18
Views
3
CrossRef citations to date
0
Altmetric
Miscellaneous

Dendritic cells: immunological features and utilisation for tumour immunotherapy

Pages 491-506 | Published online: 25 Feb 2005

Bibliography

  • ROTH C, ROCHLITZ C, KOURILSKY P: Immune response against tumors. Adv Immuriol. (1994) 57:281–351.
  • BOON T, COULIE PG, VAN DEN EYNDE B: Tumor antigens recognized by T cells. Immuriol. Today (1997) 18:267–268.
  • ROBBINS PF, KAWAKAMI Y: Human tumor antigens recognized by T cells. Cun: Opin Immuriol. (1996) 8:628–636.
  • LEE PP, YEE C, SAVAGE P A et al.: Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med. (1999) 5:677–685.
  • ZAL T, VOLKMANN A, STOCKINGERB: Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen. I Exp. Med. (1994) 180:2089–2099.
  • MATZINGER E GUERDER S: Does T-cell tolerance require a dedicated antigen-presenting cell? Nature (1989) 338:74–76.
  • DAS PK, VAN DEN WIJNGARD RM, WANKOWICZ-KALINSKA A et al.: A symbiotic concept of autoimmunity and tumour immunity: lessons from vitiligo. Trends Inunuriol. (2001) 22:130–136.
  • WATTS C: Capture and processing of exogenous antigens for presentation on MHC molecules. Ann. Rev Inunurioi (1997) 15:821–850.
  • SCHULER G, STEINMAN RM: Dendritic cells as adjuvants for immune-mediated resistance to tumors. I Exp. Med. (1997) 186:1183–1187.
  • BANCHEREAUJ, BRIERE F, CAUX C et al.: Immunobiology of dendritic cells. Ann. Rev Inunuriol. (2000) 18:767–811.
  • HART DN: Dendritic cells: unique leukocyte populations which control the primary immune response. Blood (1997) 90:3245–3287.
  • BANCHEREAUJ, STEINMAN RM: Dendritic cells and the control of immunity. Nature (1998) 392:245–252.
  • MATZINGER P: Tolerance, danger, andthe extended family. Ann. Rev Immuriol. (1994) 12:991–1045.
  • INABA K, METLAY JP, CROWLEY MT et al: Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ [published erratum appears in../ Exp. Med. 1990 Oct 1; 172(4):12751. J. Exp. Med. (1990) 172:631–640.
  • MEHTA-DAMANI A, MARKOWICZ S, ENGLEMAN EG: Generation of antigen-specific CD4+ T cell lines from naive precursors. Eur j Immuriol. (1995) 25:1206–1211.
  • INGULLI E, MONDINO A, KHORUTS A et al.: In vivo detection of dendritic cell antigen presentation to CD4(+) T cells. Exp. Med. (1997) 185:2133–2141.
  • HENGEL H, LINDNER M, WAGNER H et al: Frequency of herpes simplex virus-specific murine cytotoxic T lymphocyte precursors in mitogen- and antigen-driven primary in vitro T cell responses. Inunuriol. (1987) 139:4196–4202.
  • SORNASSE T, FLAMAND V, DE BECKER G et al: Antigen-pulsed dendritic cells can efficiently induce an antibody response in vivo. I Exp. Med. (1992) 175:15–21.
  • MACATONIA SE, TAYLOR PM, KNIGHT SC et al.: Primary stimulation by dendritic cells induces antiviral proliferative and cytotoxic T cell responses in vitro. Exp. Med. (1989) 169:1255–1264.
  • NAIR S, ZHOU F, REDDY R et al.: Soluble proteins delivered to dendritic cells via pH-sensitive liposomes induce primary cytotoxic T lymphocyte responses in vitro. Exp. Med. (1992) 175:609–612.
  • MEHTA-DAMANI A, MARKOWICZ S, ENGLEMAN EG: Generation of antigen-specific CD8+ CTLs from naive precursors. Immuriol. (1994) 153:996–1003.
  • MCKINNEY EC, STREILEIN JW: On the extraordinary capacity of allogeneic epidermal Langerhans cells to prime cytotoxic T cells in vivo. I Immuriol. (1989) 143:1560–1564.
  • NAIR S, BABU JS, DUNHAM RG et al.:Induction of primary, antiviral cytotoxic, and proliferative responses with antigens administered via dendritic cells. j Viral (1993) 67:4062–4069.
  • TAKAHASHI H, NAKAGAWA Y, YOKOMURO K et al.: Induction of CD8+ cytotoxic T lymphocytes by immunization with syngeneic irradiated HIV-1 envelope derived peptide-pulsed dendritic cells. Int. Immunol. (1993) 5:849–857.
  • YOUNG JW, STEINMAN RM: Dendritic cells stimulate primary human cytolytic lymphocyte responses in the absence of CD4+ helper T cells. I Exp. Med. (1990) 171:1315–1332.
  • MCCOY KD, HERMANS IF, FRASER JHet al.: Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) can regulate dendritic cell-induced activation and cytotoxicity of CD8(+) T cells independently of CD4(+) T cell help. J. Exp. Med. (1999) 189:1157–1162.
  • BHARDWAJ N, BENDER A, GONZALEZ N et al.: Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells. I Gun. Invest. (1994) 94:797–807.
  • INABA K, YOUNG JW, STEINMAN RM: Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells. I Exp. Med. (1987) 166:182–194.
  • BOHM W, SCHIRMBECK R, ELBE A et al.: Exogenous hepatitis B surface antigen particles processed by dendritic cells or macrophages prime murine MHC class I-restricted cytotoxic T lymphocytes in viva Immuriol. (1995) 155:3313–3321.
