122
Views
70
CrossRef citations to date
0
Altmetric
Miscellaneous

Superoxide dismutase: an emerging target for cancer therapeutics

, &
Pages 697-710 | Published online: 25 Feb 2005

Bibliography

  • HALLIWELL B, GUTTERIDGE J: Free Radicals in Biology and Medicine. (3rd Edition) Oxford University Press, Inc. (1999) New York, NY.
  • HIROSE K, LONGO DL, OPPENHEIM JJ, MATSUSHIMA K: Overexpression of mitochondrial manganese superoxide dismutase promotes the survival of tumour cells exposed to interleukin-1, tumour necrosis factor, selected anticancer drugs, and ionising radiation. FASEBJ (1993) 7:361–368.
  • YOSHIKAWA T, KOKURA S, TAINAKA K, NAITO Y, KONDO M: A novel cancer therapy based on oxygen radicals. Cancer Res. (1995) 55:1617–1620.
  • KONG Q, BEEL JA, LILLEHEI KO: A threshold concept for cancer therapy. Med. Hypotheses (2000) 55:29–35.
  • HUANG P, FENG L, OLDHAM EA, KEATING MJ, PLUNKETT W: Superoxide dismutase as a target for the selective killing of cancer cells. Nature (2000) 407:390–395.
  • BRAND MD: Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. amnia (2000) 35:811–820.
  • RICQUIER D, BOUILLAUD F: Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J. Physiol (2000) 529(Pt. 1):3–10.
  • MCARDLE A, PATTWELL D, VASILAKIA, GRIFFITHS RD, JACKSON MJ: Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Physiol Cell. Physiol (2001) 280:C621–C627.
  • BURDON RH: Superoxide and hydrogenperoxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. (1995) 18:775–794.
  • DORWARD A, SWEET S, MOOREHEAD R, SINGH G: Mitochondrial contributions to cancer cell physiology: redox balance, cell cycle, and drug resistance. Bioenerg. Biomembi: (1997) 29:385–392.
  • LIU H, NISHITOH H, ICHIJO H, KYRIAKIS JM: Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumour necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredcodn. Ma Cell Biol. (2000) 20:2198–2208.
  • MOREL I, LESCOAT G, CILLARD J, PASDELOUP N, BRISSOT P, CILLARD P: Kinetic evaluation of free malondialdehyde and enzyme leakage as indices of iron damage in rat hepatocyte cultures. Involvement of free radicals. Biochem. Pharmacol (1990) 39:1647–1655.
  • ZDOLSEK JM, SVENSSON I: Effect of reactive oxygen species on lysosomal membrane integrity. A study on a lysosomal fraction. Virchows Arch. B. Cell Pathol Incl. Pathol (1993) 64:401–406.
  • CAI J, YANG J, JONES DP: Mitochondrial control of apoptosis: the role of cytochrome c. Biochim. Biophys. Acta (1998) 1366:139–149.
  • KANNAN K, JAIN SK: Oxidative stress and apoptosis. Pathophysiology (2000) 7:153–163.
  • FUNG H, KOW YW, VAN HOUTEN B, MOSSMAN BT: Patterns of 8-hydroxydeoxyguanosine formation in DNA and indications of oxidative stress in rat and human pleural mesothelial cells after exposure to crocidolite asbestos. Carcinogenesis (1997) 18:825–832.
  • CADET J, BERGER M, DOUKI T et al:Effects of UV and visible radiation on DNA-final base damage. Biol. Chem. (1997) 378:1275–1286.
  • LLOYD DR, PHILLIPS DH, CARMICHAEL PL: Generation of putativeintrastrand cross-links and strand breaks in DNA by transition metal ion-mediated oxygen radical attack. Chem. Res. Toxicol (1997) 10:393–400.
  • RANDERATH K, RANDERATH E, SMITH CV, CHANG J: Structural origins of bulky oxidative DNA adducts (type III-compounds) as deduced by oxidation of oligonucleotides of known sequence. Chem. Res. Toxicol. (1996) 9:247–254.
