70
Views
25
CrossRef citations to date
0
Altmetric
Review

Ischaemic preconditioning: therapeutic implications for stroke?

Pages 125-139 | Published online: 02 Mar 2005

Bibliography

  • MURRY CE, JENNINGS RB, REIMER KA: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation (1986) 74:1124–1236.
  • •This is the first report to describe the biological phenomenon of ischaemic preconditioning.
  • BOLLI R: Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J. Ma Cell. Cardiol. (2001) 33:1897–1918.
  • NANDAGOPAL K, DAWSON TM, DAWSON VL: Critical role for nitric oxide signaling in cardiac and neuronal ischemic preconditioning and tolerance. Pharmacol Exp. Ther. (2001) 297:474–478.
  • CUTRN JC, PERRELLI MG, CAVALIERI B, PERALTA C, ROSELL CATAFOU J, POLI G: Microvascular dysfunction induced by reperfusion injury and protective effect of ischemic preconditioning. Free Radic. Biol. Med. (2002) 33:1200–1228.
  • BONVENTRE JV: Kidney ischemic preconditioning. CLIFF. Opin. Nephrol Hjpertens. (2002) 11:43–48.
  • BAKER CS, KUMAR S, RIMOLDI OE: Effects of brief ischemia and reperfusion on the myocardium and the role of nitric oxide. Heart Fail Rev (2003) 8:127–141.
  • GROSS GJ, PEART JN: KNIT channels and myocardial preconditioning: an update. Am.Physiol. Heart ChM Physiol. (2003)285:H921–H930.
  • •A review describing the role of KATp channels in myocardial preconditioning.
  • MINNERS J, MCLEOD CJ, SACK MN: Mitochondrial plasticity in classical ischemic preconditioning - moving beyond the mitochondrial KATp channel. Cardiol Res. (2003) 59:1–6.
  • JAESCHKE H: Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am. I Physiol Gasmointest. Liver Physiol. (2003) 284:G15–G26.
  • SELZNER N, RUDIGER H, GRAF R, CLAVIEN PA: Protective strategies against ischemic injury in the liver. Gastroenterology (2003) 125:917–936.
  • KITAGAWA K, MATSUMOTO M, TAGAYA M et al.: Ischemic tolerance phenomenon found in the brain. Brain Res. (1990) 528:21–24.
  • •This is the first report showing the neuroprotective effects of ischaemic tolerance.
  • LJUNGGREN B, SCHUTZ H, SIESJO BK: Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res. (1974) 73:277–289.
  • NOWAK TS, FRIED RL, LUST WD, PASS ONNEAU JV: Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil. .1 Neurochem. (1985) 44:487–494.
  • KATO H, KOGURE K, NAKATA N, ARAKI T, ITOYAMA Y: Facilitated recovery from postischemic suppression of protein synthesis in the gerbil brain with ischemic tolerance. Thalia Res. Bull. (1995) 36:205–208.
  • KIRINO T, TSUJITA Y, TAMURA A: Induced tolerance to ischemia in gerbil hippocampal neurons. Cereb. Blood Flow Metab. (1991) 11:299–307.
  • KITAGAWA K, MATSUMOTO M, KUWABARA K et al.: Ischemic tolerance phenomenon detected in various brain regions. Brain Res. (1991) 561:203–211.
  • CHEN T, KATO H, LIU XH, ARAKI T, ITOYAMA Y, KOGURE K: Ischemic tolerance can be induced repeatedly in the gerbil hippocampal neurons. Neurosci. Lett. (1994) 177:159–161.
  • KITAGAWA K, MATSUMOTO M, MABUCHI T et al.: Ischemic tolerance in hippocampal CA1 neurons studied using contralateral controls. Neuroscience (1997) 81:989–998.
  • KITAGAWA K, MATSUMOTO M, OHTSUKI T et al.: Extended neuronal protection induced after sublethal ischemia adjacent to the area with delayed neuronal death. Neuroscience (2000) 96:141–146.
  • PEREZ-PINZON MA, XU GP, DIETRICH WD, ROSENTHAL M, SICK TJ: Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia. Cereb. Blood Flow Metab. (1997) 17:175–182.
  • DOWDEN J, CORBET D: Ischemic preconditioning in 18- to 20-month-old gerbils. Stroke (1999) 30:1240–1246.
  • •This study demonstrates IPC in aged animals, whereas most of the early studies were performed in young adult animals, which were hypothesised to be more susceptible to preconditioning than aged animals.
  • GLAZIER SS, O'ROURKE DM, GRAHAM DI, WELSH FA: Induction of ischemic tolerance following brief focal ischemia in rat brain. I Cereb. Blood Flow Metab. (1994) 14:545–553.
  • WU C, ZHAN RZ, QI S, FUJIHARA H, TAGA K, SHIM OJI K: A forebrain ischemic preconditioning model established in C57Black/Crj6 mice. Neurosci. Methods (2001) 107:101–106.
  • RESHEF A, SPERLING O, ZOREF-SHANI E: Preconditioning of primary rat neuronal cultures against ischemic injury: characterization of the 'time window of protection.' Brain Res. (1996) 741:252–257.
  • BRUER U, WEIH MK, ISAEV NK et al.: Induction of tolerance in rat cortical neurons: hypoxic preconditioning. FEBS Lett. (1997) 414:117–121.
  • KASPEKOW L, SHAMLOO M, VICTOROW I, WIELOCH T: Sublethal in vitro glucose-oxygen deprivation protects neurons against a subsequent severe insult. Neuroreport (1998) 9:1273–1276.
  • XU GP, DAVE KR, VIVERO R, SCHMIDT-KASTNER R, SICK TJ, PEREZ-PINZON MA: Improvement in neuronal survival after ischemic preconditioning in hippocampal slice cultures. Brain Res. (2002) 952:153–158.
  • MACKAY KB, STIEFEL TH, FOSTER AC: Ischemic preconditioning reduces infarct volume after subdural hematoma in the rat. Brain Res. (2002) 930:200–205.