  • BENNETT SR, CARBONE FR, KARAMALIS F et al.: Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. Exp. Med. (1997) 186:65–70.
  • ROBERT C, FUHLBRIGGE RC, KIEFFER JD et al.: Interaction of dendritic cells with skin endothelium: a new perspective on immunosurveillance. I Exp. Med. (1999) 189:627–636.
  • GREAVES DR, WANG W DAIRAGHI DJ et al.: CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3a and is highly expressed in human dendritic cells. I Exp. Med. (1997) 186:837–844.
  • SOZZANI S, ALLAVENAP, D'AMICO G et al: Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. Immuriol. (1998) 161:1083–1086.
  • REIS E, SOUSA C, STAHL PD, AUSTYNJM: Phagocytosis of antigens by Langerhans cells in vitro. j Exp. Med. (1993) 178:509–519.
  • INABA K, INABA M, NAITO M et al.: Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. I Exp. Med. (1993) 178:479–488.
  • SALLUSTO F, CELLA M, DANIELI C et al.: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. I Exp. Med. (1995) 182:389–400.
  • ALBERT ML, PEARCE SE FRANCISCO LM et al: Immature dendritic cells phagocytose apoptotic cells via avI35 and CD36, and cross-present antigens to cytotoxic T lymphocytes. I Exp. Med. (1998) 188:1359–1368.
  • SALLUSTO E LANZAVECCHIA A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J. Exp. Med. (1994) 179:1109–1118.
  • JIANG W, SWIGGARD WJ, HEUFLER C et al: The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature (1995) 375:151–155.
  • KLEIJMEER MJ, OSSEVOORT MA, VAN VEEN C J et al.: MHC class II compartments and the kinetics of antigen presentation in activated mouse spleen dendritic cells. I Immuriol (1995) 154:5715–5724.
  • NIJMAN HW, KLEIJMEER MJ, OSSEVOORT MA et al: Antigen capture and major histocompatibility class II compartments of freshly isolated and cultured human blood dendritic cells. Exp. Med. (1995) 182:163–174.
  • CASTELLINO E ZHONG G, GERMAIN RN: Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture. Hum. Immuriol. (1997) 54:159–169.
  • CRESSWELL P: Invariant chain structureand MHC class II function. Cell (1996) 84:505–507.
  • KROPSHOFER H, HAMMERLING GJ, VOGT AB: How HLA-DM edits the MHC class II peptide repertoire: survival of the fittest? Immuriol. Today (1997) 18:77–82.
  • DAVOUST J, BANCHEREAUJ: Nakedantigen-presenting molecules on dendritic cells [news]. Nature Cell Biol. (2000) 2:E46–48.
  • PAMER E, CRESSWELL P: Mechanismsof MHC class I-restricted antigen processing. Ann. Rev Immuriol. (1998) 16:323–358.
  • CARBONE FR, KURTS C, BENNETT SR et al.: Cross-presentation: a general mechanism for CTL immunity and tolerance. Immuriol. Today (1998) 19:368–373.
  • KOVACSOVICS-BANKOWSKI M, ROCK KL: A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science (1995) 267:243–246.
  • RODRIGUEZ A, REGNAULT A, KLEIJMEER M et al.: Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat. Cell Biol. (1999) 1:362–368.
  • NORBURY CC, CHAMBERS BJ, PRESCOTT AR et al.: Constitutive macropinocytosis allows TAP-dependent major histocompatibility complex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells. Eur Immuriol. (1997) 27:280–288.
  • PFEIFER JD, WICK M J, ROBERTS RLet al.: Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature (1993) 361:359–362.
  • ALBERT ML, SAUTER B, BHARDWAJ N: Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature (1998) 392:86–89.
  • ZITVO GEL L, REGNAULT A, LOZIERA et al.: Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Med. (1998) 4:594–600.
  • TODRYK S, MELCHER AA, HARD WICK N et al.: Heat shock protein 70 induced during tumor cell killing induces Thl cytokines and targets immature dendritic cell precursors to enhance antigen uptake. I Immuriol (1999) 163:1398–1408.
  • ARNOLD-SCHILD D, HANAUD, SPEHNER D et al.: Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. Immuriol (1999) 162:3757–3760.
  • LENZ LL, BUTZ EA, BEVAN MJ: Requirements for bone marrow-derived antigen-presenting cells in priming cytotoxic T cell responses to intracellular pathogens. J. Exp. Med. (2000) 192:1135–1142.
  • HUANG AY, GOLUMBEK P, AHMADZADEH M et al.: Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science (1994) 264:961–965.
  • SIGAL LJ, CROTTY S, ANDINO R et al: Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature (1999) 398:77–80.
  • SVENSSON M, STOCKINGERB, WICK MJ: Bone marrow-derived dendritic cells can process bacteria for MHC-I and MHC-II presentation to T cells. I Immunol (1997) 158:4229–4236.
  • REGNAULT A, LANKAR D, LACABANNE V et al.: Fcy receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. I Exp. Med. (1999) 189:371–380.
  • RESCIGNO M, GRANUCCI F, CITTERIO S et al.: Coordinated events during bacteria-induced DC maturation. Immuriol Today (1999) 20:200–203.
  • DE SMEDT T, PAJAK B, MURAILLE E et al.: Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. I Exp. Med. (1996) 184:1413–1424.
  • AKBARI O, PANJWANI N, GARCIA S et al.: DNA vaccination: transfection and activation of dendritic cells as key events for 500 immunity. J. Exp. Med. (1999) 189:169–178.