  • MOMAND J, WU HH, DASGUPTA G: MDM2 - master regulator of the p53 tumour suppressor protein. Gene (2000) 242:15–29.
  • OBERLEY LW, BUETTNER GR: Role of superoxide dismutase in cancer: a review. Cancer Res. (1979) 39:1141–1149.
  • BROWN GC: Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta (1999) 1411:351–369.
  • USHMOROV A, RATTER F, LEHMANN V, DROGE W, SCHIRRMACHER V, UMANSKY V: Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release. Blood(1999) 93:2342–2352.
  • GHAFOURIFAR P, SCHENK U, KLEIN SD, RICHTER C: Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J.Biol. Chem. (1999) 274:31185–31188.
  • CHEN HJ, CHEN YM, WANG TF, WANG KS, SHIEA J: 8-Nitroxanthine, an Adduct Derived from 2'-Deoxyguanosine or DNA Reaction with Nitryl Chloride. Chem. Res. Toxicol. (2001) 14:536–546.
  • ZHAO K, WHITEMAN M, SPENCER JP,HALLIWELL B: DNA damage by nitrite and peroxynitrite: protection by dietary phenols. Methods Enzymol (2001) 335:296–307.
  • MALLIS RJ, BUSS JE, THOMAS JA: Oxidative modification of H-ras: S-thiolation and S-nitrosylation of reactive cysteines. Biochem. (2001) 355:145–153.
  • MARSHALL HE, MERCHANT K, STAMLERJS: Nitrosation and oxidation in the regulation of gene expression. FASEB (2000) 14:1889–1900.
  • ZHUANG S, SIMON G: Peroxynitrite-induced apoptosis involves activation of multiple caspases in HL-60 cells. Am.' Physiol Cell Physiol (2000) 279:C341–C351.
  • LONGO VD, GRALLA EB, VALENTINEJS: Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo.' Biol. Chem. (1996) 271:12275–12280.
  • MCCORD JM, FRIDOVICH I: Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein)../. Biol. Chem. (1969) 244:6049–6055.
  • TAINERJA, GETZOFF ED, RICHARDSON JS, RICHARDSON DC: Structure and mechanism of copper, zinc superoxide dismutase. Nature (1983) 306:284–287.
  • BANCI L, BENEDETTO M, BERTINI I, DEL CONTE R, PICCIOLI M, VIEZZOLI MS: Solution structure of reduced monomeric QI33M2, copper, zinc superoxide dismutase (SOD). Why is SOD a dimeric enzyme? Biochemistry (1998) 37(34):11780–11791.
  • GETZOFF ED, TAINER JA, STEMPIENMM, BELL GI, HALLEWELL RA: Evolution of CuZn superoxide dismutase and the Greek key beta-barrel structural motif. Proteins (1989) 5:322–336.
  • GETZOFF ED, CABELLI DE, FISHER CL et al.: Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature (1992) 358:347–351.
  • LEVEQUE VJ, STROUPE ME, LEPOCK JR et al.: Multiple replacements of glutamine 143 in human manganese superoxide dismutase: effects on structure, stability, and catalysis. Biochemistry (2000) 39:7131–7137.
  • BORGSTAHL GE, PARGE HE, HICKEY MJ, BEYER WF, HALLEWELL RA, TAINER JA: The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell (1992) 71:107–118.
  • HART PJ, BALBIRNIE MM, OGIHARA NL et al: A structure-based mechanism for copper-zinc superoxide dismutase. Biochemistry (1999) 38:2167–2178.
  • PARGE HE, HALLEWELL RA, TAINER JA: Atomic structures of wild type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. Proc. Nati Acad. Sci. USA (1992) 89:6109–6113.
  • LONGO VD, LIOU LL, VALENTINE JS,GRALLA EB: Mitochondrial superoxide decreases yeast survival in stationary phase. Expert Opin. Ther. Targets (2001) 5(6) Arch. Biochein. Biophys. (1999) 365:131–142.
  • AMBROSIO G, ZWEIER JL, BECKER LC: Apoptosis is prevented by administration of superoxide dismutase in dogs with reperfused myocardial infarction. Basic Res. Cardiol (1998) 93:94–96.
