAGNER V, DERVYN E, EHRLICH SD: A vector for systematic gene inactivation in Bacillus subtilis. Microbiology (1998) 144:3097–3104.
  • PARISH T, STOKER NG: Development and use of a conditional antisense mutagenesis system in mycobacteria. FEMS Microbial Lett. (1997) 154:151–157.
  • TAKIFF HE, BAKER T, COPELAND T, CHEN SM, COURT DL: Locating essential Echerichia coil genes by using mini-Tn 1 0 : the pdxJ operon. j Bacterial (1992) 174:1544–1553.
  • CHOW WY, BERG DE: Tn5tacl, a derivative of transposon Tn5 that generates conditional mutations. Proc. Natl. Acad. Sci. USA (1988) 85:6468–6472.
  • SCHMID MB, KAPUR N, ISAACSON DR, LINDROOS E SHARPE C: Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimurium. Genetics (1989) 123:625–633.
  • RICARD M, HIROTA Y: Process of cellular division in Echerichia colt. physiological study on thermosensitive mutants defective in cell division. Bacterial (1973) 116:314–322.
  • SLAUCH JM, MAHAN MJ, MEKALANOS JJ: hi vivo expression technology for selection of bacterial genes specifically induced in host tissues. Methods Enzyme]. (1994) 235:481–492.
  • •A summary of IVET technology that describes a genetic strategy to find genes that are expressed in vivo, but not in vifro.
  • SHEA JE, HENSEL M, GLEESON C, HOLDEN DW: Identification of a virulence locus encoding a second Type III secretion system in Salmonella nrphimurium. Proc. Natl. Acad. Sci. USA (1996) 93:2593–2597.
  • •Pools of molecularly tagged bacterial strains allow more efficient screening for mutants that fail to grow in vivo.
  • CHIANG SL, MEKALANOS JJ, HOLDEN DW: hi vivo genetic analysis of bacterial virulence. Ann. Rev Microbial (1999) 53:129–154.
  • TAO J, WENDLER P, CONNELLY Get al.: Drug target validation: lethal infection blocked by inducible peptide. Proc. Natl. Acad. Sci. USA (2000) 97:783–786.
  • AKERLEY BJ, RUBIN EJ, CAMILLI A, LAMPE DJ, ROBERTSON HM, MEKALANOS JJ: Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Li. USA (1998) 95:8927–8932.
  • HUTCHISON CA, PETERSON SN, GILL SR et al.: Global transposon mutagenesis and a minimal Mycoplasma genome. Science (1999) 286:2165–2169.
  • •Global effort to assess the essential genes in M genitalium.
  • SHOEMAKER DD, LASHKARI DA, MORRIS D, MITTMANN M, DAVIS RW: Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nature Genet. (1996) 14:450–456.
  • SMITH V, CHOU K, LASHKARI D, BOTSTEIN D, BROWN PO: Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science (1996) 274:2069–2074.
  • •Genome-scale method for assessing gene function in S. cerevisiae using Ty transposon mutants, a panel of selective growth conditions, and PCR strategies to monitor loss of members of the pool.
  • JUDSON N, MEKALANOS JJ: Transposon-based approaches to identify essential bacterial genes. Trends Microbial (2000) 8:521–526.
  • LINK A, PHILLIPS D, CHURCH G: Methods for generating precise deletions and insertions in the genome of wild-type Escherichia colt. application to open reading frame characterization. j Bacterial (1997) 179:6228–6237.
  • ••A novel method for producing non-polardeletions in E coll. Includes a general review of methods of bacterial gene disruption and complications encountered in interpreting results of such studies.
  • ITAYA M: An estimation of minimal genome size required for life. FEBS Lett (1995) 362:257–260.
  • GOFFIN C, GHUYSEN JM: Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. 11/licrobial. Mal Biol. Rev. (1998) 62:1079–1093.
  • DENOME SA, ELF PK, HENDERSON TA, NELSON DE, YOUNG KD: Echerichia coil mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. Bacterial (1999) 181:3981–3993.
  • •Remarkable experimental work creating 192 mutants from which eight Penicillin Binding Protein genes were deleted in combinations, in order to understand the essentiality and functional redundancy of this family of bacterial proteins.
  • HUANG WM: Bacterial diversity based onType II DNA topoisomerase genes. Ann. Rev Genet. (1996) 30:79–107.