  • HACKER H, MISCHAK H, MIETHKE T et al.: CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO. J. (1998) 17:6230–6240.
  • HARTMANN G, WEINER GJ, KRIEG AM: CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc. Nati Acad. Sci. USA (1999) 96:9305–9310.
  • CELLA M, SALIO M, SAKAKIBARA Y et al.: Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J. Exp. Med. (1999) 189:821–829.
  • CUMBERBATCH M, DEARMAN RJ, KIMBER I: Langerhans cells require signals from both tumour necrosis factor a and interleukin 1 beta for migration. Adv Exp. Med. Biol. (1997) 417:125–128.
  • CUMBERBATCH M, DEARMAN RJ, KIMBER I: Interleukin 1 beta and the stimulation of Langerhans cell migration: comparisons with tumour necrosis factor a. Arch. Dennatol. Res. (1997) 289:277–284.
  • SMITH JB, MCINTOSH GH, MORRIS B: The traffic of cells through tissues: a study of peripheral lymph in sheep. J. Anat. (1970) 107:87–100.
  • RANDOLPH GJ, BEAULIEU S, LEBECQUE S et al.: Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science (1998) 282:480–483.
  • RANDOLPH GJ, INABA K, ROBBIANI DF et al.: Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Inunurrin, (1999) 11:7 53–7 61.
  • AUSTYN JM: New insights into the mobilization and phagocytic activity of dendritic cells [comment]. J. Exp. Med. (1996) 183:1287–1292.
  • KUPIEC-WEGLINSKI JW, AUSTYN JM, MORRIS PJ: Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and - independent entry to lymphoid tissues. J. Exp. Med. (1988) 167:632–645.
  • DIEU MC, VANBERVLIET B, VICARI A et al.: Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Esp. Med. (1998) 188:373–386.
  • CYSTER JG: Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs [comment]. J. Esp. Med. (1999) 189:447–450.
  • FORSTER R, SCHUBEL A, BREITFELD D et al.: CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell (1999) 99:23–33.
  • ROMANI N, KOIDE S, CROWLEY M et al.: Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells. J. Exp. Med. (1989) 169:1169–1178.
  • PIERRE P, 'TURLEY SJ, GATTI E et al.: Developmental regulation of MHC class II transport in mouse dendritic cells. Nature (1997) 388:787–792.
  • INABA K, TURLEY S, IYODA T et al.: The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. (2000) 191:927–936.
  • CELLA M, ENGERING A, PINET V et al.: Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature (1997) 388:782–787.
  • 'TURLEY SJ, INABA K, GARRETT WS et al.: Transport of peptide-MHC class II complexes in developing dendritic cells. Science (2000) 288:522–527.
  • PIERRE P, MELLMAN I: Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell (1998) 93:1135–1145.
  • KAMPGEN E, KOCH N, KOCH F et al.: Class II major histocompatibility complex molecules of murine dendritic cells: synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture. Proc. Natl. Acad. Sci. USA (1991) 88:3014–3018.
  • IEZZI G, KARJALAINEN K, LANZAVECCHIA A: The duration of antigenic stimulation determines the fate of naive and effector T cells. Inununin, (1998) 8:89–95.
  • IEZZI G, SCOTET E, SCHEIDEGGER D et al: The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur I knnurrol. (1999) 29:4092–4101.
  • SHIMIZUJ, SUDA T, YOSHIOKA T et al.: Induction of tumor-specific in vivo protective immunity by immunization with tumor antigen-pulsed antigen-presenting cells. J. knnurrol. (1989) 142:1053–1059.
  • GRABBE S, BRUVERS S, GALLO RL et al.: Tumor antigen presentation by murine epidermal cells. J. knnurrol. (1991) 146:3656–3661.
  • MAYORDOMO JI, ZORINA T, STORKUS WJ et al.: Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Med. (1995) 1:1297–1302.
  • CELLUZZI CM, MAYORDOMO JI, STORKUS WJ et al.: Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J. Exp. Med. (1996) 183:283–287.
  • PAGLIA P, CHIODONI C, RODOLFO M et al.: Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J. Exp. Med. (1996) 183:317–322.
  • PORGADOR A, SNYDER D, GILBOA E: Induction of antitumor immunity using bone marrow-generated dendritic cells. J. Inunurrol. (1996) 156:2918–2926.
  • FLAMAND V, SORNASSE T, THIELEMANS K et al.: Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur Inunurrol. (1994) 24:605–610.
  • FIELDS RC, SHIMIZU K, MULE JJ: Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc. Natl. Acad. Sri. USA (1998) 95:9482–9487.
  • ASHLEY DM, FAIOLA B, NAIR S et al.: Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J. Exp. Med. (1997) 186:1177–1182.
  • SPECHT JM, WANG G, DO MT et al:Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases. J. Exp. Med. (1997) 186:1213–1221.
  • GONG J, CHEN D, KASHIWABA M et al.: Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nature Med. (1997) 3:558–561.
  • ZITVOGEL L, MAYORDOMO JI, TJANDRAWAN T et al.: Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. I Exp. Med (1996) 183:87–97.
  • TIMMERMAN JM, LEVY R: Dendriticcell vaccines for cancer immunotherapy. Ann. Rev Med. (1999) 50:507–529.
  • FONG L, ENGLEMAN EG: Dendritic cells in cancer immunotherapy. Ann. Rev Immuriol. (2000) 18:245–273.
  • MACKENSEN A, HERBST B, CHEN JL et al: Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int. Cancer (2000) 86:385–392.
  • THURNER B, HAENDLE I, RODER C et al.: Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. I Exp. Med (1999) 190:1669–1678.