  • CHEN Z, SIU B, HO YS et al: Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. Ma Cell Cardiol (1998) 30:2281–2289.
  • CHEN Z, OBERLEY TD, HO Y et al: Overexpression of CuZnSOD in coronary vascular cells attenuates myocardial ischemia/reperfusion injury. Free Radic. Biol. Med. (2000) 29:589–596.
  • WANG P, CHEN H, QIN H et al.: Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc. Natl. Acad. Sci. USA (1998) 95:4556–4560.
  • FUJIMURA M, MORITA-FUJIMURA Y, KAWASE M et al.: Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. Neurosci. (1999) 19:3414–3422.
  • KELLER JN, KINDY MS, HOLTSBERG FW et al.: Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid perwddation, and mitochondrial dysfunction. Neurosci. (1998) 18:687–697.
  • KONDO T, REAUME AG, HUANG TT et al.: Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. Neurosci. (1997) 17:4180–4189.
  • MURAKAMI K, KONDO T, KAWASE M et al.: Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. Neurosci. (1998) 18:205–213.
  • GURNEY ME, LIU R, ALTHAUS JS, HALL ED, BECKER DA: Mutant CuZn superoxide dismutase in motor neuron disease. J. Inherit. Metab. Dis. (1998) 21:587–597.
  • WINTERBOURN CC: Superoxide as an intracellular radical sink. Free Radic. Biol. Med. (1993) 14:85–90.
  • KUNINAKA S, ICHINOSE Y, KOJA K, TOH Y: Suppression of manganese superoxide dismutase augments sensitivity to radiation, hyperthermia and doxorubicin in colon cancer cell lines by inducing apoptosis. Br. J. Cancer (2000) 83:928–934.
  • HUANG TT, YASUNAMI M, CARLSON EJ et al.: Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts. Arch. Biochein. Biophys. (1997) 344:424–432.
  • LEBOVITZ RM, ZHANG H, VOGEL H et al.: Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA (1996) 93:9782–9787.
  • LI Y, HUANG TT, CARLSON EJ et al.:Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. (1995) 11:376–381.
  • TSAN MF, WHITE JE, CASKA B, EPSTEIN CJ, LEE CY: Susceptibility of heterozygous MnSOD gene-knockout mice to oxygen toxicity. Am. J. Respir. Cell Ma Biol. (1998) 19:114–120.
  • REAUME AG, ELLIOTT JL, HOFFMANEK et al.: Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. (1996) 13:43–47.
  • CHURCH SL, GRANT JW, RIDNOURLA et al.: Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc. Natl. Acad. Sci. USA (1993) 90:3113–3117.
  • LI JJ, OBERLEY LW, ST CLAIR DK, RIDNOUR LA, OBERLEY TD: Phenotypic changes induced in human breast cancer cells by overexpression of manganese containing superoxide dismutase. Oncogene (1995) 10:1989–2000.
  • YAN T, OBERLEY LW, ZHONG W, ST CLAIR DK: Manganese-containing superoxide dismutase overexpression causes phenotypic reversion in 5V40-transformed human lung fibroblasts. Cancer Res. (1996) 56:2864–2871.
  • ZHONG W, OBERLEY LW, OBERLEY TD, ST CLAIR DK: Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncogene (1997) 14:481–490.
  • OBERLEY LW: Anticancer therapy by overexpression of superoxide dismutase. Antioxid. Redox. Signal (2001) 3:461–472.
  • SWARTZ HM, GUTIERREZ PL: Free radical increases in cancer: evidence that there is not a real increase. Science (1977) 198:936–938.
  • SZATROWSKI TP, NATHAN CF: Production of large amounts of hydrogen peroxide by human tumour cells. Cancer Res. (1991) 51:794–798.
  • KONDO S, TOYOKUNI S, IWASA Y et al.: Persistent oxidative stress in human colorectal carcinoma, but not in adenoma. Free Radic. Biol. Med. (1999) 27:401–410.
  • TOYOKUNI S, OKAMOTO K, YODOI J, HIAI H: Persistent oxidative stress in cancer. FEBS Lett (1995) 358:1–3.