  • KERN WV, OETHINGER M, JELLEN-RITTER AS, LEVY SB: Non-target gene mutations in the development of fluoroquinolone resistance in Echerichia coil. Antimicrob. Agents Chemother (2000) 44:814–820.
  • PIDDOCK LJ: Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs. (1999) 58\(Suppl. 2):11–18.
  • MARTIN P, LIT, SUN D, BIEK D, SCHMID M: Role in cell permeability of an essential two-component system in Staphylococcus aureus. j Bacterial (1999) 181(12): 3666–3673.
  • BARRETT JF, GOLDSCHMIDT RM, LAWRENCE LE et al: Antibacterial agents that inhibit two-component signal transduction systems. Proc. Natl. Acad. Sci. USA (1998) 95:5317–5322.
  • TAO J, SCHIMMEL P: Inhibitors of aminoacyl-tRNA synthetases as novel anti-infectives. Expert Opiri. Invest. Drugs (2000) 9:1767–1775.
  • GROSS CA, CHAN C, DOMBROSKI A et al: The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb. Symp. QuanL Biol. (1998) 63:141–155.
  • EVELAND SS, POMPLIANO DL, ANDERSON MS: Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and foly1 poly-gamma-glutamate ligases: identification of a ligase superfamily. Biochemistry (1997) 36:6223–6229.
  • NIKAIDO H: Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science (1994) 264:382–388.
  • LEE A, MAO W, WARREN MS et al: Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. I Bacterial (2000) 182:3142–3150.
  • SAIER MH, JR., PAULSEN IT, SLIWINSKI MK, PAO SS, SKURRAY RA, NIKAIDO H: Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J. (1998) 12:265–274.
  • XIA Y, YANG ZY, MORRIS-NATSCHKE SL, LEE KH: Recent advances in the discovery and development of quinolones and analogs as antitumor agents. Curr Med. Chem. (1999) 6:179–194.
  • SUNDBERG SA: High-throughput and ultra-high-throughput screening: solution-and cell-based approaches. Curr. Opin Biatechnol (2000) 11:47–53.
  • ••A good review of new high-throughputhomogeneous format screening methods.
  • FERNANDES PB: Technological advances in high-throughput screening. Curr. Opin. Chem. Biol. (1998) 2:597–603.
  • HYDE-DERUYSCHER R, PAIGE LA, CHRISTENSEN DJ et al: Detection of small-molecule enzyme inhibitors with peptides isolated from phage-displayed combinatorial peptide libraries. Chem. Biol. (2000) 7:17–25.
  • ••Demonstrates the identification of peptideligands by phage display, and their use in finding small molecule inhibitors by competition assays.
  • BRIDONNEAU P, CHANG YF, BUVOLI AV, O'CONNELL D, PARMA D: Site-directed selection of oligonucleotide antagonists by competitive elution. Antisense Nucleic Acid Drug Dev. (1999) 9:1–11.
  • BOSTIAN KA, SCHMID MB: New antibacterial targets and new approaches for drug discovery. In: Antibacterial Therapy: Achievements, Problems and Future Perspectives. BUSSE W-D, ZEILER H-J, LABISCHINSKI H (Eds.), Springer Verlag, Berlin (1997):61–68.
  • GIAEVER G, SHOEMAKER D, JONES TW et al.: Genomic profiling of drug sensitivities via induced haploinsufficiency. Nature Genetics (1999) 21:278–283.
  • MUNDER T, HINNEN A: Yeast cells as tools for target-oriented screening. Appl. Microbial Biatechnol (1999) 52:311–320.
  • HARTWELL LH, SZANKASI P, ROBERTS CJ, MURRAY AW, FRIEND SH: Integrating genetic approaches into the discovery of anticancer drugs. Science (1997) 278:1064-1068. Outlines a number of cell-based genetic strategies that can be applied to screening and mechanism of action studies.
  • STERNBERG MJ, BATES PA, KELLEY LA, MACCALLUM RM: Progress in protein structure prediction: assessment of CASP3. Curr Opin. Struct. Biol. (1999) 9:368–373.
  • MOULT J: Predicting protein three-dimensional structure. Curr. Opin. Biatechnol (1999) 10:583–588.
  • GANE PJ, DEAN PM: Recent advances in structure-based rational drug design. Curr Opin. Struct. Biol. (2000) 10:401–404.
  • SHUKER SB, HAJDUK PJ, MEADOWS RP, FESIK SW: Discovering high-affinity ligands for proteins: SAR by NMR. Science (1996) 274:1531–1534.