  • SALGALLER M L, THURNHER M, BARTSCH G et al.: Report from the International Union Against Cancer (UICC) Tumor Biology Committee: UICC workshop on the use of dendritic cells in cancer clinical trials. Cancer (1999) 86:2674–2683.
  • TJOA BA, ERICKSON SJ, BOWES VA et at: Follow-up evaluation of prostate cancer patients infused with autologous dendritic cells pulsed with PSMA peptides. Prostate (1997) 32:272–278.
  • HU X, CHAKRABORTY NG, SPORN JR et al: Enhancement of cytolytic T lymphocyte precursor frequency in melanoma patients following immunization with the MAGE-1 peptide loaded antigen presenting cell-based vaccine. Cancer Res. (1996) 56:2479–2483.
  • KUGLER A, STUHLER G, WALDEN P et al.: Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nature Med. (2000) 6:332–336.
  • NESTLE FO, ALIJAGIC S, GILLIET M et al.: Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med (1998) 4:328–332.
  • HSU FJ, BENIKE C, FAGNONI F et al.: Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med (1996) 2:52–58.
  • ROSENBERG SA, YANG JC, SCHWARTZENTRUBER DJ et al.: Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med. (1998) 4:321–327.
  • MOSMANN TR, SAD S: The expanding universe of T-cell subsets: Thl, Th2 and more. Immuriol. Today (1996) 17:138–146.
  • O'GARRA A: Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity (1998) 8:275–283.
  • SANGSTER MY, MO XY, SEALY R et al.: Matching antibody class with pathogen type and portal of entry: cognate mechanisms regulate local isotype expression patterns in lymph nodes draining the respiratory tract of mice inoculated with respiratory viruses, according to virus replication competence and site of inoculation. J. Immuriol. (1997) 159:1893–1902.
  • TOELLNER KM, LUTHER SA, SZE DM et al.: T helper 1 (Thl) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. I Exp. Med. (1998) 187:1193–1204.
  • MACATONIA SE, HOSKEN NA, LITTON M et al.: Dendritic cells produce IL-12 and direct the development of Thl cells from naive CD4+ T cells. J. Immuriol (1995) 154:5071–5079.
  • REIS E, SOUSA CR, HIENY S, SCHARTON-KERSTEN T et al.: In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. I Exp. Med. (1997) 186:1819–1829.
  • TRINCHIERI G: Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Ann. Rev Immunol. (1995) 13:251–276.
  • OKAMURA H, KASHIWAMURA S, TSUTSUI H et al.: Regulation of interferon-y production by IL-12 and IL-18. Cun: Opin Immuriol. (1998) 10:259–264.
  • HEUFLER C, KOCH F, STANZL U et al.: Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-y production by T helper 1 cells. Eur j Immuriol. (1996) 26:659–668.
  • YAWALKAR N, BRAND CU, BRAATHEN LR: IL-12 gene expression in human skin-derived CD1a* dendritic lymph cells. Arch. Dermatol Res. (1996) 288:79–84.
  • HOCHREIN H, O'KEEFE M, LUFT T et al.: Interleukin(IL)-4 is a major regulatory cytokine governing bioactive interleukin-12 production by mouse and human dendritic cells. I Exp. Med (2000) 192.
  • GATELY MK, RENZETTI LM, MAGRAM J et al.: The interleukin-12/ interleukin-12-receptor system: role in normal and pathologic immune responses. Ann. Rev Immuriol (1998) 16:495–521.
  • WU CY, WANG K, MCDYER JF et al.: Prostaglandin E2 and dexamethasone inhibit IL-12 receptor expression and IL-12 responsiveness. I Immuriol (1998) 161:2723–2730.
  • MACATONIA SE, HSIEH CS, MURPHY KM eta].: Dendritic cells and macrophages are required for Thl development of CD4+ T cells from cd3 TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-y production is IFN-y-dependent. Int. Lumina (1993) 5:1119–1128.
  • HILKENS CM, KALINSKI P, DE BOER M et al.: Human dendritic cells require exogenous interleukin-12-inducing factors to direct the development of naive T-helper cells toward the Thl phenotype. Blood (1997) 90:1920–1926.
  • RONCHESE F, HAUSMANN B, LE GROS G: Interferon-y- and interleukin-4-producing T cells can be primed on dendritic cells in vivo and do not require the presence of B cells. Eur. I Immuriol. (1994) 24:1148–1154.
  • STUMBLES PA, THOMAS JA, PIMM CL et al.: Resting respiratory tract dendritic cells preferentially stimulate T helper cell *type 2 (Th2) responses and require obligatory cytokine signals for induction of Thl immunity. I Exp. Med. (1998) 188:2019–2031.
  • KALINSKI P, HILKENS CM, WIERENGA EA et al: T-cell priming by type-I and type-2 polarized dendritic cells: the concept of a third signal. Innnunol. Today (1999) 20:561–567.
  • SHORTMAN K, VREMEC D, CORCORAN LM et al.: The linkage between T-cell and dendritic cell development in the mouse thymus. Immuriol Rev (1998) 165:39–46.
  • RISSOAN MC, SOUMELIS V, KADOWAKI N et al: Reciprocal control of T helper cell and dendritic cell differentiation. Science (1999) 283:1183–1186.
  • CELLA M, FACCHETTI F, LANZAVECCHIA A et al.: Plasmacytoid dendritic cells activated by influenza virus and CD4OL drive a potent Thl polarization. Nature bninurrol. (2000) 1:305–310.
  • LANGENKAMP A, MESSI M, LANZAVECCHIA A et al.: Kinetics of dendritic cell activation: impact on priming of Thl, Th2 and nonpolarized T cells. Nature Inilnurrol. (2000) 1:311–316.