  • CORBETT D, CROOKS P: Ischemic preconditioning: a long-term survival study using behavioral and histological endpoints. Brain Res. (1997) 760:129–136.
  • OHNO M WATANABE S: Ischemic tolerance to memory impairment associated with hippocampal neuronal damage after transient cerebral ischemia in rats. Brain Res. Bull. (1996) 40:229–236.
  • OHNO M, YAMAMOTO T, WATANABE S: Effects of intrahippocampal injections of N-methyl-D-aspartate receptor antagonists and scopolamine on working memory and reference memory assessed in rats by a three-panel runway task. Pbarinacol. Exp. The]: (1992) 263:943–950.
  • KAWAI K, NAKAGOMI T, KIRINO T, TAMURA A, KAWAI N: Preconditioning in vivo ischemic inhibits anoxic long-term potentiation and functionally protects CA1 neurons in the gerbil. Cereb. Blood Flow Metab. (1998) 18:288–296.
  • TAGA K, FUJIWARA N, SHIMOJI K: Ischemic tolerance preserves propagation of membrane depolarization. Neuroreport (2000) 11:2961–2964.
  • FARRELL R, EVANS S, CORBETT D: Environmental enrichment enhances recovery of function but exacerbates ischemic cell death. Neuroscience (2001) 107:585–592.
  • ••Demonstration that environmentalenrichment can enhance functional recovery but paradoxically increases neuronal cell death.
  • RIEPE MW, NIEMI WN, MEGOW D, LUDOLPH AC, CARPENTER DO: Mitochondrial oxidation in rat hippocampus can be preconditioned by selective chemical inhibition by succinate dehydrogenase. Exp. Neurol (1996a) 138:15–21.
  • RIEPE MW, KASISCHKE K, GERICKE CA, LOWE A, HELLWEG R: Increase of hypoxic tolerance in rat hippocampal slices following 3-nitropropionic acid is not mediated by endogenous nerve growth factor. Neurosci. Lett. (1996b) 211:9–12.
  • RIEPE MW, ESCLAIRE F, KASISCHKE K et al.: Increased hypoxic tolerance by chemic inhibition of oxidative phosphorylation: chemical preconditioning. Cereb. Blood Flow Metab. (1997) 17:257–264.
  • AKETA S, NAKASE H, KAMADA Y, HIRAMASTU KI, SAKAKI T: Chemical preconditioning with 3-nitropropionic acid in gerbil hippocampal slices: therapeutic window and the participation of adenosine receptor. Exp. Neurol (2000) 166:385–391.
  • MARUOKA N, MURATA T, OMATA N, FUJIBAYASHI Y, YONEKURA Y, WADA Y: Hypoxic tolerance induction in rat brain slices following 3-nitropropionic acid pretreatment as revealed by dynamic changes in glucose metabolism. NeuroscL Lett. (2002) 319:83–86.
  • NAKAGAWA I, NAKASE H, AKETA S, KAMADA Y, YAMASHITA M, SAKAKI T: ATP-dependent potassium channel mediates neuroprotection by chemical preconditioning with 3-nitropropionic acid in gerbil hippocampus. Neurosci. Lett. (2002) 320:33–36.
  • WEIH M, BERGK A, ISAEV NK et al: Induction of ischemic tolerance in rat cortical neurons by 3-nitropropionic acid: chemical preconditioning. Neurosci. Lett. (1999) 272:207–210.
  • SUGINO T, NOZAKI K, TAKAGI Y, HASHIMOTO N: 3-nitropropionic acid induces ischemic tolerance in gerbil hippocampus in vivo. Neurosci. Lett. (1999) 259:9–12.
  • GARNIER P, BERTRAND N, DEMOUGEOT C, PRIGENT-TESSIER A, MARIE C, BELEY A: Chemical preconditioning with 3-nitropropionic acid: lack of induction of neuronal tolerance in gerbil hippocampus subjected to transient forebrain ischemia. Brain Res. Bull. (2002) 58:33–39.
  • KUROIWA T, YAMADA I, ENDO S, HAKAMATA Y, ITO U: 3-nitropropionic acid preconditioning ameliorates delayed neurological deterioration and infarction after transient focal cerebral ischemia in gerbils. Neurosci. Lett. (2000) 283:145–148.
  • NAKASE H, HEIMANN A, URANISHI R, RIEPE MW, KEMPSKI O: Early-onset tolerance in rat global cerebral ischemia induced by a mitochondrial inhibitor. Neurosci. Lett. (2000) 290:105–108.
  • HORIGUCHI T, KIS B, RAJAPAKSE N, SHIMIZU K, BUSIJA DW: Opening of mitochondrial ATP-sensitive potassium channels is a trigger of 3-nitropropionic acid-induced tolerance to transient focal cerebral ischemia in rats. Stroke (2003) 34:1015–1020.
  • GRABB MC, LOBNER D, TURETSKI DM, CHOI DW: Preconditioned resistance to oxygen-glucose deprivation-induced cortical neuronal death: alterations in vesicular GABA and glutamate release. Neuroscience (2002) 115:173–183.
  • SOMMER C, FAHRNER A, KIESSLING M: Postischemic neuroprotection in the ischemic-tolerance state gerbil hippocampus is associated with increased ligand binding to inhibitory GAB-AA receptors. Acta Neuropathol (2003) 105:197–202.
  • SOMMER C, FAHRNER A, KIESSLING M: PH] Muscimol binding to y-aminobutyric acidA receptors is upregulated in CA1 neurons of the gerbil hippocampus in the ischemia-tolerant state. Stroke (2002) 33: 1698-1705.
  • XIE J, LU G, HOU Y: Role of excitatory amino acids in hypoxic preconditioning. Biol. Signals Recept. (1999) 8:267–274.
  • YING HS, WEISHAUPT JH, GRABB M et al.: Sublethal oxygen-glucose deprivation alters hippocampal neuronal AMPA receptor expression and vulnerability to kainite-induced death. J. Neurosci. (1997) 17:9536–9544.