  • SHI LM, FAN Y, MYERS TG et al.: Mining the NCI anticancer drug discovery databases: genetic function approximation for the QSAR study of anticancer ellipticine analogues. I Chem. Inf. Comput. Sci. (1998) 38:189–199.
  • WEINSTEIN JN, MYERS TG, O'CONNOR PM et al: An information-intensive approach to the molecular pharmacology of cancer. Science (1997) 275:343–349.
  • O'CONNOR PM, JACKMAN J, BAE I et al.: Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. (1997) 57:4285–4300.
  • HUGHES TR, MARTON MJ, JONES AR et al: Functional discovery via a compendium of expression profiles. Cell (2000) 102:109–126.
  • SIMON JA, SZANKASI P, NGUYEN DK et al.: Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae. Cancer Res. (2000) 60:328–333.
  • MARTON MJ, DERISI JL, BENNETT HA et al.: Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Med. (1998) 4:1293–1301.
  • BAMMERT GF, FOSTEL JM: Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob. Agents Chemother. (2000) 44:1255–1265.
  • CHEN DZ, PATEL DV, HACKBARTH CJ et al: Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry (2000) 39:1256–1262.
  • CLEMENTS JM, BECKETT RE BROWN A et al.: Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor. Antimicrob. Agents Chemother. (2001) 45:563–570.
  • WEI Y, YI T, HUNTINGTON KM, CHAUDHURY C, PEI D: Identification of a potent peptide deformylase inhibitor from a rationally designed combinatorial library. j. Comb. Chem. (2000) 2:650–657.
  • JAYASEKERA MM, KENDALL A, SHAMMAS R et al.: Novel nonpeptidic inhibitors of peptide deformylase. Arch. Biochem. Biophys. (2000) 381:313–316.
  • GIGLIONE C, PIERRE M, MEINNEL T: Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mal 11/licrobial (2000) 36:1197–1205.
  • APFEL C, BANNER DW, BUR D et al:Hydroxamic acid derivatives as potent peptide deformylase inhibitors and antibacterial agents. I Med. Chem. (2000) 43:2324–2331.
  • MARGOLIS PS, HACKBARTH CJ, YOUNG DC et al: Peptide deformylase in Staphylococcus aureus: resistance to inhibition is mediated by mutations in the formyltransferase gene. Antimicrob. Agents Chemother. (2000) 44:1825–1831.
  • HUNTINGTON KM, YI T, WEI Y, PEI D: Synthesis and antibacterial activity of peptide deformylase inhibitors. Biochemistry (2000) 39:4543–4551.
  • MEINNEL T, PATINY L, RAGUSA S, BLANQUET S: Design and synthesis of substrate analogue inhibitors of peptide deformylase. Biochemistry (1999) 38:4287–4295.
  • GREEN BG, TONEY JH, KOZARICH JW, GRANT SK: Inhibition of bacterial peptide deformylase by biaryl acid analogs. Arch. Biochem. Biophys. (2000) 375:355–358.
  • JACKMAN JE, FIERKE CA, TUMEY LN et al: Antibacterial agents that target lipid A biosynthesis in Gram-negative bacteria. Inhibition of diverse UDP-3-04-3-hydroxymyristoy1)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. I Biol. Chem. (2000) 275:11002–11009.
  • GOW NA, BATES S, BROWN AJ,BUURMAN ET, THOMSON LM, WESTWATER C: Candida cell wall mannosylation: importance in host-fungus interaction and potential as a target for the development of antifungal drugs. Biochem. Soc. Trans. (1999) 27:512–516.
  • HWANG El, YUN BS, KIM YK et Chaetoatrosin A, a novel chitin synthase II inhibitor produced by Chaetomium atrobrurineum F449. J. Aritibia (Tokyo) (2000) 53:248–255.
  • HWANG El, YUN BS, KIM YK et al.: Phellinsin A, a novel chitin synthases inhibitor produced by Phellinus sp. PL3. Aritibiot. (Tokyo) (2000) 53:903–911.
  • MASUBUCHI K, TANIGUCHI M, UMEDA I et al.: Synthesis and structure-activity relationships of novel fungal chitin synthase inhibitors. Bioorg. Med. Chem. Lett. (2000) 10:1459–1462.
  • BANG KH, LEE DW, PARK HM, RHEE YH: Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde. Biosci. Biotechria Biochem. (2000) 64:1061–1063.