  • VIEIRA PL, DE JONG EC, WIERENGA EA et al: Development of Thl-inducing capacity in myeloid dendritic cells requires environmental instruction. _J. Inunurrol. (2000) 164:4507–4512.
  • MALDONADO-LOPEZ R, DE SMEDT T, MICHEL P et al.: CD8ce and CD8a-subclasses of dendritic cells direct the development of distinct T helper cells in vivo. _J. Exp. Med (1999) 189:587–592.
  • PULENDRAN B, SMITH JL, CASPARY G et al.: Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Arad Sci USA (1999) 96:1036–1041.
  • RUEDL C, BACHMANN MF: CTL priming by CD8(+) and CD8(-) dendritic cells in vivo. Eur I Inunurrol (1999) 29:3762–3767.
  • MOSER M, MURPHY KM: Dendritic cell regulation of Thl-Th2 development. Nature Inilnurrol. (2000) 1:199–205.
  • PATTERSON S: Flexibility and cooperation among dendritic cells. Nature Inunurrol. (2000) 1:273–274.
  • FINKELMAN FD, LEES A, BIRNBAUM R et al.: Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J. Immund. (1996) 157:1406–1414.
  • ADLER AJ, MARSH DW, YOCHUM GS et al.: CD4 + T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. Exp. Med (1998) 187:1555–1564.
  • KURTS C, HEATH WR, CARBONE FR et al: Constitutive class I-restricted exogenous presentation of self antigens in vivo. _J. Exp. Med (1996) 184:923–930.
  • KURTS C, KOSAKA H, CARBONE FR et al.: Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8 (+) T cells. j. Exp. Med. (1997) 186:239–245.
  • VINEY JL, MOWAT AM, O'MALLEY JM et al: Expanding dendritic cells in vivo enhances the induction of oral tolerance. j. Inunurrol. (1998) 160:5815–5825.
  • FORSTER I, LIEBERAM I: Peripheral tolerance of CD4 T cells following local activation in adolescent mice. Eur Inunurrol. (1996) 26:3194–3202.
  • HEATH WR, KURTS C, MILLER JF et al.: Cross-tolerance: a pathway for inducing tolerance to peripheral tissue antigens. Exp. Med (1998) 187:1549–1553.
  • MORGAN DJ, KREUWEL HT, SHERMAN LA: Antigen concentration and precursor frequency determine the rate of CD8 + T cell tolerance to peripherally expressed antigens. I Inilnurrol. (1999) 163:723–727.
  • DE ST GROTH BF: The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity. Inilnurrol. Today (1998) 19:448–454.
  • KRONIN V, WINKEL K, SUSS G et al.: A subclass of dendritic cells regulates the response of naive CD8 T cells by limiting their IL-2 production. I Inunurrol (1996) 157:3819–3827.
  • SUSS G, SHORTMAN K: A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. I Exp. Med (1996) 183:1789–1796.
  • DEN HAAN JM M, LEHAR SM, BEVAN MJ: CD8 + but not CD8- dendritic cells cross-prime cytotoxic T cells in vivo. I Exp. Med. (2000) 192:1685–1695.
  • INABA K, TURLEY S, YAMAIDEF et al: Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. I Exp. Med. (1998) 188:2163–2173.
  • SMITH AL, DE ST GROTH BF: Antigen-pulsed CD8a+ dendritic cells generate an immune response after subcutaneous injection without homing to the draining lymph node. I Exp. Med. (1999) 189:593–598.
  • KURTS C, MILLER JF, SUBRAMANIAM RM et al.: Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. Exp. Med (1998) 188:409–414.
  • LARSSON M, FONTENEAU JF, BHARDWAJ N: Dendritic cells resurrect antigens from dead cells. Trends Inunurrol. (2001) 22:141–148.
  • HUANG F-P PLATT N, WYKES M et al: A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. I Exp. Med. (2000) 191:435–443.
  • SAUTER B, ALBERT ML, FRANCISCO L et al: Consequences of cell death: exposure to necrotic tumour cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. I Exp. Med. (2000) 191:423–434.
  • GALLUCCI S, LOLKEMA M, MATZINGER P: Natural adjuvants: endogenous activators of dendritic cells. Nature Med. (1999) 5:1249–1255.
  • KURTS C, CARBONE FR, BARNDEN M et al.: CD4 + T cell help impairs CD8 + T cell deletion induced by cross-presentation of self-antigens and favors autoimmunity. Exp. Med (1997) 186:2057–2062.
  • CELLA M, SCHEIDEGGER D, PALMER-LEHMANN K et al: Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. I Exp. Med. (1996) 184:747–752.
  • RIDGE JP, DI ROSA F, MATZINGER P: A conditioned dendritic cell can be a temporal bridge between a CD4 + T-helper and a T-killer cell. Nature (1998) 393:474–478.
  • BENNETT SR, CARBONE FR, KARAMALIS F et al.: Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature (1998) 393:478–480.
  • SCHOENBERGER SP, TOES RE, VAN DER VOORT El et al.: T-cell help for cytotoxic T lymphocytes is mediated by CD4O-CD4OL interactions. Nature (1998) 393:480–483.
  • CAUX C, MASSACRIER C, VANBERVLIET B et al.: Activation of human dendritic cells through CD40 cross-linking. J. Exp. Med. (1994) 180:1263–1272.
  • INABA K, WITMER-PACK M, INABA M et al.: The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. I Exp. Med. (1994) 180:1849–1860.
  • KOCH F, STANZL U, JENNEWEIN P et al.: High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10 [published erratum appears in J. Exp. Med. 1996 Oct 1; 184 (4) :following 15901 . 1 Exp. Med. (1996) 184:741–746.