  • YAMAGUCHI K, YAMAGUCHI F, MIYAMOTO O, HATASE O, TOKUDA M: The reversible change of G1uR2 RNA editing in gerbil hippocampus in course of ischemic tolerance. Cereb. Blood Flow Metab. (1999) 19:370–375.
  • ALSBO CW, WRANG ML, JOHANSEN FE DIEMER NH: Quantitative PCR analysis of AMPA receptor composition in two paradigms of global ischemia. Neuroreport (2000a) 11:311–315.
  • ALSBO CW, WRANG ML, NIELSEN M, DIEMER NH: Ischemic tolerance affects the adenylation state of G1uR2 mRNA. Neuroreport (2000b) 11:3279–3282.
  • KJOLLER C, DIEMER NH: G1uR2 protein synthesis and metabolism in rat hippocampus following transient ischemic and ischemic tolerance induction. Neurochern. mt. (2000) 37:7–15.
  • ALSBO CW, WRANG ML, MOLLER F, DIEMER NH: Is the AMPA receptor subunit G1uR2 mRNA an early indicator of cell fate after ischemia? A quantitative single cell RT-PCR study. Brain Res. (2001) 894:101–108.
  • SOMMER C, KIESSLING M: Ischemia and ischemic tolerance induction differentially regulate protein expression of G1uR1, G1uR2, and AMPA receptor binding protein in the gerbil hippocampus. G1uR2 (GluR-B) reduction does not predict neuronal death. Stroke (2002) 33:1093–1100.
  • TANAKA H, CALDERONE A, JOVER T et al.: Ischemic preconditioning acts upstream of G1uR2 down-regulation to afford neuroprotection in the hippocampal CAl. Proc. Natl. Acad. Sci. USA (2002) 99:2362–2367.
  • CALDERONE A, JOVER T, NOH KM et al.: Ischemic insults derepress the gene silencer REST in neurons destined to die. Neurosci. (2003) 23:2112–2121.
  • TAUSKELA JS, CHAKRAVARTHY BR, MURRAY CL et al.: Evidence from cultured rat cortical neurons of differences in the mechanism of ischemic preconditioning of brain and heart. Brain Res. (1999) 827:143–151.
  • SHAMLOO M, WIELOCH T: Changes in protein tyrosine phosphorylation in the rat brain after cerebral ischemia in a model of ischemic tolerance. Cereb. Blood Flow Metab. (1999) 19:173–183.
  • BOND A, LODGE D, HICKS CA, WARD MA, O'NEILL MJ: NMDA receptor antagonism, but not AMPA receptor antagonism attenuates induced ischemic tolerance in the gerbil hippocampus. Eur: I Phannacol (1999) 380:91–99.
  • GRABB M, CHOI DW: Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J. Neurosci. (1999) 19:1657–1662.
  • TAUSKELA JS, HEWITT CK, MONETTE R: Cross-tolerance to otherwise lethal N-methyl-D-aspartate and oxygen-glucose deprivation in preconditioned cortical cultures. Neuroscience (2001) 107:571–584.
  • SEMENOW DG, SAMOILOV MO, LAZARWICZ JW: Calcium transients in the model of rapidly induced anoxic tolerance in rat cortical slices: involvement of NMDA receptors. Neurosignals (2002) 11:329–335.
  • RAVAL AP, DAVE KR, MOCHLY-ROSEN D, SICK TJ, PEREZ-PINZON MA: EPKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. Neurosci. (2003) 23:384–391.
  • VAN WINKLE DM, THORNTON J, DOWNEY JM: Cardioprotection from ischemic preconditioning is lost following prolonged reperfusion in the rabbit. Coron. Artery Dis. (1991) 2:613–619.
  • TSUCHIDA A, YANG XM, BURCKHARTT B, MULLANE MK, COHEN MV, DOWNEY JM: Acadesine extends the window of protection afforded by ischemic preconditioning. Cardiovasc. Res. (1994) 28:379–383.
  • MARBER MS, LATCHMAN DS, WALKER JM, YELLON DM: Cardiac stress protein elevation 24 hours following brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation (1993) 88:1264–1272.
  • YELLON DM, BASTER GF: A second window of protection or delayed preconditioning phenomenon: future horizons for myocardial protection? J. Ma Cell. Cardiol. (1995) 27:1023–1034.
  • •A review describing the delayed, longer-lasting window of protection induced by preconditioning.
  • HEURTEAUX C, LAURITZEN I, WIDMANN C, LAZDUNSKI M: Essential role of adenosine, adenosine Al receptors, and ATP-sensitive K.' channels in cerebral ischemic preconditioning. Proc. Nati Acad. Sci. USA (1995) 92:4666–4670.
  • ••An excellent study describing therequirement of an adenosine signalling cascade in cerebral IPC.
  • PLAMONDON H, BLONDEAU N, HEURTEAUX C, LAZDUNSKI M: Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and KATp channels. Cereb. Blood Flow Metab. (1999) 19:1296–1308.
  • RESHEF A, SPERLING O, ZOREF-SHANI E: Opening of KATp channels is mandatory for acquisition of ischemic tolerance by adenosine. Neuroreport (2000) 11:463–465.
  • CAPARRELLI DJ, CATTANEO SM, BETHEA BT et al.: Pharmacological preconditioning ameliorates neurological injury in a model of spinal cord ischemia. Ann. Thome. Surg. (2002) 74:838–844.
  • SHAKE JG, PECK EA, MARBAN E et al.:Pharmacologically induced preconditioning with diazoxide: a novel approach to brain protection. Ann. Thome. Surg. (2001) 72:1849–1854.
  • BLONDEAU N, WIDMANN C, LAZDUNSKI M, HEURTEAUX C: Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience (2002) 109:231–241.
  • •An interesting study describing the cellular relationship between KATp channels and polyunsaturated fatty acids.