  • TOYOKUNI S: Oxidative stress and cancer: the role of redox regulation. Biotherapy (1998) 11:147–154.
  • BRAS A, SANCHES R, CRISTOVAO L et al.: Oxidative stress in familial adenomatous polyposis. Ear J. Cancer Prey. (1999) 8:305–310.
  • JARUGA P, ZASTAWNY TH, SKOKOWSKI J, DIZDAROGLU M, OLINSKI R: Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Led (1994) 341:59–64.
  • OKAMOTO K, TOYOKUNI S, UCHIDA K et al: Formation of 8-hydroxy-2'-deoxyguanosine and 4-hydroxy-2-nonenal-modified proteins in human renal-cell carcinoma. hat.' Cancer (1994) 58:825–829.
  • OLINSKI R, ZASTAWNY T, BUDZBONJ, SKOKOWSKI J, ZEGARSKI W, DIZDAROGLU M: DNA base modifications in chromatin of human cancerous tissues. FEBS Lett. (1992) 309:193–198.
  • DEVI GS, PRASAD MH, SARASWATHI I, RAGHU D, RAO DN, REDDY PP: Free radicals antioxidant enzymes and lipid perwddation in different types of leukemias. Clin. China. Acta (2000) 293:53–62.
  • OLDHAM EA, FENG L, LIU J, KEATING MJ, PLUNKETT W, HUANG P: Increased free radical production in cancer cells: a biochemical basis for selective anticancer activity of 2-methoxyestradiol. Proceedings of the American Association for Cancer Research Annual Meeting (2001) 42:190-191. (Abstract).
  • SMITH TA: Mammalian hexokinases and their abnormal expression in cancer. Br. J. Bioined. Sci. (2000) 57:170–178.
  • OBERLEY LW, BIZE TB, SAHU SK, LEUTHAUSER SW, GRUBER HE: Superoxide dismutase activity of normal murine liver, regenerating liver, and H6 hepatoma. Nati Cancer Inst. (1978) 61:375–379.
  • VAN DRIEL BE, LYON H, HOOGENRAAD DC, ANTEN S, HANSEN U, VAN NOORDEN CJ: Expression of CuZn- and Mn-superoxide dismutase in human colorectal neoplasms. Free Radic. Biol. Med. (1997) 23:435–444.
  • OBERLEY TD, OBERLEY LW: Antioxidant enzyme levels in cancer. Histol. Histopathol. (1997) 12:525–535.
  • VAN DRIEL BE, VAN NOORDEN CJ: Oxygen insensitivity of the histochemical assay of glucose-6-phosphate dehydrogenase activity for the discrimination between non-malignant and malignant cells. Histochem. Cytochem. (1999) 47:575–582.
  • MARKLUND SL, WESTMAN NG, LUNDGREN E, ROOS G: Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione perwddase in normal and neoplastic human cell lines and normal human tissues. Cancer Res. (1982) 42:1955–1961.
  • JANSSEN AM, BOSMAN CB, VAN DUIJN W et al.: Superoxide dismutases in gastric and oesophageal cancer and the prognostic impact in gastric cancer. Clin. Cancer Res. (2000) 6:3183–3192.
  • JANSSEN AM, BOSMAN CB, KRUIDENIER L et al.: Superoxide dismutases in the human colorectal cancer sequence. Cancer Res. Clin. Oncol. (1999) 125:327–335.
  • KANBAGLI O, OZDEMIRLER G, BULUT T, YAMANER S, AYKAC-TOKER G, UYSAL M: Mitochondrial lipid peroxides and antioxidant enzymes in colorectal adenocarcinoma tissues. fpn. Cancer Res. (2000) 91:1258–1263.
  • PUNNONEN K, AHOTUPA M, ASAISHI K, HYOTY M, KUDO R, PUNNONEN R: Antioxidant enzyme activities and oxidative stress in human breast cancer. Cancer Res. Clin. Oncol. (1994) 120:374–377.
  • LEHTOLA K, LAURIKAINEN L, LEINO L, AHOTUPA M, PUNNONEN K: Antioxidant enzymes are elevated in dimethylbenz [a] anthracene-induced neoplastic murine keratinocytes containing an active rasHa oncogene. ./. Cancer Res. Clin. Oncol. (1995) 121:402–406.