  • SALLUSTO F, LANZAVECCHIA A: Mobilizing dendritic cells for tolerance, priming, and chronic inflammation [comment]. J. Exp. Med. (1999) 189:611–614.
  • DE BENEDETTE MA, SHAHINIAN A, MAK TW et al.: Costimulation of CD28-T lymphocytes by 4-1BB ligand. Inunuriol. (1997) 158:551–559.
  • SAOULLI K, LEE SY, CANNONS JL et al.: CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J. Exp. Med. (1998) 187:1849–1862.
  • KIM YJ, KIM SH, MANTEL P et al.: Human 4-1BB regulates CD28 co-stimulation to promote Thl cell responses. Eur bronuriol. (1998) 28:881–890.
  • CHAN VW, KOTHAKOTA S, ROHAN MC et al: Secondary lymphoid-tissue chemokine (SLC) is chemotactic for mature dendritic cells. Blood (1999) 93:3610–3616.
  • YANAGIHARA S, KOMURA E, NAGAFUNE J et al: EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. J. Inunuriol. (1998) 161:3096–3102.
  • KANAZAWA N, NAKAMURA T, TASHIRO K et al.: Fractalkine and macrophage-derived chemokine: T cell-attracting chemokines expressed in T cell area dendritic cells. Eur j Inunuriol. (1999) 29:1925–1932.
  • ADEMA GJ, HARTGERS F, VERSTRATEN R et al.: A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature (1997) 387:713–717.
  • TANG HL, CYSTER JG: Chemokine Up-regulation and activated T cell attraction by maturing dendritic cells. Science (1999) 284:819–822.
  • LIEBERAMI, FORSTER I: The murine beta-chemokine TARC is expressed by subsets of dendritic cells and attracts primed CD4+ T cells. Eur. j hinnuriol. (1999) 29:2684–2694.
  • GODISKA R, CHANTRY D, RAPORT CJ et al.: Human macrophage-derived chemokine (MD C) a novel chemoattractant for monocytes, monocyte- derived dendritic cells, and natural killer cells. J. Exp. Med. (1997) 185:1595–1604.
  • SALLUSTO F, LENIG D, FORSTER R et al.: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature (1999) 401:708–712.
  • SALLUSTO F, PALERMO B, LENIG D et al: Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur 1 bronuriol (1999) 29:1617–1625.
  • STEINMAN RM: DC-SIGN: a guide to some mysteries of dendritic cells [comment]. Cell (2000) 100:491–494.
  • WINZLER C, ROVERE P, RESCIGNO M et al.: Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. I Exp. Med. (1997) 185:317–328.
  • DE SMEDTT, PAJAK B, KLAUS GG et al.: Antigen-specific T lymphocytes regulate lipopolysaccharide-induced apoptosis of dendritic cells in vivo. 1 hinnuriol. (1998) 161:4476–4479.
  • ANDERSON DM, MARASKOVSKY E, BILLINGSLEY WL et al.: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature (1997) 390:175–179.
  • WONG BR, JOSIEN R, LEE SY et al: TRANCE (tumor necrosis factor FTNF1-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. I Exp. Med. (1997) 186:2075–2080.
  • BROCKER T: Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. I Exp. Med. (1997) 186:1223–1232.
  • LUDEWIG B, OEHEN S, BARCHIESI F et al.: Protective antiviral cytotoxic T cell memory is most efficiently maintained by restimulation via dendritic cells. J. Inunuriol. (1999) 163:1839–1844.
  • MARZO AL, LAKE RA, LO D et al.: Tumor antigens are constitutively presented in the draining lymph nodes. I konuriol. (1999) 162:5838–5845.
  • MELCHER A, TODRYKS, HARDWICK N et al.: Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nature Med. (1998) 4:581–587.
  • GONG J, CHEN D, KASHIWABA M et al.: Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proc. Natl. Acad. Sci USA (1998) 95:6279–6283.
  • PULENDRAN B, SMITH JL, JENKINS M et al.: Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant. I Exp. Med. (1998) 188:2075–2082.
  • SHIMIZU Y, GUIDOTTI L G, FOWLER P et al.: Dendritic cell immunization breaks cytotoxic T lymphocyte tolerance in hepatitis B virus transgenic mice. konuriol. (1998) 161:4520–4529.
  • STEPTOE RJ, FU F, LI W et al.: Augmentation of dendritic cells in murine organ donors by F1t3 ligand alters the balance between transplant tolerance and immunity. I hinnuriol. (1997) 159:5483–5491.
  • SURMAN DR, DUDLEY ME, OVERWIJK WW et al.: CD4+ T cell control of CD8+ T cell reactivity to a model tumour antigen. I konuriol. (2000) 164:562–565.
  • DE VEERMAN M, HEIRMAN C, VAN MEIRVENNE S et al.: Retrovirally transduced bone marrow-derived dendritic cells require CD4+ T cell help to elicit protective and therapeutic antitumor immunity. I hinnuriol. (1999) 162:144–151.
  • SCHNELL S, YOUNG JW, HOUGHTON AN et al.: Retrovirally transduced mouse dendritic cells require CD4+ T cell help to elicit antitumor immunity: implications for the clinical use of dendritic cells. J. Inunuriol. (2000) 164:1243–1250.
  • OSSENDORP F, MENGEDEE, CAMPS M et al: Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. I Exp. Med. (1998) 187:693–702.
  • OVERWIJK WW, LEE DS, SURMAN DR et al.: Vaccination with a recombinant vaccinia virus encoding a 'self antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc. Natl. Acad. Li. USA (1999) 96:2982–2987.