  • MUNOZ A, NAKAZAKI M, GOODMAN IC et al.: Ischemic preconditioning in the hippocampus of a knockout mouse lacking SUR1-based KNIT channels. Stroke (2003) 34:164–170.
  • LIU D, LU C, WAN R, AUYEUNG WW, MATTSON MP: Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of bax translocation and cytochrome c release. Cereb. Blood Flow Metab. (2002) 22:431–443.
  • RESHEF A, SPERLING O, ZOREF-SHANI E: Preconditioning of primary rat neuronal cultures against ischemic injury: characterization of the time window of protection. Brain Res. (1996) 741:252–257.
  • SIMS NR, ANDERSON MF: Mitochondrial contributions to tissue damage in stroke. Neurochein. Lir (2000) 40:511–526.
  • KATAYAMA Y, MURAMATSU H, KAMIYA T, MCKEE A, TERASHI A: Ischemic tolerance phenomenon from an approach of energy metabolism and the mitochondrial enzyme activity of pyruvate dehydrogenase in gerbils. Brain Res. (1997) 746:126–132.
  • DAVE KR, SAUL I, BUSTO R, GINSBERG MD, SICK TI, PEREZ-PINZON MA: Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus. I Cereb. Blood Flow Metab. (2001) 21:1401–1410.
  • ZHANG HX, DU GH, ZHANG IT: Ischemic preconditioning preserves brain mitochondrial functions during the middle cerebral artery occlusion in rat. Neurol. Res. (2003) 25:471–476.
  • MATTSON MP: Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. (2003) 3:65–94.
  • ••A number of cellular targets suitable fortherapeutic intervention in the treatment of neurodegenerative disorders are discussed in this review.
  • SHIMAZAKI K, ISHIDA A, KAWAI N: Increase in bc1-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus. Neurosci. Res. (1994) 20:95–99.
  • BRAMBRINK AM, SCHNEIDER A, NOGA H et al.: Tolerance-inducing dose of 3-nitropropionic acid modulates bc1-2 and bax balance in the rat brain: a potential mechanism of chemical preconditioning. Cereb. Blood Flow Metab. (2000) 20:1425–1436.
  • WADA K, MIYAZAWA T, NOMURA N et al.: Mn-SOD and bc1-2 expression after repeated hyperbaric oxygenation. Acta Neurochir. Suppl. (2000) 76:285–290.
  • WU C, FUJIHARA H, YAO J et al: Different expression patterns of bc1-2, bcl-xl, and bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse striatum. Stroke (2003) 34: 1803-1808.
  • SHIMIZU S, NAGAYAMA T, JIN KL et al.: bc1-2 antisense treatment prevents induction of tolerance to focal ischemia in the rat brain. I Cereb. Blood Flow Metab. (2001) 21:233–243.
  • NAKATSUKA H, OHTA S, TANAKA J et al.: Cytochrome c release from mitochondria to the cytosol was suppressed in the ischemia-tolerance-induced hippocampal CA1 region after 5-minute forebrain ischemia in gerbils. Neurosci. Lett. (2000) 278:53–56.
  • ZHAN RZ, WU C, FUJIHARA H et al: Both caspase-dependent and caspase-independent pathways may be involved in hippocampal CA1 neuronal death because of loss of cytochrome c from mitochondria in a rat forebrain ischemia model. I. Cereb. Blood Flow Metab. (2001) 21:529–540.
  • ZHAN RZ, FUJIHARA H, BABA H, YAMAKURA T, SHIM 011 K: Ischemic preconditioning is capable of inducing mitochondrial tolerance in the rat brain. Anesthesiology (2002) 97:896–901.
  • QI S, ZHAN RZ, WU C et al: Sublethal cerebral ischemia inhibits caspase-3 activation induced by subsequent prolonged ischemia in the C57Black/Crj6 strain mouse. Neurosci. Lett. (2001) 315:133–136.
  • MCLAUGHLIN BA, HARTNETT KA, ERHARDT IA et al.: Caspase 3 activation is essential for neuroprotection in preconditioning. Proc. Nati Acad. Sri. USA (2003) 100:715–720.
  • ••An excellent study describing the required activation of caspase-3 to induce neuroprotection following IPC.
  • GARNIER P, YING W, SWANSON RA: Ischemic preconditioning by caspase cleavage of poly(ADP-ribose) polymerase-1. Neurosci. (2003) 23:7967–7973.
  • ••An excellent study describing therequirement of caspase-3 and the subsequent cleavage of PARP in IPC.
  • MORI T, MURAMATSU H, MATSUI T, MCKEE A, ASANO T: Possible role of the superoxide anion in the development of neuronal tolerance following ischemic preconditioning in rats. Neuropathol. Appl. Neurobiol. (2000) 26:31–40.
  • RAVATI A, AHLEMEYER B, BECKER A, KRIEGLSTEIN J: Preconditioning-induced neuroprotection is mediated by reactive oxygen species. Brain Res. (2000) 866:23–32.
  • LIU T, CLARK RK, MCDONNELL PC et al.: Tumor necrosis factor-a expression in ischemic neurons. Stroke (1994) 25:1481–1488.
  • BUTTINI M, APPEL K, SAUTER A, BEGICKE-HAERTER PJ, BODDEKE HW: Expression of tumor necrosis factor a after focal cerebral ischemia in the rat. Neuroscience (1996) 7:1–16.
  • JEAN WC, SPELLMAN SR, MUSSBAUM ES, LOW WC: Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery (1998) 43:1382–1396.
  • TOUSANI O, BOUTIN H, CHUQUETJ, ROTHWELL N: Potential mechanisms of interleukin-1 involvement in cerebral ischemia. I Neuroinonunol. (1999) 100:203–215.
  • BARONE FC, FEUERSTEIN GZ: Inflammatory mediators and stroke: new opportunities for novel therapeutics. Cereb. Blood Flow Metab. (1999) 19:819–834.
  • DOWNEN M, AMARAL TD, HUA LL, ZHAO ML, LEE SC: Neuronal death in cytokine-activated primary human brain cell culture: role of tumor necrosis factor-a. Clia (1999) 28:114–127.