  • ISHIKAWA M, YAGINUMA Y, HAYASHIH, SHIMIZU T, ENDO Y, TANIGUCHI N: Reactivity of a monoclonal antibody to manganese superoxide dismutase with human ovarian carcinoma. Cancer Res. (1990) 50:2538–2542.
  • COBBS CS, LEVI DS, ALDAPE K, ISRAEL MA: Manganese superoxide dismutase expression in human central nervous system tumours. Cancer Res. (1996) 56:3192–3195.
  • YOSHII Y, SAITO A, ZHAO DW, NOSE T: Copper/zinc superoxide dismutase, nuclear DNA content, and progression in human gliomas.J. Neurooncol. (1999) 42:103–108.
  • NISHIURA T, SUZUKI K, KAWAGUCHI T et al.: Elevated serum manganese superoxide dismutase in acute leukemias. Cancer Lett. (1992) 62:211–215.
  • JUNG K, SEIDEL B, RUDOLPH B et al:Antioxidant enzymes in malignant prostate cell lines and in primary cultured prostatic cells. Free Radic. Biol. Med. (1997) 23:127–133.
  • PREUSS M, GIRNUN GD, DARBY CJ, KHOO N, SPECTOR AA, ROBBINS ME: Role of antioxidant enzyme expression in the selective cytotoxic response of glioma cells to gamma-linolenic acid supplementation. Free Radic. Biol. Med. (2000) 28:1143–1156.
  • WESTMAN NG, MARKLUND SL: Copper- and zinc-containing superoxide dismutase and manganese-containing superoxide dismutase in human tissues and human malignant tumours. Cancer Res. (1981) 41:2962–2966.
  • HASSAN HM, DOUGHERTY H, FRIDOVICH I: Inhibitors of superoxide dismutases: a cautionary tale. Arch. Biochem. Biophys. (1980) 199:349–354.
  • RIGO A, VIGLINO P, ROTILIO G: Kinetic study of 02 dismutation by bovine superoxide dsmutase. Evidence for saturation of the catalytic sites by 0-2. Biochem. Biophys. Res. Commun. (1975) 63:1013–1018.
  • RIGO A, STEVANATO R, VIGLINO P: Competitive inhibition of Cu, Zn superoxide dismutase by monovalent anions. Biochem. Biophys. Res. Commun. (1977) 79:776–783.
  • WAMBI-KIESSE CO, KATUSIC ZS: Inhibition of copper/zinc superoxide dismutase impairs NO-mediated endothelium-dependent relaxations. Am. J Physiol. (1999) 276:H1043–H1048.
  • UKEDA H, MAEDA S, ISHII T, SAWAMURA M: Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3'-1-(phenylamino)-carbony1-3, 4-tetrazoliuml-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase. Anal. Biochem. (1997) 251:206–209.
  • KACHADOURIAN R, LIOCHEV SI, CABELLI DE, PATEL MN, FRIDOVICH I, DAY BJ: 2-Methoxyestradiol does not inhibit superoxide dismutase. Arch. Biochem. Biophys. (2001) 392:349–353.
  • D'AMATO RJ, LIN CM, FLYNN E, FOLKMAN J, HAMEL E: 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerisation by interacting at the colchicine site. Proc. Nati Acad. Sci. USA (1994) 91:3964–3968.
  • CUSHMAN M, HE HM, KATZENELLENBOGEN JA, LIN CM, HAMEL E: Synthesis, antitubulin and antimitotic activity, and cytotoxicity of analogs of 2-methoxyestradiol, an endogenous mammalian metabolite of estradiol that inhibits tubulin polymerisation by binding to the colchicine binding site. Med. Chem. (1995) 38:2041–2049.
  • MUKHOPADHYAY T, ROTH JA: Induction of apoptosis in human lung cancer cells after wild-type p53 activation by methoxyestradiol. Oncogene (1997) 14:379–384.