  • LU Z, YUAN L, ZHOU X et al.: CD40-independent pathways of T cell help for priming of CD8(+) cytotoxic T lymphocytes. I Exp. Med. (2000) 191:541–550.
  • SCHUURHUIS DH, LABAN S, TOES RE et al.: Immature dendritic cells acquire CD8(+) cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. I Exp. Med. (2000) 192:145–150.
  • BAXEVANIS CN, VOUTSAS IF, TSITSILONIS OE et al.: Tumor-specific CD4+ T lymphocytes from cancer patients are required for optimal induction of cytotoxic T cells against the autologous tumor. J. Immurrol. (2000) 164:3902–3912.
  • TIMMERMAN JM, LEVY R: Linkage of foreign carrier protein to a self-tumor antigen enhances the immunogenicity of a pulsed dendritic cell vaccine. j Immurrol. (2000) 164:4797–4803.
  • RIBAS A, BUTTERFIELD LH, HU B et al.: Immune deviation and Fas-mediated deletion limit antitumor activity after multiple dendritic cell vaccinations in mice. Cancer Res. (2000) 60:2218–2224.
  • SERODY JS, COLLINS EJ, TISCH RM et al: T cell activity after dendritic cell vaccination is dependent on both the type of antigen and the mode of delivery. Immurrol. (2000) 164:4961–4967.
  • QIN Z, BLANKENSTEIN T: CD4+ T cell-mediated tumour rejection involves inhibition of angiogenesis that is dependent on IFN-y receptor expression by nonhematopoietic cells. Immunity (2000) 12:677–686.
  • DHODAPKAR MV, STEINMAN RM, SAPP M et al.: Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. I Clin Invest. (1999) 104:173–180.
  • DHODAPKAR MV, KRASOVSKY J, STEINMAN R et al.: Mature dendritic cells boost functionally superior T cells in humans without foreign helper epitopes. Clin Invest. (2000) 107:R9–R14.
  • RONCAROLO M-G, LEVINGS MK, TRAVERSARI C: Differentiation of T regulatory cells by immature dendritic cells. Exp. Med. (2001) 193:F5–F9.
  • IERHEYDEN P, STRATEN P, BROCKER EB et al.: CD40-ligated dendritic cells effectively expand melanoma-specific CD8+ CTLs and CD4+ IFN-y-producing T cells from tumor-infiltrating lymphocytes. I Immurrol. (2000) 164:6633–6639.
  • DIEHL L, DEN BOER AT, SCHOENBERGER SP et al: CD40 activation in viva overcomes peptide- induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nature Med. (1999) 5:774–779.
  • SOTOMAYOR EM, BORRELLO I, TUBB E et al: Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nature Med. (1999) 5:780–787.
  • GARZA KM, CHAN SM, SURI R et al: Role of antigen-presenting cells in mediating tolerance and autoimmunity. Exp. Med. (2000) 191:2021–2028.
  • LEFRANCOIS L, ALTMAN JD, WILLIAMS K et al.: Soluble antigen and CD40 triggering are sufficient to induce primary and memory cytotoxic T cells. Immurrol. (2000) 164:725–732.
  • SCHULZ O, EDWARDS AD, SCHITO M et al.: CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity (2000) 13:453–462.
  • OVERWIJK WW, TSUNG A, IRVINE KR et al: gp100/pmel 17 is a murine tumor rejection antigen: induction of selr-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. I Exp. Med. (1998) 188:277–286.
  • SLANSKY JE, RATTIS FM, BOYD LF et al.: Enhanced antigen-specific antitumour immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity (2000) 13:529–538.
  • BULLOCK TN, COLELLA TA, ENGELHARD VH: The density of peptides displayed by dendritic cells affects immune responses to human tyrosinase and gp 100 in HLA-A2 transgenic mice. Immurrol. (2000) 164:2354–2361.
  • HOFFMANN TK, MEIDENBAUER N, DWORACKI G et al.: Generation of tumor-specific T-lymphocytes by cross-priming with human dendritic cells ingesting apoptotic tumor cells. Cancer Res. (2000) 60:3542–3549.
  • RUSSO V, TANZARELLA S, DALERBAP et al: Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response. Proc. Nati Acad. Sci USA (2000) 97:2185–2190.
  • RONCHETTI A, ROVERE E IEZZI G et al.: Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen-presenting cells, and cytokines. I Immurrol (1999) 163:130–136.
  • CELLUZZI CM, FALO LD Jr.: Physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor rejection. J. Immurrol. (1998) 160:3081–3085.
  • GONG J, AVIGAN D, CHEN D et al.: Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc. Natl. Acad. Sci. USA (2000) 97:2715–2718.
  • GONG J, NIKRUI N, CHEN D et al.: Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. I Immurrol. (2000) 165:1705–1711.
  • HARTGERS FC, FIGDOR C G, ADEMA GJ: Towards a molecular understanding of dendritic cell immunobiology. Immurrol. Today (2000) 21:542–545.
  • RESCIGNO M, VALZASINA B, BONASIO R et al.: Dendritic cells, loaded with recombinant bacteria expressing tumor antigens, induce a protective tumor-specific response. Clin Cancer Res. (2001) 7:865s–870s.
  • GOLETZ TJ, KUMPEL KR, LEPPLA SH et al.: Delivery of antigens to the MHC class I pathway using bacterial toxins. Hum. Immurrol. (1997) 54:129–136.
  • KIM DT, MITCHELL DJ, BROCKSTEDT DG et al.: Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. I Immurrol (1997) 159:1666–1668.