  • STOLL G, JANDER S, SCHROETER M: Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv. Exp. Med. Biol. (2002) 513:87–113.
  • LODDICK SA, ROTH WELL NJ: Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal ischemia in the rat. Cereb. Blood Flow Metab. (1996) 16:932–940.
  • RELTON JK, MARTIN D, THOMPSON RC, RUSSELL DA: Peripheral administration of interleukin receptor antagonist-1 inhibits brain damage after focal cerebral ischemia in the rat. Exp. Neurol (1996) 138:206–213.
  • PROBERT L, AKASSOGLOU K, KASSIOTIS G, PASPARAKIS M, ALEXOPOULOU L, KOLLIAS G: TNF-a transgenic and knockout models of CNS inflammation and degeneration. Neuroiininunol (1997) 72:137–141.
  • OHTSUKI T, RUETZLER CA, TASAKI K, HALLENBECK JM: Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. I Cereb. Blood Flow Metab. (1996) 16:1137–1142.
  • LI X, WANG X: Application of real-time polymerase chain reaction for the quantitation of interleukin-113 mRNA upregulation in brain ischemic tolerance. Brain Res. Protoc. (2000) 5:211–217.
  • WANG X, LI X, CURRIE RW, WILLETE RN, BARONE FC, FEUERSTEIN GZ: Application of real-time polymerase chain reaction to quantitate induced expression of interleukin-1I3 mRNA in ischemic brain tolerance.' Neurosci. Res. (2000) 59:238–246.
  • BARONE FC, WHITE RE SPERA PA et al.: Ischemic preconditioning and brain tolerance: temporal histological and function outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist an early gene expression. Stroke (1998) 29:1937–1951.
  • NAWASHIRO H, TASAKI K, RUETZLER CA, HALLENBECK JM: TNF-a pretreatment induces protective effects against focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. (1997) 17:483–490.
  • WANG X, LI X, ERHARDT JA, BARONE FC, FEUERSTEIN GZ: Detection of tumor necrosis factor-a mRNA induction in ischemic brain tolerance by means of real-time polymerase chain reaction.' Cereb. Blood Flow Metab. (2000) 20:15–20.
  • LIU J, GINIS I, SPATZ M, HALLENBECK JM: Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-a and ceramide. Am. I Physiol Cell Physiol (2000) 278:C144–C153.
  • GINIS I, JAISWAL R, KLIMANIS D, LIU J, GREENSPON J, HALLENBECK JM: TNF-a-induced tolerance to ischemic injury involves differential control of NF-icB transactivation: the role of NF-icB association with p300 adaptor. Cereb. Blood Flow Metab. (2002) 22:142–152.
  • KATO H, KOGURE K, ARAKI T, ITOYAMA Y: Astroglial and microglial reactions in the gerbil hippocampus with induced ischemic tolerance. Brain Res. (1994) 664:69–76.
  • PEREZ-PINZON MA, VITRO TM, DIETRICH WD, SICK TJ: The effect of rapid preconditioning on the microglia, astrocytic, and neuronal consequences of global cerebral ischemia. Acta Neuropathol (1999) 97:495–501.
  • KATO H, KOGURE K, ARAKI T, ITOYAMA Y: Graded expression of immunomolecules on activated microglia in the hippocampus following ischemia in a rat model of ischemic tolerance. Brain Res. (1995a)694:85–93.
  • KATO H, KOGURE K, ARAKI T, ITOYAMA Y: Induction of Jun-like immunoreactivity in astrocytes in gerbil hippocampus with ischemic tolerance. Neurosci. Lett. (1995b) 189:13–16.
  • LIU J, BARTELS M, LU A, SHARP FR: Microglia/macrophages proliferate in striatum and neocortex but not in hippocampus after brief global ischemia that produces ischemic tolerance in gerbil brain. Cereb. Blood Flow Metab. (2001) 21:361–373.
  • LESSMAN V, GOTTMANN K, MALCANGIO M: Neurotrophin secretion: current facts and future prospects. Frog. Neurobiol (2003) 69:341–374.
  • ••An excellent review describing the currentfield of neurotrophic factors and their therapeutic utility.
  • YAMAMOTO N, TAMADA A, MURAKAMI F: Wiring of the brain by a range of guidance cues. Frog. Neurobiol (2002) 68:393–407.
  • KERSCHENSTEINER M, STADELMANN C, DECHANT G, WEKERLE H, HOHLFELD R: Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann. Neurol (2003) 53:292–304.
  • KRUTTGEN A, SAXENA S, EVANGELOPOULOS ME, WEIS J: Neurotrophins and neurodegenerative diseases: receptors stuck in traffic? Neuropathol Exp. Neurol (2003) 62:340–350.
  • SAKAKI T, YAMADA K, OTSUKI H, YUGUCHI T, KOHMURA E, HAYAKAWA T: Brief exposure to hypoxia induces bEGF mRNA and protein and protects rat cortical neurons from prolonged hypoxic stress. Neurosci. Res. (1995) 23:289–296.
  • MATSUSHIMA K, HOGAN MJ, HAKIM AM: Cortical spreading depression protects against subsequent focal cerebral ischemia in rats. I Cereb. Blood Flow Metab. (1996) 16:221–226.
  • MATSUSHIMA K, SCHMIDT-KASTNER R, HOGAN MJ, HAKIM AM: Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia. Brain Res. (1998) 807:47–60.
  • TRUETTNERJ, BUSTO R, ZHAO W, GINSBERG MD, PEREZ-PINZON MA: Effect of ischemic preconditioning on the expression of putative neuroprotective genes in the rat brain. Brain Res. Ma Brain Res. (2002) 103:106–115.
  • CHONG ZZ, KANG JQ, MAIESE K: Hematopoietic factor erythropoietin fosters neuroprotection through novel signal transduction cascades. Cereb. Blood Flow Metab. (2002) 22:503–514.