  • MUKHOPADHYAY T, ROTH JA: Superinduction of wild-type p53 protein after 2-methoxyestradiol treatment of Ad5p53-transduced cells induces tumour cell apoptosis. Oncogene (1998) 17:241–246.
  • YUE TL, WANG X, LOUDEN CS et al: 2-Methoxyestradiol, an endogenous oestrogen metabolite, induces apoptosis in endothelial cells and inhibits angiogenesis: possible role for stress-activated protein kinase signalling pathway and Fas expression. Mol. Pharmacol. (1997) 51:951–962.
  • FOTSIS T, ZHANG Y, PEPPER MS et al.: The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature (1994) 368.237–239.
  • REISER F, WAY D, BERNAS M, WITTE M, WITTE C: Inhibition of normal and experimental angiotumor endothelial cell proliferation and cell cycle progression by 2-methoxyestradiol. Proc. Soc. Exp. Biol. Med (1998) 219:211–216.
  • ADACHI T, NAGAE T, ITO Y, HIRANO K, SUGIURA M: Relation between cardiotoxic effect of adriamycin and superoxide anion radical.' Pharinacobiodyn. (1983) 6:114–123.
  • CASPARY WJ, NIZIAK C, LANZO DA, FRIEDMAN R, BACHUR NR: Bleomycin A2: a ferrous oxidase. Mol. Pharinacol. (1979) 16:256–260.
  • GAJEWSKI E, RAO G, NACKERDIEN Z, DIZDAROGLU M: Modification of DNA bases in mammalian chromatin by radiation-generated free radicals. Biochemistry (1990) 29:7876–7882.
  • MASUDA H, TANAKA T, TATEISHI M, NAITO M, TAMAI H: Detection and cytotoxicity of cisplatin-induced superoxide anion in monolayer cultures of a human ovarian cancer cell line. Cancer Cheinother. Pharinacol. (1901) 47:155–160.
  • RAJAGOPALAN S, POLITI PM, SINHA BK, MYERS CE: Adriamycin-induced free radical formation in the perfused rat heart: implications for cardiotoxicity. Cancer Res. (1988) 48:4766–4769.
  • YOUNG RC, OZOLS RF, MYERS CE: The anthracycline antineoplastic drugs. New Engl. J. Med. (1981) 305:139–153.
  • AMORINO GP, FREEMAN ML, CHOY H: Enhancement of radiation effects in vitro by the oestrogen metabolite 2-methoxyestradiol. Radiat. Res. (2000) 153:384–391.
  • HUOBER JB, NAKAMURA S, MEYN R, ROTH JA, MUKHOPADHYAY T: Oral administration of an oestrogen metabolite-induced potentiation of radiation antitumor effects in presence of wild-type p53 in non-small-cell lung cancer. Int. J. Radiat. Oncol Biol. Phys. (2000) 48:1127–1137.
  • CHOI CH, KIM HS, KWEON OS et al: Reactive oxygen species-specific mechanisms of drug resistance in paraquat-resistant acute myelogenous leukaemia sublines. Ma Cells (2000) 10:38–46.
  • MANTYMAA P, SIITONEN T, GUTTORM T et al: Induction of mitochondrial manganese superoxide dismutase confers resistance to apoptosis in acute myeloblastic leukaemia cells exposed to etoposide. Br. J. Haentatol (2000) 108:574–581.
  • HALLIWELL B: A super way to kill cancer cells? Nat. Med. (2000) 6:1105–1106.
  • CLEMENT MV, PERVAIZ S: Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: an hypothesis. Free Radic. Res. (1999) 30:247–252.
  • MATES JM, SANCHEZ-JIMENEZ FM: Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochein. Cell Biol. (2000) 32:157–170.
  • ZHU BT, EVARISTUS EN, ANTONIAK SK, SARABIA SF, RICCI MJ, LIEHR JG: Metabolic deglucuronidation and demethylation of oestrogen conjugates as a source of parent estrogens and catecholestrogen metabolites in Syrian hamster kidney, a target organ of oestrogen-induced tumorigenesis. Toxicol Appl. Pharinacol. (1996) 136:186-193. Affiliation

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.