  • MINEV BR, CHAVEZ FL, DUD OUET B M et al.: Synthetic insertion signal sequences enhance MHC class I presentation of a peptide from the melanoma antigen MART-1. Eur Immurrol. (2000) 30:2115–2124.
  • ARTHUR JF, BUTTERFIELD LH, ROTH MD et al.: A comparison of gene transfer methods in human dendritic cells. Cancer Gene Titer (1997) 4:17–25.
  • TUTING T, WILSON CC, MARTIN DM etat Autologous human monocyte-derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Thl-biasing cytokines IL-12 and IFN-a. Immunol. (1998) 160:1139–1147.
  • HEISER A, DAHM P, RYANCEY D et al.:Human dendritic cells transfected withRNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J. Immune]. (2000) 164:5508–5514.
  • NAIR SK, BOCZKOWSKI D, MORSE M et al.: Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nature Biatechnol (1998) 16:364–369.
  • BOCZKOWSKI D, NAIR SK, NAM JH et al.: Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res. (2000) 60:1028–1034.
  • BOCZKOWSKI D, NAIR SK, SNYDER D et al.: Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. I Exp. Med. (1996) 184:465–472.
  • JENNE L, SCHULER G, STEINKASSERER A: Viral vectors for dendritic cell-based immunotherapy. Trends Immunal (2001) 22:102–107.
  • HODGE JW, RAD AN, GROSENBACH DW et al.: Enhanced activation of T cells by dendritic cells engineered to hyperexpress a triad of costimulatory molecules. I Natl. Cancer Inst. (2000) 92:1228–1239.
  • KIRK CJ, MULE JJ: Gene-modified dendritic cells for use in tumor vaccines. Hum. Gene Ther (2000) 11:797–806.
  • KIKUCHI T, MOORE MA, CRYSTAL RG: Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood (2000) 96:91–99.
  • DUNUSSI-JOANNOPOULOS K, RUNYON K, ERICKSON J et al.: Vaccines with interleukin-12-transduced acute myeloid leukemia cells elicit very potent therapeutic and long-lasting protective immunity. Blood (1999) 94:4263–4273.
  • SHIMIZU K, FIELDS RC, GIEDLIN Met al.: Systemic administration of interleukin 2 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines. Proc. Natl. Acad. Sri. USA (1999) 96:2268–2273.
  • LYNCH D H, ANDREASEN A, MARASKOVSKY E et al.: F1t3 ligand induces tumor regression and antitumor immune responses in vivo. Nature Med. (1997) 3:625–631.
  • SHARMA S, STOLINA M, LUO J et al.: Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. I Immune]. (2000) 164:4558–4563.
  • PRUD'HOMME GJ, LAWSON BR, CHANG Y et al.: Immunotherapeutic gene transfer into muscle. Trends Immune]. (2001) 22:149–155.
  • SPARWASSER T, KOCH ES, VABULAS RM et al: Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur j Immune]. (1998) 28:2045–2054.
  • LEITNER WW, YING H, DRIVER DA et al.: Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res. (2000) 60:51–55.
  • PORGADOR A, IRVINE KR, IWASAKI A et al.: Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. I Exp. Med. (1998) 188:1075–1082.
  • CONDON C, WATKINS SC, CELLUZZI CM et al.: DNA-based immunization by in vivo transfection of dendritic cells. Nature Med. (1996) 2:1122–1128.
  • BOT A, STAN AC, INABA K et al: Dendritic cells at a DNA vaccination site express the encoded influenza nucleoprotein and prime MHC class I-restricted cytolytic lymphocytes upon adoptive transfer. Irk Immune]. (2000) 12:825–832.
  • MINCHEFF M, TCHAKAROV S, ZOUBAK S et al.: Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a Phase I/II clinical trial. Eur. Ural. (2000) 38:208–217.
  • MARASKOVSKY E, DARO E, ROUX E et al.: In vivo generation of human dendritic cell subsets by F1t3 ligand. Blood (2000) 96:878–884.
  • HEY, PIMENOV AA, NAYAK JV et al.: Intravenous injection of naked DNA encoding secreted flt3 ligand dramatically increases the number of dendritic cells and natural killer cells in vivo. Hum. Gene Ther (2000) 11:547–554.
  • VABULAS RM, PIRCHER H, LIPFORD GB et al.: CpG-DNA activates in vivo T cell epitope presenting dendritic cells to trigger protective antiviral cytotoxic T cell responses. j Immune]. (2000) 164:2372–2378.
  • DAVILA E, CELIS E: Repeated administration of cytosine-phosphorothiolated guanine-containing oligonucleotides together with peptide/ protein immunization results in enhanced CTL responses with anti-tumor activity. Immune]. (2000) 165:539–547.
  • CHANG EY, CHEN CH, JI H et al.: Antigen-specific cancer immunotherapy using a GM-CSF secreting allogeneic tumor cell-based vaccine. Int. j Cancer (2000) 86:725–730.
  • CHIODONI C, PAGLIA E STOPPACCIARO A et al.: Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response. Exp. Med. (1999) 190:125–133.
  • BORRELLO I, SOTOMAYOR EM, RATTIS FM et al.: Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CS9-producing tumor vaccines. Blood (2000) 95:3011–3019.
  • KLEIN C, BUELER H, MULLIGAN RC: Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. I Exp. Med. (2000) 191:1699–1708.
  • LUDEWIG B, OCHSENBEIN AE ODERMATT B et al.: Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. I Exp. Med. (2000) 191:795–804.
  • CHOUAIB S, ASSELIN-PATUREL C, MAMI-CHOUAIB F et al.: The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immune]. Today (1997) 18:493–497.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.