  • KONISHI Y, CHUI DH, HIROSE H, KUNISHITA T, TABIRA T: Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res. (1993) 609:29–35.
  • TABIRA T, KONISHI Y, GALLYAS F: Neurotrophic effect of hematopoietic cytokines on cholinergic and other neurons in vitro. Int. J. Dev. Neurarci (1995) 13:241–252.
  • LING ZD, POTTER ED, LIPTON JW, CARVEY PM: Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp. Neurol (1998) 149:441–423.
  • STUDER L, CSETE M, LEE SH et al.: Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. Neurosci. (2000) 20:7377–7383.
  • SHINGO T, SOROKAN ST, SIMAZAKI T, WEISS S: Erythropoietin regulates the M vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. Neurosci. (2001) 21:9733–9743.
  • LEE JY, KOH HC, CHANG MY, PARK CH, LEE YS, LEE SH: Erythropoietin and bone morphogenetic protein 7 mediate ascorbate-induced dopaminergic differentiation from embryonic mesencephalic precursors. Neuroreport (2003) 14:1401–1404.
  • MORISHITA E, MASUDA S, NAGAO M, YASUDA Y, SASAKI R: Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons and erythropoietin prevents M vitro glutamate-induced neuronal death. Neuroscience (1997) 76:105–116.
  • KAWAKAMI M, SEKIGUCHI M, SATO K, KOZAKI S, TAKAHASHI M: Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. Biol. Chem. (2001) 276:39469–39475.
  • SINOR AD, GREENBERG DA: Erythropoietin protects cultured cortical neurons, but not astroglia, from hypoxia and AMPA toxicity. Neurosci. Lett. (2000) 290:213–215.
  • LEWCZUK P, HASSELBLAT M, KAMROWSKI-KRUCK H et al: Survival of hippocampal neurons in culture upon hypoxia: effect of erythropoietin. Neuroreport (2000) 11:3485–3488.
  • SAKANAKA M, WEN TC, MATSUDA S et al.: hi vivo evidence that erythropoietin protects neurons from ischemic damage. Proc. Natl. Acad. Sci. USA (1998) 95:4635–4640.
  • BERNAUDIN M, MARTI HH, ROUSSEL S et al.: A potential role for erythropoietin in focal permanent cerebral ischemia in mice. Cereb. Blood Flow Metab. (1999) 19:643–651.
  • CALAPAI G, MARCIANO MC, CORICA F et al.: Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur. Pharmacol (2000) 401:349–356.
  • SIREN AL, FRATELLI M, BRINES M et al.: Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc. Natl Acad. Sci. USA (2001) 98:4044–4049.
  • WEN TC, SADAMOTO Y, TANAKA J et al.: Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up-regulating Bc1-xL expression. J. Neurosci. Res. (2002) 67:795–803.
  • BERNAUDIN M, TANG Y, REILLY M, PETIT E, SHARP FR: Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Biol. Chem. (2002) 277:39728–29738.
  • RUSCHER K, FREYER D, KARSCH M et al.: Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an M vitro model. Neurosci. (2002) 22:10291–10301.
  • PRASS K, RUSCHER K, KARSCH M et al.: Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and M vitro. I Cereb. Blood Flow Metab. (2002) 22:520–525.
  • PRASS K, SCHARFF A, RUSCHER K et al.: Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke (2003) 34:1981–1986.
  • MAULIK N, WATANABE M, ZU YL et al.: Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett. (1996) 396:233–237.
  • HAQ SEA, CLERK A, SUGDEN PH: Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by adenosine in the perfused rat heart. FEBS Lett. (1998) 434:305–308.
  • TAUSKELA JS, CHAKRAVARTHY BR, MURRAY CL et al.: Evidence from cultured rat cortical neurons of differences in the mechanism of ischemic preconditioning of brain and heart. Brain Res. (1999) 827:143–151.
  • GONZALES-GULUETA M, FELDMAN AB, KLESSE LJ et al: Requirement for nitric oxide activation of p2lras/extracellular regulated kinase in neuronal ischemic preconditioning. Proc. Natl. Acad. Sci. USA (2000) 97:436–441.
  • SHAMLOO M, RYTTER A, WIELOCH T: Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning. Neuroscience (1999) 93:81–88.
  • GU Z, JIANG Q, ZHANG G, CUI Z, ZHU Z: Diphosphorylation of extracellular signal-regulated kinases and c-Jun N-terminal protein kinases in brain ischemic tolerance in rat. Brain Res. (2000) 860:157–160.
  • GU Z, JIANG Q, ZHANG G: Extracellular signal-regulated kinase and c-Jun N-terminal protein kinase in ischemic tolerance. Neuroreport (2001) 12:3487–3491.
  • CHOW AK, THOMPSON CS, HOGAN MJ, BANNER D, SOBOURIN LA, HAKIM AM: Cortical spreading depression transiently activates MAP kinases. Brain Res. MM. Brain Res. (2002) 99:75–81.
  • JIANG Y, WU J, HUA Y et al: Thrombin-receptor activation and thrombin-induced brain tolerance. Cereb. Blood Flow Metab. (2002) 44:404–410.
  • SUGINO T, NOZAKI K, HASHIMOTO N: Activation of mitogen-activated protein kinases in gerbil hippocampus with ischemic tolerance induced by 3-nitropropionic acid. Neurosci. Lett. (2000) 278:101–104.
  • YANO S, MORIOKA M, FUKUNAGA K et al.: Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. I Cereb. Blood Flow Metab. (2001) 21:351–360.
  • HAYASHI T, SAITO A, OKUNO S, FERRAND-DRAKE M, CHAN PH: Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. Cereb. Blood Flow Metab. (2003) 23:949–961.
  • ABE H, NOWAK TS: Postischemic temperature as a modulator of the stress response in brain: dissociation of heat shock protein 72 induction from ischemic tolerance after bilateral carotid artery occlusion in the gerbil. Neurosci. Lett. (2000) 295:54–58.
  • NISHI S, TAKI W, UEMURA Y et al: Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model. Brain Res. (1993) 615:281–288.