  • MAESAKI S, HOSSAIN MA, MIYAZAKI Y, TOMONO K, TASHIRO T, KOHNO S: Efficacy of FK463, a (1,3)-beta-D-glucan synthase inhibitor, in disseminated azole-resistant Candida albicaris infection in mice. Antimicrob. Agents Chemother. (2000) 44:1728–1730.
  • JUSTICE MC, HSU MJ, TSE B et al.: Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. J. Biol. Chem. (1998) 273:3148–3151.
  • DOMINGUEZ JM, KELLY VA, KINSMAN OS, MARRIOTT MS, GOMEZ DE LAS HERAS F, MARTIN JJ: Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Aritimicrob. Agents Chemother. (1998) 42:2274–2278.
  • ZHONG W, JEFFRIES MW, GEORGOPAPADAKOU NH: Inhibition of inositol phosphorylceramide synthase by aureobasidin A in Candida and Aspergillus species. Aritimicrob. Agents Chemother. (2000) 44:651–653.
  • GEORGOPAPADAKOU NH: Antifungals: mechanism of action and resistance, established and novel drugs. Cum: Opiri. Microbial. (1998) 1:547–557.
  • GEORGOPAPADAKOU NH: Antifungals targeted to sphingolipid synthesis: focus on inositol phosphorylceramide synthase. Expert Opiri. Invest. Drugs (2000) 9:1787–1796.
  • SCHWEITZER BI, DICKER AP BERTINO JR: Dihydrofolate reductase as a therapeutic target. FASEB J. (1990) 4:2441–2452.
  • CHANG S, KARAMBELKAR VV, DITARGIANI RC, GOLDBERG DP: Model complexes of the active site in peptide deformylase: a new family of
  • APFEL CM, LOCHER H, EVERS S et al.: Peptide deformylase as an antibacterial drug target: target validation and resistance development. Aritimicrob. Agents Chemother.
  • KANEDA K, KUZUYAMA T, TAKAGI M, HAYAKAWA Y, SETO H: An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from
  • WILDING El, BROWN JR, BRYANT AP et al.: Identification, evolution, and essentiality of the mevalonate pathway for isopentenyl diphosphate biosynthesis in Gram-positive cocci. J. Bacteria (2000) 182:4319–4327.
  • BERTRAND JA, AUGER G, FANCHON E et al.: Crystal structure of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase from Eche/1MM colt. EMBO J. (1997) 16:3416–3425.
  • BERTRAND JA, AUGER G, MARTIN L et al.: Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. J. Ma Biol. (1999) 289:579–590.
  • BERTRAND JA, FANCHON E, MARTIN L et al.: 'Open' structures of MurD: domain movements and structural similarities with folylpolyglutamate synthetase. I Ma Biol. (2000) 301:1257–1266.
  • SHENG Y, SUN X, SHEN Y, BOGNAR AL, BAKER EN, SMITH CA: Structural and functional similarities in the ADP-forming amide bond ligase superfamily: implications for a substrate-induced conformational change in folylpolyglutamate synthetase. I Md. Bia. (2000) 302:427–440.
  • YAN Y, MUNSHI S, LEITING B, ANDERSON MS, CHRZAS J, CHEN Z: Crystal structure of Echerichia cat UDPMurNAc-tripeptide D-alanyl-D- alanine-adding enzyme (MurF) at 2.3 A resolution. J. Ma Biol. (2000) 304:435–445.
  • GORDON E, FLOURET B, CHANTALAT L, VAN HEIJENOORT J, MENGIN-LECREULX D, DIDEBERG 0: Crystal Structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Echerichia coll. J. Biol. Chem. (2000) 20:20.
  • KLOSER A, LAIRD M, DENG M, MISRA R: Modulations in lipid A and phospholipid biosynthesis pathways influence outer membrane protein assembly in Escherichia coil K-12. Ma Microbial. (1998) 27:1003–1008.
  • JACKMAN JE, RAETZ CR, FIERKE CA: UDP 3 0 (R 3 hydroxymyristoyfl-N-acetylglucosamine deacetylase of Escherichia coil is a zinc met alloenzyme. Biochemistry (1999) 38: 1902-1911.
  • HYLAND SA, EVELAND SS, ANDERSON MS: Cloning, expression, and purification of UDP-3-0-acyl-G1cNAc deacetylase from Pseudomorias aerugiriosa: a met alloamidase of the lipid A biosynthesis pathway. J. Bacteria (1997) 179:2029–2037.