  • CURRIE RW, ELLISON JA, WHITE RF, FEUERSTEIN GZ, WANG X, BARONE FC: Benign focal ischemic preconditioning induces neuronal HSP70 and prolonged astrogliosis with expression of HSP27. Brain Res. (2000) 863:169–181.
  • RESHEF A, CAPUA ND, SPERLING O, ZOREF-SHANI E: Ischemic tolerance conferred to cultured rat neurons by heat shock is not mediated by opening of adenosine triphosphate-sensitive potassium channels. Neurosci. Lett. (2000) 287:223–226.
  • YU ZF, MATTSON MP: Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. Neurosci. Res. (1999) 57:830–839.
  • KATO H, ARAKII T, ITOYAMA Y, KOGURE K, KATO K: An immunohistochemical study of heat shock protein-27 in the hippocampus in a gerbil model of cerebral ischemia and ischemic tolerance. Neuroscience (1995) 68:65–71.
  • VALENTIM LM, GEYER AB, TAVARES H et al.: Effects of global cerebral ischemia and preconditioning on heat shock protein 27 immunocontent and phosphorylation in rat hippocampus. Neuroscience (2001) 107:43–49.
  • TANAKA S, KITAGAWA K, OHTSUKI T et al.: Synergistic induction of HSP40 and HSC70 in the mouse hippocampal neurons after cerebral ischemia and ischemic tolerance in gerbil hippocampus. Neurosci. Res. (2002) 67:37–47.
  • YAGITA Y, KITAGAWA K, OHTSUKI T, TANAKA S, HORI M, MATSUMOTO M: Induction of HSP110/105 family in the rat hippocampus in cerebral ischemia and ischemic tolerance.' Cereb. Blood Flow Metab. (2001) 21:811–819.
  • KATO H, CHEN T, LIU XH, NAKATA N, KOGURE K: Immunohistochemical localization of ubiquitin in gerbil hippocampus with induced tolerance to ischemia. Brain Res. (1993) 619:339–343.
  • IDE T, TAKADA K, QIU JH et al: Ubiquitin stress response in postischemic hippocampal neurons under nontolerant and tolerant conditions.' Cereb. Blood Flow Metab. (1999) 19:750–756.
  • KO HS, UEHARA T, NOMURA Y: Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death.' Biol. Chem. (2002) 277:35386–35392.
  • SONG Z, STELLER H: Death by design: mechanism and control of apoptosis. Trends Cell Biol (1999) 9:49–52.
  • ROBERTSON GS, CROCKER SJ, NICHOLSON DW, SCHULZ JB: Neuroprotection by the inhibition of apoptosis. Brain Pathol (2000) 10:283–292.
  • FERRER I, PLANAS AM: Signaling of cell death and cell survival following ocal cerebral ischemia: life and death struggle in the penumbra. Neuropathol Exp. Nemo]. (2003) 62:329–339.
  • FLOYD RA, HENSLEY K: Oxidative stress in brain aging: implications for therapeutics of neurodegenerative diseases. Neurobiol Aging (2002) 23:795–807.
  • PONG K: Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin. Biol. Titer. (2003) 3:127–139.
  • FEUERSTEIN GZ, WANG X, BARONE FC: Inflammatory gene expression in cerebral ischemia and trauma. Potential new therapeutic targets. Ann. NY Acad. Sci. (1997) 15:179–193.
  • FEUERSTEIN GZ, WANG X, BARONE FC: The role of cytokines in the neuropathology of stroke and neurotrauma. Neuroimmunomodulation (1998) 5:143–159.
  • DEL ZOPPO G, GINIS I, HALLEN BECK JM, IADECOLA C, WANG X, FEUERSTEIN GZ: Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol (2000) 10:95–112.
  • DEL ZOPPO G, BECKER KJ, HALLENBECK JM: Inflammation after stroke: is it harmful? Arch. Neurol (2001) 58:669–672.
  • ••An excellent overview of inflammationafter stroke.
  • CLARK WM, LUTSEP HL: Potential of anticytokine therapies in central nervous system ischemia. Expert Opin. Biol. The]: (2001) 1:227–237.
  • EMSLEY HC, TYRRELL PJ: Inflammation and infection in clinical stroke. I Cereb. Blood Flow Metab. (2002) 22:1399–1419.
  • HALLENBECK JM: The many faces of tumor necrosis factor in stroke. Nat. Med. (2002) 8:1363–1368.
  • ••An excellent overview of TNF-a in stroke.
  • WYSS-CORAY T, MUCKE L: Inflammation in neurodegenerative disease - a double-edged sword. Neuron (2002) 35:419–432.
  • DICHTER MA, LOCKE RE: Clinical trials in neuroprotection. Expert Opin. Emerg. Drugs (2003) 8:267–271.
  • LEGOS JJ, TUMA RF, BARONE FC: Pharmacological interventions for stroke: failures and future. Expert Opin. Investig. Drugs (2002) 11:603–614.
  • WEGENER S, GOTTSCHALK B, JOVANOVIC V et al.: Transient ischemic attacks before ischemic stroke: preconditioning the human brain? Stroke (2004) 35:616–621.
  • ••An excellent clinical demonstration of theneuroprotective effects of TIAs on subsequent ischaemic attacks in the human brain.
  • ABBRACCHIO MP, CATTABENI F: Brain adenosine receptors as targets for therapeutic intervention in neurodegenerative diseases. Ann. NY Acad. Sri (1999) 890:79–92.
  • ••An excellent overview of adenosine receptors as therapeutic targets in the treatment of neurodegenerative diseases.
  • SZEWCZYK A, MARBAN E: Mitochondria: a new target for K.' channel openers? Trends Pharmacol Sci. (1999) 20:157–161.
  • MATTSON MP, LIU D: Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem. Biophys. Res. Commun. (2003) 304:539–549.
  • HEALES SJ, BOLANOS JP, STEWART VC, BROOKES PS, LAND JM: Nitric oxide, mitochondria, and neurological disease. Biochim. Biophys. Acta (1999) 9:215–228.
  • MATTSON MP, CULMSEE C, YU ZF: Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. (2000) 301:173–187.
  • FRIBERG H, WIELOCH T: Mitochondrial permeability transition in acute neurodegeneration. Biochimie (2002) 84:241–450.
  • RAO AV, BALACHANDRAN B: Role of oxidative stress and antioxidants in neurodegenerative diseases. Num. Neurosci. (2002) 5:291–309.
  • BARONE FC, IRVING EA, RAY AM et al: Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med. Res. Rev (2001) 21:129–145.
  • HARPER SJ, WILKIE N: MAPKs: new targets for neurodegeneration. Expert Opin. Ther. Targets (2003) 7:187–200.
  • SKAPER SD, WALSH FS: Neurotrophic molecules: strategies for designing effective therapeutic molecules in neurodegeneration. MM. Cell. Neurosci. (1998) 12:179–193.
  • SEMKOVA I, KRIEGLSTEIN J: Neuroprotection mediated via neurotrophic factors: and induction of neurotrophic factors. Brain Res. Rev. (1999) 30:176–188.
  • XIE Y, LONGO FM: Neurotrophin small-molecule mimetics. Frog. Brain Res. (2000) 128:333–347.
  • ABE K: Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. Cereb. Blood Dow Metab. (2000) 20:1393–1408.
  • POLLACK SJ, HARPER SJ: Small molecule trk receptor agonists and other neurotrophic factor mimetics. Carr. Drag Target. CNS Neara DiSOrd. (2002) 1:59–80.
  • PARDRIDGE WM: Neurotrophins, neuroprotection and blood-brain barrier. Curt: Opin. Investig. Drugs (2002) 3:1753–1757.
  • OVBIAGELE B, KIDWELL CS, STARKMAN S, SAVER JL: Neuroprotective agents for the treatment of acute ischemic stroke. Curc Neurol. Neurosci. Rep. (2003) 3:9–20.
  • CAIRNS K, FINKLESTEIN SP: Growth factors and stem cells and treatments for stroke recovery. Phys. Med. Rehab:a. Clin. N Am. (2003) 14:S135–S142.
  • DAWBARN D, ALLEN SJ: Neurotrophins and neurodegeneration. Neuropathol Appl Neurobiol (2003) 29:211–230.
  • SIREN AL, EHRENREICH H: Erythropoietin: a novel concept for neuroprotection. Eur. Arch. Psychiatry Clin. Neurosci. (2001) 251:179–184.
  • DAWSON TM: Preconditioning-mediated neuroprotection through erythropoietin? Lancet (2002) 359:96–97.
  • CERAMI A, BRINES M, GHEZZI P, CERAMI C, ITRI LM: Neuroprotective properties of epoetin alfa. Nephrol. Dial. Transplant. (2002) 17:8–12.
  • BRINES M: What evidence supports use of erythropoietin as a novel neurotherapeutic? Oncology (Duntingt) (2002) 16:79–89.
  • EID T, BRINES M: Recombinant human erythropoietin for neuroprotection. What is the evidence? Clin. Breast Cancer (2002) 3:S109–S115.
  • TATSUNO I, MORIO H, TANAKA T et al.: Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulator of astrocytes: PACAP stimulates proliferation and production of interleukin 6 (IL-6), but not nerve growth factor (NGF), in cultured rat astrocytes. Ann. NY Acad. Sci. (1996) 805:482–488.
  • TUSZYNSKI MH: Gene therapy for neurological disease. Expert Opin. Biol. Ther. (2003) 3:815–828.
  • BREWER GJ: Neuronal plasticity and stressor toxicity during aging. Exp. Cerontol. (2000) 35:1165–1183.
  • VILLABLANCA JR, HOVDA DA: Developmental neuroplasticity in a model of cerebral hemispherectomy and stroke. Neuroscience (2000) 95:625–637.
  • CARMICHAEL ST: Plasticity of cortical projections after stroke. Neuroscientist (2003) 9:64–75.
  • HALLETT M: Plasticity of the human motor cortex and recovery from stroke. Brain Res. Rev (2001) 36:169–174.
  • HARVEY RL, CHOPP M: The therapeutic effects of cellular therapy for functional recovery after brain injury. Phys. Med. Rehab:a. Clin. N Am. (2003) 14:143–151.
  • CHEN R, COHEN LG, HALLETT M: Nervous system reorganization following injury. Neuroscience (2002) 111:761–777.
  • KITAGAWA K, MATSUMOTO M, HORI M: Protective and regenerative response endogenously induced in the ischemic brain. Can. .1 Physial Pharmacol (2001) 79:262–265.
  • CHOPP M, LI Y: Treatment of neural injury with stromal cells. Lancet Neurol. (2002) 1:92–100.
  • MOSKOWITZ M, LO EH: Neurogenesis and apoptotic cell death. Stroke (2003) 34:324–326.
  • FELLING RJ, LEVISON SW: Enhanced neurogenesis following stroke. NeuroscL Res. (2003) 73:277–283.
  • SCHWAB ME: Increasing plasticity and functional recovery of the lesioned spinal cord. Frog. Brain Res. (2002) 137:351–359.
  • HUNT D, COFFIN RS, ANDERSON PN: The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review. .1 Neurocyta (2002) 31:93–120.
  • MCKERRACHER L, WINTON MJ: Nogo on the go. Neuron (2002) 36:345–348.
  • BANDTLOW CE: Regeneration in the central nervous system. Exp. Cerontol. (2003) 38:79–86.
  • PAPADOPOULOS CM, TSAI SY, ALSBIEI T et al.: Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and IN-1 antibody treatment in the adult rat. Ann. Neurol. (2002) 51:433–441.
  • WIESSNER C, BAREYRE FM, ALLEGRINI PR et al.: Anti-Nogo-A antibody infusion 24 hours after experimental stroke improved behavioral outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats. Cereb. Blood Dow Metab. (2003) 23:154–165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.