  • YOUNG K, SILVER LL, BRAMHILL D et al.: The envA permeability/cell division gene of Echerichia coil encodes the second enzyme of lipid A biosynthesis. UDP 3 0 (R-3-hydroxymyristoyfl-N-acetylglucosamine deacetylase. J. Biol. Chem. (1995) 270:30384–30391.
  • KOSTREWA D, D'ARCY A, TAKACS B, KAMBER M: Crystal structures of Streptococcus prieumoniae N-acetylglucosamine-l-phosphate uridyltransferase, GlmU, in apo form at 2.33 A resolution and in complex with UDP-N-acetylglucosamine and Mg(2+) at 1.96 A resolution. J. Ma Biol. (2001) 305:279–289.
  • SULZENBACHER G, GAL L, PENEFF C, FASSY F, BOURNE Y: Crystal structure of Streptococcus prieumoniae N-acetyl-glucosamine-l-phosphate uridyltransferase bound to acetyl-coenzyme A reveals a novel active site architecture. I Biol. Chem. (2000) 45:1.
  • XU Z, KNAFELS JD, YOSHINO K: Crystal structure of the bacterial protein export chaperone secB. Nat. Struct. Biol. (2000) 7:1172–1177.
  • CHIRGADZE NY, BRIGGS SL, MCALLISTER KA, FISCHE AS, ZHAO G: Crystal structure of Streptococcus prieurnarriae acyl carrier protein synthase: an essential enzyme in bacterial fatty acid biosynthesis. EMBO J. (2000) 19:5281–5287.
  • QIU X, JANSON CA, KONSTANTINIDIS AK et al.: Crystal structure of beta-ketoacyl-acyl carrier protein synthase III. A key condensing enzyme in bacterial fatty acid biosynthesis. J. Biol. Chem. (1999) 274:36465–36471.
  • PAETZEL M, DALBEY RE, STRYNADKA NC: Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature (1998) 396:186–190.
  • PAETZEL M, DALBEY RE, STRYNADKA NC: The structure and mechanism of bacterial Type I signal peptidases. A novel antibiotic target. Phannacal Ther. (2000) 87:27–49.
  • VAN AALTEN DM, DIRUSSO CC, KNUDSEN J, WIERENGA RK: Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. EMBO J. (2000) 19:5167–5177.
  • SCHMIDTCHEN A, FRICK IM, BJORCK L: Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mal. Microbial (2001) 39(3):708–713.
  • D'ANGELO I, RAFFAELLI N, DABUSTI V, LORENZI T, MAGNI G, RIZZI M: Structure of nicotinamide mononucleotide adenylykransferase: a key enzyme in NAM+) biosynthesis. Struc. Fold Des. (2000) 8:993–1004.
  • NAGIEC MM, NAGIEC EE, BALTISBERGER JA, WELLS GB, LESTER RL, DICKSON RC: Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharamyces cerevisiae by the AUR1 gene. J. Biol. Chem. (1997) 272:9809–9817.
  • BRUCKMANN A, KUNKEL W, HARTL A, WETZKER R, ECK R: A phosphatidylinositol 3-kinase of Galli/Ida albicans influences adhesion, filamentous growth and virulence. Microbiology (2000) 146:2755–2764.
  • SMALERA I, WILLIAMSON JM, BAGINSKY W, LETTING B, MAZUR P: Expression and characterization of protein geranylgeranykransferase Type I from the pathogenic yeast Candida albicany and identification of yeast selective enzyme inhibitors. Biachlin. Biaphys. Acta. (2000) 1480:132–144.
  • SOTEROPOULOS P, WANG G, PERLIN DS: Molecular genetic probing of energy coupling by the yeast plasma membrane proton pump. Acta Physial Stand. Suppl. (1998) 643:115–122.
  • GORGOJO B, PORTILLO F, MARTINEZ-SUAREZ JV: Sequencing and heterologous expression in Saccharamyces cerevisiae of a Cryptocaccus neaformans cDNA encoding a plasma membrane H(+)-ATPase. Bloch:in). Biaphys. Acta. (2000) 1509:103–110.

Websites

  • www.tignorg; www.ncbi.nlm.nih.gov Microbial Genomes Blast Databases.
  • http://www.wit.mcs.anl.gov
  • http://www.genome.ad.jp/KEGG/ Kegg.html
  • www.rcsb.org Protein Data Bank (PD13). The single worldwide repository for the processing and distribution of 3-D biological macromolecular structure data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.